1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "SpvSubgroupMMAResolution.hpp"
#include <cmath> // for ceil
#include "common/LLVMWarningsPush.hpp"
#include <llvm/ADT/SmallVector.h>
#include "llvm/ADT/StringExtras.h"
#include <llvm/ADT/StringRef.h>
#include <llvm/ADT/Twine.h>
#include <llvm/IR/Constants.h>
#include <llvm/IR/Instruction.h>
#include <llvm/IR/Type.h>
#include <llvm/Support/raw_ostream.h>
#include "llvmWrapper/IR/Instructions.h"
#include "common/LLVMWarningsPop.hpp"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/IGCPassSupport.h"
using namespace llvm;
using namespace IGC;
char SpvSubgroupMMAResolution::ID = 0;
SpvSubgroupMMAResolution::SupportedTable SpvSubgroupMMAResolution::m_Simd8Table;
SpvSubgroupMMAResolution::SupportedTable SpvSubgroupMMAResolution::m_Simd16Table;
#define PASS_FLAG "igc-spv-subgroup-mma-resolution"
#define PASS_DESC "Lowering of SPIR-V INTEL subgroup_matrix_multiply_accumulate instructions"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
#define DEBUG_TYPE "spv-subgroup-mma-resolution"
IGC_INITIALIZE_PASS_BEGIN(SpvSubgroupMMAResolution, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(SpvSubgroupMMAResolution, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
SpvSubgroupMMAResolution::SpvSubgroupMMAResolution() : ModulePass(ID) {
initializeSpvSubgroupMMAResolutionPass(*PassRegistry::getPassRegistry());
}
bool SpvSubgroupMMAResolution::runOnModule(Module &M) {
m_BuiltinsToRemove.clear();
m_Module = &M;
m_Changed = false;
m_Ctx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
visit(M);
for (auto &F : m_BuiltinsToRemove)
F->eraseFromParent();
return m_Changed;
}
enum {
None = 0,
MatrixASignedComponentsINTEL = 1 << 0,
MatrixBSignedComponentsINTEL = 1 << 1,
MatrixCBFloat16INTEL = 1 << 2,
MatrixResultBFloat16INTEL = 1 << 3,
MatrixAPackedInt8INTEL = 1 << 4,
MatrixBPackedInt8INTEL = 1 << 5,
MatrixAPackedInt4INTEL = 1 << 6,
MatrixBPackedInt4INTEL = 1 << 7,
MatrixATF32INTEL = 1 << 8,
MatrixBTF32INTEL = 1 << 9,
MatrixAPackedFloat16INTEL = 1 << 10,
MatrixBPackedFloat16INTEL = 1 << 11,
MatrixAPackedBFloat16INTEL = 1 << 12,
MatrixBPackedBFloat16INTEL = 1 << 13,
};
static std::string GetHumanReadableOperand(uint32_t operand) {
SmallVector<std::string, 8> operands;
if (operand & MatrixASignedComponentsINTEL)
operands.push_back("MatrixASignedComponentsINTEL");
if (operand & MatrixBSignedComponentsINTEL)
operands.push_back("MatrixBSignedComponentsINTEL");
if (operand & MatrixCBFloat16INTEL)
operands.push_back("MatrixCBFloat16INTEL");
if (operand & MatrixResultBFloat16INTEL)
operands.push_back("MatrixResultBFloat16INTEL");
if (operand & MatrixAPackedInt8INTEL)
operands.push_back("MatrixAPackedInt8INTEL");
if (operand & MatrixBPackedInt8INTEL)
operands.push_back("MatrixBPackedInt8INTEL");
if (operand & MatrixAPackedInt4INTEL)
operands.push_back("MatrixAPackedInt4INTEL");
if (operand & MatrixBPackedInt4INTEL)
operands.push_back("MatrixBPackedInt4INTEL");
if (operand & MatrixATF32INTEL)
operands.push_back("MatrixATF32INTEL");
if (operand & MatrixBTF32INTEL)
operands.push_back("MatrixBTF32INTEL");
if (operand & MatrixAPackedFloat16INTEL)
operands.push_back("MatrixAPackedFloat16INTEL");
if (operand & MatrixBPackedFloat16INTEL)
operands.push_back("MatrixBPackedFloat16INTEL");
if (operand & MatrixAPackedBFloat16INTEL)
operands.push_back("MatrixAPackedBFloat16INTEL");
if (operand & MatrixBPackedBFloat16INTEL)
operands.push_back("MatrixBPackedBFloat16INTEL");
if (operands.empty())
return "None";
