1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2022-2023 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "AdaptorCommon/ImplicitArgs.hpp"
#include "Compiler/Optimizer/OpenCLPasses/ScalarArgAsPointer/ScalarArgAsPointer.hpp"
#include "Compiler/IGCPassSupport.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/IR/Module.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/GetElementPtrTypeIterator.h>
#include "llvm/Support/Debug.h"
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
#define DEBUG_TYPE "igc-scalar-arg-as-pointer-analysis"
// Register pass to igc-opt
#define PASS_FLAG "igc-scalar-arg-as-pointer-analysis"
#define PASS_DESCRIPTION "Analyzes scalar kernel arguments used for global memory access"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(ScalarArgAsPointerAnalysis, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(ScalarArgAsPointerAnalysis, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char ScalarArgAsPointerAnalysis::ID = 0;
ScalarArgAsPointerAnalysis::ScalarArgAsPointerAnalysis() : ModulePass(ID) {
initializeScalarArgAsPointerAnalysisPass(*PassRegistry::getPassRegistry());
}
bool ScalarArgAsPointerAnalysis::runOnModule(Module &M) {
DL = &M.getDataLayout();
MDU = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
bool changed = false;
for (Function &F : M) {
if (F.isDeclaration())
continue;
if (!isEntryFunc(MDU, &F))
continue;
changed |= analyzeFunction(F);
}
// Update LLVM metadata based on IGC MetadataUtils
if (changed)
MDU->save(M.getContext());
return changed;
}
bool ScalarArgAsPointerAnalysis::analyzeFunction(llvm::Function &F) {
m_matchingArgs.clear();
m_visitedInst.clear();
m_allocas.clear();
m_currentFunction = &F;
LLVM_DEBUG(dbgs() << "running for function " << F.getName() << "\n");
visit(F);
if (m_matchingArgs.empty())
return false;
FunctionMetaData &funcMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData()->FuncMD[&F];
for (auto it = m_matchingArgs.begin(); it != m_matchingArgs.end(); ++it)
funcMD.m_OpenCLArgScalarAsPointers.insert((*it)->getArgNo());
return true;
}
void ScalarArgAsPointerAnalysis::visitStoreInst(llvm::StoreInst &I) {
analyzeStoredArg(I);
analyzePointer(I.getPointerOperand());
}
void ScalarArgAsPointerAnalysis::visitLoadInst(llvm::LoadInst &I) { analyzePointer(I.getPointerOperand()); }
void ScalarArgAsPointerAnalysis::visitCallInst(CallInst &CI) {
if (auto I = dyn_cast<GenIntrinsicInst>(&CI))
return visitGenIntrinsic(*I);
// If function takes pointer as argument, assume it is used for access.
for (auto it = CI.op_begin(); it != CI.op_end(); ++it) {
if (isa<PointerType>((*it)->getType()))
analyzePointer(*it);
}
}
void ScalarArgAsPointerAnalysis::visitGenIntrinsic(GenIntrinsicInst &I) {
GenISAIntrinsic::ID const id = I.getIntrinsicID();
if (id == GenISAIntrinsic::GenISA_LSC2DBlockRead || id == GenISAIntrinsic::GenISA_LSC2DBlockPrefetch ||
id == GenISAIntrinsic::GenISA_LSC2DBlockWrite) {
return analyzeValue(I.getOperand(0));
}
if (IsStatelessMemLoadIntrinsic(id) || IsStatelessMemStoreIntrinsic(id) || IsStatelessMemAtomicIntrinsic(I, id)) {
Value *V = GetBufferOperand(&I);
if (!V || !isa<PointerType>(V->getType()))
return;
return analyzePointer(V);
}
}
void ScalarArgAsPointerAnalysis::analyzePointer(llvm::Value *V) {
auto *type = dyn_cast<PointerType>(V->getType());
IGC_ASSERT_MESSAGE(type, "Value should be a pointer");
if (type->getAddressSpace() != ADDRESS_SPACE_GLOBAL && type->getAddressSpace() != ADDRESS_SPACE_GENERIC)
return;
analyzeValue(V);
}
void ScalarArgAsPointerAnalysis::analyzeValue(llvm::Value *V) {
std::shared_ptr<ScalarArgAsPointerAnalysis::ArgSet> args;
if (auto *I = dyn_cast<Instruction>(V)) {
args = findArgs(I);
} else {
args = analyzeOperand(V);
}
if (args) {
LLVM_DEBUG(for (auto a : *args) {
dbgs() << " access from pointer ";
V->printAsOperand(dbgs(), false);
dbgs() << " tracks to argument ";
a->printAsOperand(dbgs(), false);
dbgs() << "\n";
});
m_matchingArgs.insert(args->begin(), args->end());
}
}
const std::shared_ptr<ScalarArgAsPointerAnalysis::ArgSet>
ScalarArgAsPointerAnalysis::findArgs(llvm::Instruction *inst) {
// Skip already visited instruction
if (m_visitedInst.count(inst))
return m_visitedInst[inst];
// Mark as visited
m_visitedInst.try_emplace(inst, nullptr);
// Assume intrinsic are safe simple arithmetics.
