1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2025 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "SplitStructurePhisPass.hpp"
using namespace llvm;
using namespace IGC;
char SplitStructurePhisPass::ID = 0;
#define PASS_FLAG "split-structure-phis"
#define PASS_DESCRIPTION "Split structure phis pass."
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
#define POISON_SIZE_T 999
// The SplitStructurePhisPass is a function pass designed to optimize the handling of PHI nodes that operate on
// structures containing multiple fields, such as vectors and scalars. This pass splits the PHI nodes into separate PHI
// nodes for each individual field in the structure in case one of the incoming values is a zeroinitializer. This helps
// the emitter avoid generating intermediate mov instructions to initialize the structure with zero values.
IGC_INITIALIZE_PASS_BEGIN(SplitStructurePhisPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_END(SplitStructurePhisPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
SplitStructurePhisPass::SplitStructurePhisPass() : FunctionPass(ID) {
initializeSplitStructurePhisPassPass(*PassRegistry::getPassRegistry());
}
bool SplitStructurePhisPass::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
for (auto &BB : F) {
// Iterate over all instructions in the basic block.
for (auto &I : BB) {
auto *Phi = dyn_cast<PHINode>(&I);
IncomingValuesMap InsertValues;
ExtractValueMap ExtractValues;
// Skip non-phi instructions.
if (!Phi)
continue;
// Currently, we only support PHI nodes with two incoming values.
if (Phi->getNumIncomingValues() != 2)
continue;
// Skip phi node instruction if its structure type doesn't have vector types.
if (!isStructOfVectorsType(Phi->getType()))
continue;
// Get indices of the incoming values.
IndicesTuple Indices = getIndices(Phi);
// Skip if phi node doesn't have zero incoming value.
if (std::get<Zero>(Indices) == POISON_SIZE_T || std::get<NonZero>(Indices) == POISON_SIZE_T)
continue;
// Skip phi nodes that are used by other instructions, other than extractvalue.
if (!isPhiNodeParsedByExtrVal(Phi, ExtractValues))
continue;
Value *NonZeroIncVal = Phi->getIncomingValue(std::get<NonZero>(Indices));
// Check that the non-zero incoming value was created by insertvalue instructions.
if (!checkNonZeroIncValue(NonZeroIncVal, InsertValues))
continue;
PhiNodes[Phi] = std::make_tuple(Indices, ExtractValues, InsertValues);
}
}
bool Changed = PhiNodes.size() > 0 ? true : false;
// Iterate over the collected PHI nodes and
// 1. create new phis for each vector type
// 2. create new phis for each scalar types
// 3. save dead instructions for removal
// 4. update incoming phis incoming values
for (auto &PhiPair : PhiNodes) {
PHINode *OldPhi = PhiPair.first;
auto Indices = std::get<0>(PhiPair.second);
ExtractValueMap ExtractValues = std::get<1>(PhiPair.second);
IncomingValuesMap InsertValues = std::get<2>(PhiPair.second);
StructType *StTy = cast<StructType>(OldPhi->getType());
for (unsigned i = 0; i < StTy->getNumElements(); ++i) {
auto *VecTy = dyn_cast<VectorType>(StTy->getElementType(i));
if (VecTy) {
createVectorPhi(OldPhi, Indices, ExtractValues[i], InsertValues[i]);
} else {
createScalarPhi(OldPhi, StTy->getElementType(i), Indices, ExtractValues[i], InsertValues[i]);
}
}
// Save old phi to remove it later.
PhiNodeInstsToRemove.insert(OldPhi);
}
// Clean up the dead instructions.
cleanUp();
return Changed;
}
void SplitStructurePhisPass::cleanUp() {
for (auto *ExtrValInst : ExtractValueInstsToRemove)
ExtrValInst->eraseFromParent();
for (auto *Phi : PhiNodeInstsToRemove)
Phi->eraseFromParent();
for (auto *InsValInst : InsertValueInstsToRemove) {
while (InsValInst) {
InsertValueInst *InstToRemov = InsValInst;
InsValInst = dyn_cast<InsertValueInst>(InsValInst->getAggregateOperand());
InstToRemov->eraseFromParent();
}
}
// Clear the maps and sets after work on function.
