1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Compiler/IGCPassSupport.h"
#include "Compiler/Optimizer/OCLBIUtils.h"
#include "Compiler/Optimizer/CodeAssumption.hpp"
#include "Compiler/Optimizer/OpenCLPasses/StatelessToStateful/StatelessToStateful.hpp"
#include "common/Stats.hpp"
#include "common/secure_string.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/Support/Alignment.h"
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/GetElementPtrTypeIterator.h>
#include <llvm/Analysis/ValueTracking.h>
#include <llvm/Transforms/Utils/Local.h>
#include "common/LLVMWarningsPop.hpp"
#include <string>
#include "Probe/Assertion.h"
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
// Register pass to igc-opt
#define PASS_FLAG "igc-stateless-to-stateful-resolution"
#define PASS_DESCRIPTION "Tries to convert stateless to stateful accesses"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(StatelessToStateful, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
IGC_INITIALIZE_PASS_END(StatelessToStateful, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
static cl::opt<TargetAddressing> targetAddressingMode(
"target-addressing-mode", cl::init(TargetAddressing::BINDFUL), cl::Hidden,
cl::values(clEnumValN(TargetAddressing::BINDFUL, "bindful", "Set bindful as target addressing mode"),
clEnumValN(TargetAddressing::BINDLESS, "bindless", "Set bindless as target addressing mode")),
cl::desc("Set target addressing for stateful promotion"));
// This pass turns a global/constants address space (stateless) load/store into a stateful a load/store.
//
// The conservative approach is to search for any directly positively-indexed kernels argument, such as:
//
// __kernel void CopyBuffer(__global uint4* dst, __global uint4* src)
// {
// uint4 data = src[ get_global_id(0) ];
// dst[ get_global_id(0) ] = data;
// }
//
// ...and turn these accesses into stateful accesses.
//
// This has a several benefits
// - Stateful pointer size is always 32bit - we always know the base so the binding table is always known
// - OBus bandwidth is reduced with pointer size reduction
// - 32bit data type bandwidth increases by ~50%
// - Pointer math overhead is reduced by 50% on 64bit systems
// - UMD has ability to set cacheability control per surface instead of globally
//
// Limitations:
// - This is not safe unless the UMD can guarantee allocations can fit in a surface state
// - Linux platforms allow > 4GB allocations.
// An internal flag "-cl-intel-greater-than-4GB-buffer-required" is used to pass buffer size
// info to the compiler. If 4GB buffer is required, this optimization is off.
// - Does not work for 'system SVM' platforms without knowing extra information about the platform
// - UMD needs checks to make sure this binary is never saved and later run on a system SVM device
// - this is not done yet!
//
// Negative offset
// This optimization is carried out if the address offset can be proven to be positive. Unless the
// compiler does a fancy check on this, it turns out that proving a positive offset would fail most
// of time, at least this is the case for the current implementation as of 6/1/2017. To overcome
// this issue, BUFFER_OFFSET implicit kernel arguments are added. With this, the compiler does not
// need to prove the offset is positive any more.
//
// The negative offset can happen under the following conditions:
// 1. clSetKernelArgSVMPointer() is used to set a kernel argument
// with "P + offset", where P is returned from clSVMAlloc()
// 2. Kernel does have negative offset relative to its argument,
// kernel void test(global float* svmptr,...)
// {
// ...... *(svmptr - c) ... // negative, but (offset + c) >= 0
// }
// The compiler needs to handle this even though it rarely happens. Note that if the svm is
// the system SVM, "p" can be returned by malloc(), in which we cannot guarantee the 4GB buffer size.
// Thus, this optimization must be turned off by the runtime by passing the flag to the compiler:
// -cl-intel-greater-than-4GB-buffer-required"
//
// We handle this case by passing "offset" in "P + offset" to the kernel, so that compiler
// will add this offset to the address computation. With the above example,
// kernel void test(global float* svmptr, int32 svmptr_offset,....)