return llvm::join(operands, " | ");
}
void SpvSubgroupMMAResolution::populateSimd8Table() {
// 8-bit integer matrix sources (signed and unsigned), 32-bit integer accumulator:
m_Simd8Table[32][ElType::I32][ElType::I32][ElType::I32][MatrixAPackedInt8INTEL | MatrixBPackedInt8INTEL] = "u8_u8_";
m_Simd8Table[32][ElType::I32][ElType::I32][ElType::I32]
[MatrixAPackedInt8INTEL | MatrixBPackedInt8INTEL | MatrixASignedComponentsINTEL] = "s8_u8_";
m_Simd8Table[32][ElType::I32][ElType::I32][ElType::I32]
[MatrixAPackedInt8INTEL | MatrixBPackedInt8INTEL | MatrixBSignedComponentsINTEL] = "u8_s8_";
m_Simd8Table[32][ElType::I32][ElType::I32][ElType::I32][MatrixAPackedInt8INTEL | MatrixBPackedInt8INTEL |
MatrixASignedComponentsINTEL | MatrixBSignedComponentsINTEL] =
"s8_s8_";
// 4-bit integer matrix sources (signed and unsigned), 32-bit integer accumulator:
m_Simd8Table[64][ElType::I32][ElType::I32][ElType::I32][MatrixAPackedInt4INTEL | MatrixBPackedInt4INTEL] = "u4_u4_";
m_Simd8Table[64][ElType::I32][ElType::I32][ElType::I32]
[MatrixAPackedInt4INTEL | MatrixBPackedInt4INTEL | MatrixASignedComponentsINTEL] = "s4_u4_";
m_Simd8Table[64][ElType::I32][ElType::I32][ElType::I32]
[MatrixAPackedInt4INTEL | MatrixBPackedInt4INTEL | MatrixBSignedComponentsINTEL] = "u4_s4_";
m_Simd8Table[64][ElType::I32][ElType::I32][ElType::I32][MatrixAPackedInt4INTEL | MatrixBPackedInt4INTEL |
MatrixASignedComponentsINTEL | MatrixBSignedComponentsINTEL] =
"s4_s4_";
// fp16 matrix sources, fp32 accumulator:
m_Simd8Table[16][ElType::F32][ElType::I32][ElType::I32][MatrixAPackedFloat16INTEL | MatrixBPackedFloat16INTEL] =
"hf_hf_";
// bf16 matrix sources, fp32 accumulator:
m_Simd8Table[16][ElType::F32][ElType::I32][ElType::I32][MatrixAPackedBFloat16INTEL | MatrixBPackedBFloat16INTEL] =
"bf_bf_";
}
void SpvSubgroupMMAResolution::populateSimd16Table() {
// 8-bit integer matrix sources (signed and unsigned), 32-bit integer accumulator:
m_Simd16Table[32][ElType::I32][ElType::I16][ElType::I32][MatrixAPackedInt8INTEL | MatrixBPackedInt8INTEL] = "u8_u8_";
m_Simd16Table[32][ElType::I32][ElType::I16][ElType::I32]
[MatrixAPackedInt8INTEL | MatrixBPackedInt8INTEL | MatrixASignedComponentsINTEL] = "s8_u8_";
m_Simd16Table[32][ElType::I32][ElType::I16][ElType::I32]
[MatrixAPackedInt8INTEL | MatrixBPackedInt8INTEL | MatrixBSignedComponentsINTEL] = "u8_s8_";
m_Simd16Table[32][ElType::I32][ElType::I16][ElType::I32][MatrixAPackedInt8INTEL | MatrixBPackedInt8INTEL |
MatrixASignedComponentsINTEL |
MatrixBSignedComponentsINTEL] = "s8_s8_";
// 4-bit integer matrix sources (signed and unsigned), 32-bit integer accumulator:
m_Simd16Table[64][ElType::I32][ElType::I16][ElType::I32][MatrixAPackedInt4INTEL | MatrixBPackedInt4INTEL] = "u4_u4_";
m_Simd16Table[64][ElType::I32][ElType::I16][ElType::I32]
[MatrixAPackedInt4INTEL | MatrixBPackedInt4INTEL | MatrixASignedComponentsINTEL] = "s4_u4_";
m_Simd16Table[64][ElType::I32][ElType::I16][ElType::I32]
[MatrixAPackedInt4INTEL | MatrixBPackedInt4INTEL | MatrixBSignedComponentsINTEL] = "u4_s4_";
m_Simd16Table[64][ElType::I32][ElType::I16][ElType::I32][MatrixAPackedInt4INTEL | MatrixBPackedInt4INTEL |
MatrixASignedComponentsINTEL |
MatrixBSignedComponentsINTEL] = "s4_s4_";
// fp16 matrix sources, fp32 accumulator:
m_Simd16Table[16][ElType::F32][ElType::I16][ElType::I32][MatrixAPackedFloat16INTEL | MatrixBPackedFloat16INTEL] =
"f_f_hf_hf_";
// bf16 matrix sources, fp32 accumulator:
m_Simd16Table[16][ElType::F32][ElType::I16][ElType::I32][MatrixAPackedBFloat16INTEL | MatrixBPackedBFloat16INTEL] =