if (isa<CallInst>(inst) && !isa<GenIntrinsicInst>(inst))
return nullptr;
auto result = std::make_shared<ScalarArgAsPointerAnalysis::ArgSet>();
if (LoadInst *LI = dyn_cast<LoadInst>(inst)) {
if (!findStoredArgs(*LI, *result))
return nullptr; // (1) Found indirect access, fail search
} else {
// Iterate and trace back operands.
auto begin = inst->operands().begin();
auto end = inst->operands().end();
if (isa<SelectInst>(inst)) {
// For select, skip condition operand (first arg)
begin++;
} else if (isa<GetElementPtrInst>(inst)) {
// For GEP, use only base pointer operand (first arg)
end = begin + 1;
}
for (auto it = begin; it != end; ++it) {
auto args = analyzeOperand(*it);
if (args)
result->insert(args->begin(), args->end());
}
if (result->empty())
return nullptr; // propagate fail
}
m_visitedInst[inst] = result;
return result;
}
const std::shared_ptr<ScalarArgAsPointerAnalysis::ArgSet> ScalarArgAsPointerAnalysis::analyzeOperand(llvm::Value *op) {
auto result = std::make_shared<ScalarArgAsPointerAnalysis::ArgSet>();
if (Argument *arg = dyn_cast<Argument>(op)) {
// Consider only integer arguments
if (arg->getType()->getScalarType()->isIntegerTy()) {
result->insert(arg);
} else {
// (2) Found non-compatible argument, fail
return nullptr;
}
} else if (Instruction *opInst = dyn_cast<Instruction>(op)) {
auto args = findArgs(opInst);
if (!args)
return nullptr; // propagate fail
result->insert(args->begin(), args->end());
} else if (GlobalValue *global = dyn_cast<GlobalValue>(op)) {
Argument *arg = analyzeGlobal(global);
if (!arg)
return nullptr; // propagate fail
result->insert(arg);
}
return result;
}
llvm::Argument *ScalarArgAsPointerAnalysis::analyzeGlobal(llvm::GlobalValue *V) {
PointerType *type = dyn_cast<PointerType>(V->getType());
if (!type)
return nullptr;
if (type->getAddressSpace() != ADDRESS_SPACE_GLOBAL)
return nullptr;
ImplicitArgs implicitArgs(*m_currentFunction, MDU);
if (!implicitArgs.isImplicitArgExist(ImplicitArg::GLOBAL_BASE))
return nullptr;
if (m_currentFunction->arg_size() < implicitArgs.size())
return nullptr;
unsigned implicitArgsBaseIndex = m_currentFunction->arg_size() - implicitArgs.size();
unsigned implicitArgIndex = implicitArgs.getArgIndex(ImplicitArg::GLOBAL_BASE);
return std::next(m_currentFunction->arg_begin(), implicitArgsBaseIndex + implicitArgIndex);
}
void ScalarArgAsPointerAnalysis::analyzeStoredArg(llvm::StoreInst &SI) {
// Only track stores of kernel arguments.