// stateless: address = svmptr - c
// stateful: offset = svmptr_offset - c
// Note that offset will be in 32 bit integer, either signed or unsigned, the final result
// should be correct if the kernel's code does not have out-of-bound memory access (in this case,
// the kernel code is wrong, and we don't really care what the wrong address will be.).
//
// To implement this, the compiler generates a new patch token (DATA_PARAMETER_BUFFER_OFFSET)
// to the runtime, asking to pass an offset for a kernel pointer argument. (One token for one
// offset, so, 5 offsets will have 5 tokens). AddImplicitArgs add those implicit arguments to
// kernel.
//
// - Flag and keys:
// a new internal flag: -cl-intel-has-buffer-offset-arg
// This is needed as the classic ocl runtime does not need to support it. The presence of
// this flag means BUFFER_OFFSET is supported.
// Those three keys are for debugging purpose:
// igc key: EnableStatelessToStateful --> to turn this optimization on/off.
// igc key: EnableSupportBufferOffset
// this is the key version of -cl-intel-has-buffer-offset-arg.
// igc key: SToSProducesPositivePointer
// To assume all offsets are positive (all BUFFER_OFFSET = 0). Thus, no need to
// have implicit BUFFER_OFFSET arguments at all.
//
// Future things to look out for:
// - This transformation cannot be done if a pointer is stored to or loaded from memory
// In general, if an address of load/store cannot be resolved to the kernel argument, the load/store
// will still use stateless access. Note that the mix of stateless and stateful accesses is okay
// in terms of correctness, and it is true even though cacheability is set.
// - Need to watch out for a final address that less than the address of kernel argument:
// example: kernelArg[-2]
//
//
// Possible Todos:
// - Fancier back tracing to a kernel argument
// - Handle > 2 operand GetElementPtr instructions // DONE!
//
char StatelessToStateful::ID = 0;
StatelessToStateful::StatelessToStateful() : ModulePass(ID), m_targetAddressing(targetAddressingMode) {}
StatelessToStateful::StatelessToStateful(TargetAddressing addressing) : ModulePass(ID), m_targetAddressing(addressing) {
initializeStatelessToStatefulPass(*PassRegistry::getPassRegistry());
}
bool StatelessToStateful::runOnModule(llvm::Module &M) {
m_Module = &M;
if (m_targetAddressing == TargetAddressing::BINDFUL && getModuleUsesBindless() == true) {
return false;
}
for (auto &it : M.functions()) {
handleFunction(it);
}
return m_changed;
}
void StatelessToStateful::handleFunction(llvm::Function &F) {
MetaDataUtils *pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
ModuleMetaData *modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
if (modMD->compOpt.OptDisable) {
IGC_ASSERT_MESSAGE(0, "StatelessToStateful should be disabled for -O0!");
return;
}
// skip non-entry functions
if (!isEntryFunc(pMdUtils, &F)) {
return;
}
m_F = &F;
if (IGC_IS_FLAG_ENABLED(EnableCodeAssumption)) {
// Use assumption cache
m_ACT = &getAnalysis<AssumptionCacheTracker>();
AssumptionCache &AC = m_ACT->getAssumptionCache(F);
CodeAssumption::addAssumption(&F, &AC);
} else {
m_ACT = nullptr;
}
// Caching arguments during the transformation
m_hasBufferOffsetArg = (IGC_IS_FLAG_ENABLED(EnableSupportBufferOffset) || modMD->compOpt.HasBufferOffsetArg);
m_hasOptionalBufferOffsetArg = (m_hasBufferOffsetArg && (IGC_IS_FLAG_ENABLED(EnableOptionalBufferOffset) ||
modMD->compOpt.BufferOffsetArgOptional));
m_hasPositivePointerOffset =
(IGC_IS_FLAG_ENABLED(SToSProducesPositivePointer) || modMD->compOpt.HasPositivePointerOffset);
m_pImplicitArgs = new ImplicitArgs(F, pMdUtils);
m_ctx = static_cast<OpenCLProgramContext *>(getAnalysis<CodeGenContextWrapper>().getCodeGenContext());
m_pKernelArgs = new KernelArgs(F, &(F.getParent()->getDataLayout()), pMdUtils, modMD, m_ctx->platform.getGRFSize());
m_changed = hoistLoad();
findPromotableInstructions();
promote();
finalizeArgInitialValue(&F);
delete m_pImplicitArgs;
delete m_pKernelArgs;
m_promotionMap.clear();
}
bool StatelessToStateful::canWriteToMemoryTill(Instruction *Till) {
BasicBlock *BB = Till->getParent();
for (auto &I : *BB) {
// Stop checking when we reach the PHINode
if (&I == Till)
break;
if (I.mayWriteToMemory())
return true;
}
return false;
}
// This function checks if it is safe to hoist the load instruction over the phi instruction.