"f_f_bf_bf_";
// fp16 matrix sources, fp16 accumulator:
m_Simd16Table[16][ElType::F16][ElType::I16][ElType::I32][MatrixAPackedFloat16INTEL | MatrixBPackedFloat16INTEL] =
"hf_hf_hf_hf_";
// bf16 matrix sources, bf16 accumulator:
m_Simd16Table[16][ElType::I16][ElType::I16][ElType::I32][MatrixResultBFloat16INTEL | MatrixAPackedBFloat16INTEL |
MatrixBPackedBFloat16INTEL | MatrixCBFloat16INTEL] =
"bf_bf_bf_bf_";
// tf32 matrix sources, fp32 accumulator:
m_Simd16Table[8][ElType::F32][ElType::F32][ElType::F32][MatrixATF32INTEL | MatrixBTF32INTEL] = "f_f_tf32_tf32_";
}
void SpvSubgroupMMAResolution::emitError(const Twine &message, const CallInst &CI) {
m_Ctx->EmitError(message.str().c_str(), &CI);
}
SpvSubgroupMMAResolution::ElType SpvSubgroupMMAResolution::getElType(const Type *Ty) const {
if (Ty->isIntegerTy(32))
return I32;
if (Ty->isIntegerTy(16))
return I16;
if (Ty->isFloatTy())
return F32;
if (Ty->isHalfTy())
return F16;
return Unknown;
}
StringRef SpvSubgroupMMAResolution::getElTypeStr(const SpvSubgroupMMAResolution::ElType Ty) const {
switch (Ty) {
case I32:
return "int32_t";
case I16:
return "int16_t";
case F32:
return "float32_t";
case F16:
return "float16_t";
default:
IGC_ASSERT_MESSAGE(0, "unexpected element type");
return "Unknown";
}
}
SpvSubgroupMMAResolution::ElType SpvSubgroupMMAResolution::getValidMatrixType(const Type *Ty) const {
if (Ty->isFloatingPointTy() || Ty->isIntegerTy())
return getElType(Ty);
if (auto *VTy = dyn_cast<FixedVectorType>(Ty))
return getValidMatrixType(VTy->getElementType());
return Unknown;
}
bool SpvSubgroupMMAResolution::validateI32Constant(const Value *V, const Twine &ParamName, const CallInst &CI) {
if (!isa<ConstantInt>(V) || !V->getType()->isIntegerTy(32)) {
emitError(Twine("__spirv_SubgroupMatrixMultiplyAccumulateINTEL: ") + ParamName +
" argument must be a constant scalar 32-bit integer",
CI);
return false;
}
return true;
}
bool SpvSubgroupMMAResolution::validateCType(const Type *ResultTy, const Type *CType, const CallInst &CI) {
if (ResultTy == CType)
return true;
std::string msg;
raw_string_ostream rso(msg);
rso << "__spirv_SubgroupMatrixMultiplyAccumulateINTEL: expected Result type to match type of Matrix C for targeted "
"HW. Result type: ";
ResultTy->print(rso);
rso << ", Matrix C type: ";
CType->print(rso);
emitError(msg, CI);
return false;
}
bool SpvSubgroupMMAResolution::validateElementType(const ElType ElemTy, StringRef ParamName, const CallInst &CI) {
if (ElemTy != Unknown)
return true;
emitError(Twine("__spirv_SubgroupMatrixMultiplyAccumulateINTEL: expected ") + ParamName +
" to be a scalar or vector of int32_t, int16_t, float32_t, or float16_t for targeted HW",
CI);
return false;
}
int SpvSubgroupMMAResolution::getElemCount(const Type *Ty) const {
if (auto *VTy = dyn_cast<FixedVectorType>(Ty))
return VTy->getNumElements();
return 1;
}
bool SpvSubgroupMMAResolution::validateElemCounts(int M, int AElemCount, int BElemCount, uint32_t Operands,
const CallInst &CI) {
if (M != 1 && M != 2 && M != 4 && M != 8) {
emitError(
"__spirv_SubgroupMatrixMultiplyAccumulateINTEL: M dimension must be 1, 2, 4 or 8 for targeted HW. Actual: " +
std::to_string(M),
CI);
return false;
}
if (Operands & MatrixATF32INTEL) {
int expected = std::ceil(M / 2.0);
if (AElemCount != expected) {
emitError("__spirv_SubgroupMatrixMultiplyAccumulateINTEL: Matrix A argument must have ceil(M/2) components "
"when MatrixATF32INTEL operand is set for targeted HW. Expected " +