PhiNodes.clear();
InsertValueInstsToRemove.clear();
ExtractValueInstsToRemove.clear();
PhiNodeInstsToRemove.clear();
}
IndicesTuple SplitStructurePhisPass::getIndices(PHINode *Phi) {
size_t ZeroIncValIndex = POISON_SIZE_T;
size_t OtherIncValIndex = POISON_SIZE_T;
if (isa<ConstantAggregateZero>(Phi->getIncomingValue(0))) {
ZeroIncValIndex = 0;
OtherIncValIndex = 1;
} else if (isa<ConstantAggregateZero>(Phi->getIncomingValue(1))) {
ZeroIncValIndex = 1;
OtherIncValIndex = 0;
} else {
return std::make_tuple(POISON_SIZE_T, POISON_SIZE_T);
}
return std::make_tuple(ZeroIncValIndex, OtherIncValIndex);
}
void SplitStructurePhisPass::createScalarPhi(PHINode *OldPhi, Type *NewScalarType, const IndicesTuple &Indices,
ExtractValueInst *OldExtractInst, InsertValueInst *OldInsertValInst) {
IRBuilder<> Builder(OldPhi);
auto *NewPhi = cast<PHINode>(Builder.CreatePHI(NewScalarType, 2, "splitted_phi"));
size_t ZeroIncomingIndex = std::get<Zero>(Indices);
size_t NonZeroIncomingIndex = std::get<NonZero>(Indices);
NewPhi->addIncoming(Constant::getNullValue(NewScalarType), OldPhi->getIncomingBlock(ZeroIncomingIndex));
NewPhi->addIncoming(OldInsertValInst->getInsertedValueOperand(), OldPhi->getIncomingBlock(NonZeroIncomingIndex));
OldExtractInst->replaceAllUsesWith(NewPhi);
ExtractValueInstsToRemove.insert(OldExtractInst);
if (isLastInsertValueInst(OldInsertValInst, OldPhi))
InsertValueInstsToRemove.insert(OldInsertValInst);
}
void SplitStructurePhisPass::createVectorPhi(PHINode *OldPhi, const IndicesTuple &Indices,
ExtractValueInst *ExtractInst, InsertValueInst *InsertValInst) {
Value *NewIncomingNonZeroVal = InsertValInst->getInsertedValueOperand();
Type *NewIncomingTy = NewIncomingNonZeroVal->getType();
IRBuilder<> Builder(OldPhi);
PHINode *NewPhi = cast<PHINode>(Builder.CreatePHI(NewIncomingTy, 2, "splitted_phi"));
size_t ZeroIncomingIndex = std::get<Zero>(Indices);
size_t NonZeroIncomingIndex = std::get<NonZero>(Indices);
NewPhi->addIncoming(ConstantAggregateZero::get(NewIncomingTy), OldPhi->getIncomingBlock(ZeroIncomingIndex));
NewPhi->addIncoming(NewIncomingNonZeroVal, OldPhi->getIncomingBlock(NonZeroIncomingIndex));
ExtractInst->replaceAllUsesWith(NewPhi);
ExtractValueInstsToRemove.insert(ExtractInst);
// Save only the last insert value instruction for safe removal.
if (isLastInsertValueInst(InsertValInst, OldPhi))
InsertValueInstsToRemove.insert(InsertValInst);
}
bool SplitStructurePhisPass::isLastInsertValueInst(InsertValueInst *InsertValInst, PHINode *OldPhi) {
auto U = *InsertValInst->user_begin();
if (U != OldPhi)
return false;
return true;
}
// Check if non-zero increment value was created by insertvalue instructions.
bool SplitStructurePhisPass::checkNonZeroIncValue(Value *IncVal, IncomingValuesMap &InsertValues) {
StructType *StTy = cast<StructType>(IncVal->getType());
Value *InsertVal = IncVal;
for (unsigned i = 0; i < StTy->getNumElements(); ++i) {
InsertValueInst *InsertInst = dyn_cast<InsertValueInst>(InsertVal);
if (!InsertInst)
return false;
if (!InsertInst->hasOneUse())
return false;
if (InsertInst->getNumIndices() != 1)
return false;
size_t ValueIndexInStruct = InsertInst->getIndices()[0];
if (InsertValues.find(ValueIndexInStruct) != InsertValues.end())
return false;
InsertValues[ValueIndexInStruct] = InsertInst;
InsertVal = InsertInst->getAggregateOperand();
}
if (!isa<PoisonValue>(InsertVal) && !isa<UndefValue>(InsertVal))
return false;
return true;
}
bool SplitStructurePhisPass::isPhiNodeParsedByExtrVal(PHINode *Phi, ExtractValueMap &ExtractValues) {
for (auto *User : Phi->users()) {
ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(User);
if (!ExtractInst)
return false;
if (ExtractInst->getNumIndices() != 1)
return false;
size_t ValueIndexInStruct = ExtractInst->getIndices()[0];
if (ExtractValues.find(ValueIndexInStruct) != ExtractValues.end())
return false;
ExtractValues[ValueIndexInStruct] = ExtractInst;
}
return true;
}
bool SplitStructurePhisPass::isStructOfVectorsType(Type *Ty) {
bool HasVector = false;
// Check if the type is a struct
auto *STy = dyn_cast<StructType>(Ty);
if (!STy)
return false;
// Check if the struct type is an array of structs
for (unsigned i = 0; i < STy->getNumElements(); ++i) {
Type *ElemTy = STy->getElementType(i);
if (ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() || ElemTy->isPointerTy())
continue;
auto *VecTy = dyn_cast<VectorType>(ElemTy);
if (!VecTy)
return false;
Type *VecElTy = VecTy->getElementType();
if (!VecElTy->isIntegerTy() && !VecElTy->isFloatingPointTy() && !VecElTy->isPointerTy())
return false;
HasVector = true;
}
return HasVector;
}
|