// It supports the following cases (BB3 contains load and phi instructions):
//
// 1)
// BB1 BB2
// | /
// BB3
// Here the function will check that there are no instructions that can write to memory in BB3 (from phi instruction
// till load instruction).
//
// 2)
// BB1
// | \
// | BB2
// | /
// BB3
// Here the function will check that there are no instructions that can write to memory in the whole basic block BB2.
bool StatelessToStateful::isItSafeToHoistLoad(LoadInst *LI, PHINode *Phi) {
BasicBlock *LoadBB = LI->getParent();
// Check that the load instruction is not carried over an instruction that can write to memory in basic block with phi
// instruction.
if (canWriteToMemoryTill(LI))
return false;
// Iterate over incoming basic blocks of the phi instruction.
for (unsigned i = 0; i < Phi->getNumIncomingValues(); ++i) {
BasicBlock *IncomingBlock = Phi->getIncomingBlock(i);
// Skip incoming block if it leads to the load block only.
if (IncomingBlock->getTerminator()->getNumSuccessors() == 1)
continue;
// Get the successor of the incoming block that is not the load block.
BasicBlock *TheOtherSuccessor = nullptr;
auto IncomingBlockTerminator = IncomingBlock->getTerminator();
for (unsigned j = 0; j < IncomingBlockTerminator->getNumSuccessors(); ++j) {
BasicBlock *Successor = IncomingBlockTerminator->getSuccessor(j);
if (Successor != LoadBB) {
TheOtherSuccessor = Successor;
break;
}
}
// Iterate over phi incoming values again to check that TheOtherSuccessor is incoming block of the phi instruction.
bool isSuccessorIncoming = false;
for (unsigned k = 0; k < Phi->getNumIncomingValues(); ++k) {
BasicBlock *BBToCheck = Phi->getIncomingBlock(k);
if (BBToCheck != TheOtherSuccessor)
continue;
isSuccessorIncoming = true;
// Check that TheOtherSuccessor does not have any instruction that can write to memory.
if (canWriteToMemoryTill(TheOtherSuccessor->getTerminator()))
return false;
}
// Check that TheOtherSuccessor is incomimg block of the phi instruction.
if (!isSuccessorIncoming)
return false;
}
return true;
}
bool StatelessToStateful::hoistLoad() {
bool Changed = false;
std::vector<std::tuple<PHINode *, LoadInst *>> Container;
Container.reserve(128);
// Collect all load instructions that can be hoisted.
for (auto &BB : *m_F) {
for (auto &I : BB) {
auto *LI = dyn_cast<LoadInst>(&I);
if (!LI)
continue;
Value *Addr = LI->getPointerOperand();
if (!Addr)
continue;
// StatelessToStateful works only with global and constant address space pointers.
PointerType *PtrType = cast<PointerType>(Addr->getType());
if (!PtrType || (PtrType->getAddressSpace() != ADDRESS_SPACE_GLOBAL &&
PtrType->getAddressSpace() != ADDRESS_SPACE_CONSTANT)) {
continue;
}
// Sometimes result of phi instruction can be casted before load instruction.