std::to_string(expected) + ". Actual " + std::to_string(M),
CI);
return false;
}
} else if (AElemCount != M) {
emitError("__spirv_SubgroupMatrixMultiplyAccumulateINTEL: Matrix A argument must have size " + std::to_string(M) +
" to match M defined by Result type for targeted HW. Actual: " + std::to_string(AElemCount),
CI);
return false;
}
if (BElemCount != 8) {
emitError("__spirv_SubgroupMatrixMultiplyAccumulateINTEL: Matrix B argument must have 8 components for targeted "
"HW. Actual: " +
std::to_string(BElemCount),
CI);
return false;
}
return true;
}
SpvSubgroupMMAResolution::SupportedTable *SpvSubgroupMMAResolution::getSupportedTable() {
if (m_Ctx->platform.hasExecSize16DPAS()) {
if (m_Simd16Table.empty())
populateSimd16Table();
return &m_Simd16Table;
}
if (m_Simd8Table.empty())
populateSimd8Table();
return &m_Simd8Table;
}
template <typename T>
bool SpvSubgroupMMAResolution::validateKDimInTable(const T KIt, int K, const SupportedTable *table,
const CallInst &CI) {
if (KIt != table->end())
return true;
SmallVector<std::string, 8> validKDims;
for (const auto &it : *table)
validKDims.push_back(std::to_string(it.first));
emitError(Twine("__spirv_SubgroupMatrixMultiplyAccumulateINTEL: expected K Dim = ") + llvm::join(validKDims, " or ") +
" for targeted HW. Actual: " + Twine(K),
CI);
return false;
}
template <typename TableType> std::string SpvSubgroupMMAResolution::getValidTypesStr(const TableType &table) const {
SmallVector<std::string, 8> validTypes;
for (const auto &it : table)
validTypes.push_back(getElTypeStr(it.first).str());
return llvm::join(validTypes, " or ");
}
template <typename T>
bool SpvSubgroupMMAResolution::validateResultElementInTable(const T RIt, int K, ElType ResultElemTy,
const RTable &table, const CallInst &CI) {
if (RIt != table.end())
return true;
emitError(Twine("__spirv_SubgroupMatrixMultiplyAccumulateINTEL: expected Result element type to be ") +
getValidTypesStr(table) + " for K Dim = " + Twine(K) +
" for targeted HW. Actual: " + getElTypeStr(ResultElemTy),
CI);
return false;
}
template <typename T>
bool SpvSubgroupMMAResolution::validateAElementInTable(const T AIt, int K, ElType ResultElemTy, ElType AElemTy,
const ATable &table, const CallInst &CI) {
if (AIt != table.end())
return true;
emitError(Twine("__spirv_SubgroupMatrixMultiplyAccumulateINTEL: expected A element type to be ") +
getValidTypesStr(table) + " for K Dim = " + Twine(K) + ", for Result element type " +
getElTypeStr(ResultElemTy) + ", for targeted HW. Actual: " + getElTypeStr(AElemTy),
CI);
return false;
}
template <typename T>
bool SpvSubgroupMMAResolution::validateBElementInTable(const T BIt, int K, ElType ResultElemTy, ElType AElemTy,
ElType BElemTy, const BTable &table, const CallInst &CI) {
if (BIt != table.end())
return true;
emitError(Twine("__spirv_SubgroupMatrixMultiplyAccumulateINTEL: expected B element type to be ") +
getValidTypesStr(table) + " for K Dim = " + Twine(K) + ", for Result element type " +
getElTypeStr(ResultElemTy) + ", for A element type " + getElTypeStr(AElemTy) +
", for targeted HW. Actual: " + getElTypeStr(BElemTy),
CI);
return false;
}
template <typename T>
bool SpvSubgroupMMAResolution::validateOperands(const T OpIt, int K, ElType ResultElemTy, ElType AElemTy,
ElType BElemTy, uint32_t Operands, const OperandsTable &operandMap,
const CallInst &CI) {
if (OpIt != operandMap.end())
return true;
std::stringstream ss;
ss << "__spirv_SubgroupMatrixMultiplyAccumulateINTEL: expected Operands to be one of these combinations:\n";