Argument *A = dyn_cast<Argument>(SI.getValueOperand());
if (!A)
return;
AllocaInst *AI = nullptr;
GetElementPtrInst *GEPI = nullptr;
if (!findAllocaWithOffset(SI.getPointerOperand(), AI, GEPI))
return;
uint64_t totalOffset = 0;
if (GEPI) {
// For store instruction offset must be constant.
APInt offset(DL->getIndexTypeSizeInBits(GEPI->getType()), 0);
if (!GEPI->accumulateConstantOffset(*DL, offset) || offset.isNegative())
return;
totalOffset += offset.getZExtValue();
}
m_allocas[std::pair<llvm::AllocaInst *, uint64_t>(AI, totalOffset)] = A;
}
bool ScalarArgAsPointerAnalysis::findStoredArgs(llvm::LoadInst &LI, ArgSet &args) {
AllocaInst *AI = nullptr;
GetElementPtrInst *GEPI = nullptr;
if (!findAllocaWithOffset(LI.getPointerOperand(), AI, GEPI))
return false;
// It is possible one or more GEP operand is a variable index to array type.
// In this case search for all possible offsets to alloca.
using Offsets = SmallVector<uint64_t, 4>;
Offsets offsets;
offsets.push_back(0);
if (GEPI) {
for (gep_type_iterator GTI = gep_type_begin(GEPI), prevGTI = gep_type_end(GEPI); GTI != gep_type_end(GEPI);
prevGTI = GTI++) {
if (ConstantInt *C = dyn_cast<ConstantInt>(GTI.getOperand())) {
if (C->isZero())
continue;
uint64_t offset = 0;
if (StructType *STy = GTI.getStructTypeOrNull())
offset = DL->getStructLayout(STy)->getElementOffset(int_cast<unsigned>(C->getZExtValue()));
else
offset = C->getZExtValue() * DL->getTypeAllocSize(GTI.getIndexedType()); // array or vector
for (auto it = offsets.begin(); it != offsets.end(); ++it)
*it += offset;
} else {
if (prevGTI == gep_type_end(GEPI))
return false; // variable index at first operand, should not happen
// gep_type_iterator is used to query indexed type. For arrays this is type
// of single element. To get array size, we need to do query for it at
// previous iterator step (before stepping into type indexed by array).
ArrayType *ATy = dyn_cast<ArrayType>(prevGTI.getIndexedType());
if (!ATy)
return false;
uint64_t arrayElements = ATy->getNumElements();
uint64_t byteSize = DL->getTypeAllocSize(GTI.getIndexedType());
Offsets tmp;
for (auto i = 0; i < arrayElements; ++i)
for (auto it = offsets.begin(); it != offsets.end(); ++it)
tmp.push_back(*it + i * byteSize);
offsets = std::move(tmp);
}
}
}
for (auto it = offsets.begin(); it != offsets.end(); ++it) {
std::pair<llvm::AllocaInst *, uint64_t> key(AI, *it);
if (m_allocas.count(key))
args.insert(m_allocas[key]);
}
return !args.empty();
}
bool ScalarArgAsPointerAnalysis::findAllocaWithOffset(llvm::Value *V, llvm::AllocaInst *&outAI,
llvm::GetElementPtrInst *&outGEPI) {
IGC_ASSERT_MESSAGE(dyn_cast<PointerType>(V->getType()), "Value should be a pointer");
outGEPI = nullptr;
Value *tmp = V;
while (true) {
if (BitCastInst *BCI = dyn_cast<BitCastInst>(tmp)) {
tmp = BCI->getOperand(0);
} else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(tmp)) {
if (outGEPI)
return false; // only one GEP instruction is supported
outGEPI = GEPI;
tmp = GEPI->getPointerOperand();
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(tmp)) {
outAI = AI;
return true;
} else {
return false;
}
}
}
|