PHINode *Phi = nullptr;
if (isa<PHINode>(Addr)) {
Phi = cast<PHINode>(Addr);
} else if (auto *BCI = dyn_cast<BitCastInst>(Addr)) {
if (!BCI->hasOneUser())
continue;
if (isa<PHINode>(BCI->getOperand(0)))
Phi = cast<PHINode>(BCI->getOperand(0));
}
// Check that PHINode and load instructions are in the same basic block
if (!Phi || Phi->getParent() != &BB)
continue;
if (!Phi->hasOneUser())
continue;
// Check that the instruction is not carried over an instruction that can write to memory.
if (isItSafeToHoistLoad(LI, Phi))
Container.push_back(std::make_tuple(Phi, LI));
}
}
// Iterate over phi nodes and load instructions.
// Hoist the load instructions to the incoming BBs.
// Create new phi instruction with the hoisted load instructions as incoming values.
// Update uses of the original load instruction with the new phi instruction.
// Remove the load instruction and the bitcast inst instruction (if it exists) from the original BB.
for (auto &[Phi, LI] : Container) {
IRBuilder<> Builder(Phi->getContext());
Builder.SetInsertPoint(Phi);
Type *LoadType = LI->getType();
Align LoadAlign = LI->getAlign();
PHINode *NewPhi = Builder.CreatePHI(LoadType, Phi->getNumIncomingValues(), "new_phi");
// Iterate over phi incoming basic blocks.
for (unsigned i = 0; i < Phi->getNumIncomingValues(); ++i) {
Value *IncomingValue = Phi->getIncomingValue(i);
BasicBlock *IncomingBlock = Phi->getIncomingBlock(i);
Instruction *Terminator = IncomingBlock->getTerminator();
Builder.SetInsertPoint(Terminator);
Type *IncomingPtrType = IncomingValue->getType();
PointerType *LoadPtrType = dyn_cast<PointerType>(LI->getPointerOperand()->getType());
// Cast the incoming value to the type of the load if it is needed.
Value *Cast = IncomingValue;
if (IncomingPtrType != LoadPtrType)
Cast = Builder.CreateBitCast(IncomingValue, LoadPtrType);
LoadInst *NewLoad = Builder.CreateAlignedLoad(LoadType, Cast, LoadAlign, "hoisted_" + LI->getName());
NewPhi->addIncoming(NewLoad, IncomingBlock);
}
// Erase all old instructions and update uses.
LI->replaceAllUsesWith(NewPhi);
Value *Addr = LI->getPointerOperand();
LI->eraseFromParent();
if (auto *BCI = dyn_cast<BitCastInst>(Addr))
BCI->eraseFromParent();
Phi->eraseFromParent();
}
return Changed;
}
Argument *StatelessToStateful::getBufferOffsetArg(Function *F, uint32_t ArgNumber) {
uint32_t nImplicitArgs = m_pImplicitArgs->size();
uint32_t totalArgs = (uint32_t)F->arg_size();
uint32_t nExplicitArgs = (totalArgs - nImplicitArgs);
uint32_t implicit_ix = m_pImplicitArgs->getNumberedArgIndex(ImplicitArg::BUFFER_OFFSET, ArgNumber);
uint32_t arg_ix = nExplicitArgs + implicit_ix;
Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
for (; AI != AE && AI->getArgNo() != arg_ix; ++AI)
;
if (AI == AE) {
IGC_ASSERT_MESSAGE(0, "Implicit arg for BUFFER_OFFSET is out of range!");
return nullptr;
}
Argument *arg = &*AI;
return arg;
}
//
// Convert GetElementPtrInst[s] into multiple instructions that compute the byte offset
// from the base represented by these GEP instructions. GEPs vector keeps its elements
// in the reverse order of execution, that is, the last element is the first GEP in the
// execution.
//
// Returns true if the GEP was able to be expanded to multiple instructions.
//
// The final instruction of the expansion is returned in 'offset'
//
bool StatelessToStateful::getOffsetFromGEP(Function *F, const SmallVector<GetElementPtrInst *, 4> &GEPs,
uint32_t argNumber, bool isImplicitArg, Value *&offset) {
Module *M = F->getParent();
const DataLayout *DL = &M->getDataLayout();
Type *int32Ty = Type::getInt32Ty(M->getContext());
Value *PointerValue;
// If m_hasPositivePointerOffset is true, BUFFER_OFFSET are assumed to be zero,
// so is that for any implicit argument
if (m_hasBufferOffsetArg && !isImplicitArg && !m_hasPositivePointerOffset) {
PointerValue = getBufferOffsetArg(F, argNumber);
if (PointerValue == nullptr) {
// Sanity check
return false;
}
} else {
// BUFFER_OFFSET are zero.