for (const auto &it : operandMap)
ss << it.first << ": " << GetHumanReadableOperand(it.first) << "\n";
ss << "for K Dim = " << K << ", for Result element type " << getElTypeStr(ResultElemTy).str();
ss << ", for A element type " << getElTypeStr(AElemTy).str() << ", for B element type " << getElTypeStr(BElemTy).str()
<< ", for targeted HW.\n";
ss << "Actual: " << Operands << ": " << GetHumanReadableOperand(Operands);
emitError(ss.str(), CI);
return false;
}
void SpvSubgroupMMAResolution::visitCallInst(CallInst &CI) {
Function *F = CI.getCalledFunction();
if (!F)
return;
StringRef funcName = F->getName();
if (!funcName.contains("__spirv_SubgroupMatrixMultiplyAccumulateINTEL"))
return;
int numArgs = IGCLLVM::getNumArgOperands(&CI);
if (numArgs != 5) {
emitError("__spirv_SubgroupMatrixMultiplyAccumulateINTEL: invalid number of arguments. Expected 5. Actual " +
std::to_string(numArgs),
CI);
return;
}
// Get arguments
Type *ResultTy = CI.getType();
Value *kDim = CI.getArgOperand(0);
Value *a = CI.getArgOperand(1);
Value *b = CI.getArgOperand(2);
Value *c = CI.getArgOperand(3);
Value *OpVaue = CI.getArgOperand(4);
if (!validateI32Constant(OpVaue, "Operands", CI))
return;
uint32_t Operands = cast<ConstantInt>(OpVaue)->getZExtValue();
if (!validateCType(ResultTy, c->getType(), CI))
return;
ElType ResultElemTy = getValidMatrixType(ResultTy);
ElType AElemTy = getValidMatrixType(a->getType());
ElType BElemTy = getValidMatrixType(b->getType());
if (!validateElementType(ResultElemTy, "Result", CI))
return;
if (!validateElementType(AElemTy, "Matrix A", CI))
return;
if (!validateElementType(BElemTy, "Matrix B", CI))
return;
// The number of components in Result Type defines the M dimension.
// If Result Type is a scalar type, the M dimension is one.
int M = getElemCount(ResultTy);
int AElemCount = getElemCount(a->getType());
int BElemCount = getElemCount(b->getType());
if (!validateElemCounts(M, AElemCount, BElemCount, Operands, CI))
return;
if (!validateI32Constant(kDim, "K Dim", CI))
return;
int K = cast<ConstantInt>(kDim)->getZExtValue();
SupportedTable *table = getSupportedTable();
auto KIt = table->find(K);
if (!validateKDimInTable(KIt, K, table, CI))
return;
auto ResultIt = KIt->second.find(ResultElemTy);
if (!validateResultElementInTable(ResultIt, K, ResultElemTy, KIt->second, CI))
return;
auto AIt = ResultIt->second.find(AElemTy);
if (!validateAElementInTable(AIt, K, ResultElemTy, AElemTy, ResultIt->second, CI))
return;
auto BIt = AIt->second.find(BElemTy);
if (!validateBElementInTable(BIt, K, ResultElemTy, AElemTy, BElemTy, AIt->second, CI))
return;
auto OperandsIt = BIt->second.find(Operands);
if (!validateOperands(OperandsIt, K, ResultElemTy, AElemTy, BElemTy, Operands, BIt->second, CI))
return;
// creating IB built-in
SmallVector<Value *, 3> args({c, a, b});
SmallVector<Type *, 3> argTypes({c->getType(), a->getType(), b->getType()});
FunctionType *FT = FunctionType::get(CI.getType(), argTypes, false);
std::stringstream newFuncName;
newFuncName << "__builtin_IB_sub_group";
newFuncName << (m_Ctx->platform.hasExecSize16DPAS() ? "16" : "");
newFuncName << "_" << (ResultElemTy == I32 ? "i" : "f");
newFuncName << "dpas_" << OperandsIt->second.str() << "8_" << M;
auto newFunc = m_Module->getOrInsertFunction(newFuncName.str(), FT);
auto newCall = CallInst::Create(newFunc, args, "", &CI);
CI.replaceAllUsesWith(newCall);
CI.eraseFromParent();
m_Changed = true;
if (F->use_empty())
m_BuiltinsToRemove.insert(F);
}
|