PointerValue = ConstantInt::get(int32Ty, 0);
}
const int nGEPs = GEPs.size();
// GEPs is in the reverse order of execution! The last GEP is the first
// one to execute. For example:
// %37 = getelementptr inbounds float, float addrspace(1)* %signalw, i64 16384
// %38 = bitcast float addrspace(1)* %37 to[16 x[32 x[32 x float]]] addrspace(1)*
// %39 = getelementptr inbounds[16 x[32 x[32 x float]]], [16 x[32 x[32 x float]]]
// addrspace(1)* %38, i64 0, i64 % 34, i64 % 17, i64 % 18
// store float %36, float addrspace(1)* %39, align 4
//
// GEPs = [%39, %37] // GEPs[0] = %39, GEPs[1] = %37
//
for (int i = nGEPs; i > 0; --i) {
GetElementPtrInst *GEP = GEPs[i - 1];
Value *PtrOp = GEP->getPointerOperand();
PointerType *PtrTy = dyn_cast<PointerType>(PtrOp->getType());
IGC_ASSERT_MESSAGE(PtrTy, "Only accept scalar pointer!");
gep_type_iterator GTI = gep_type_begin(GEP);
for (auto OI = GEP->op_begin() + 1, E = GEP->op_end(); OI != E; ++OI, ++GTI) {
Value *Idx = *OI;
if (StructType *StTy = GTI.getStructTypeOrNull()) {
unsigned Field = int_cast<unsigned>(cast<ConstantInt>(Idx)->getZExtValue());
if (Field) {
uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
Value *OffsetValue = ConstantInt::get(int32Ty, Offset);
PointerValue = BinaryOperator::CreateAdd(PointerValue, OffsetValue, "", GEP);
cast<llvm::Instruction>(PointerValue)->setDebugLoc(GEP->getDebugLoc());
}
} else {
Type *Ty = GTI.getIndexedType();
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
if (!CI->isZero()) {
uint64_t Offset = DL->getTypeAllocSize(Ty) * CI->getSExtValue();
Value *OffsetValue = ConstantInt::get(int32Ty, Offset);
PointerValue = BinaryOperator::CreateAdd(PointerValue, OffsetValue, "", GEP);
cast<llvm::Instruction>(PointerValue)->setDebugLoc(GEP->getDebugLoc());
}
} else {
Value *NewIdx = CastInst::CreateTruncOrBitCast(Idx, int32Ty, "", GEP);
cast<llvm::Instruction>(NewIdx)->setDebugLoc(GEP->getDebugLoc());
APInt ElementSize = APInt((unsigned int)int32Ty->getPrimitiveSizeInBits(), DL->getTypeAllocSize(Ty));
if (ElementSize != 1) {
NewIdx = BinaryOperator::CreateMul(NewIdx, ConstantInt::get(int32Ty, ElementSize), "", GEP);
cast<llvm::Instruction>(NewIdx)->setDebugLoc(GEP->getDebugLoc());
}
PointerValue = BinaryOperator::CreateAdd(PointerValue, NewIdx, "", GEP);
cast<llvm::Instruction>(PointerValue)->setDebugLoc(GEP->getDebugLoc());
}
}
}
}
offset = PointerValue;
return true;
}
const KernelArg *StatelessToStateful::getKernelArgFromPtr(const PointerType &ptrType, Value *pVal) {
if (pVal == nullptr)
return nullptr;
Value *base = pVal;
// stripPointerCasts might skip addrSpaceCast, thus check if AS is still
// the original one.
unsigned int ptrAS = ptrType.getAddressSpace();
if (cast<PointerType>(base->getType())->getAddressSpace() == ptrAS && !isa<Instruction>(base)) {
if (const KernelArg *arg = getKernelArg(base))
return arg;
}
return nullptr;
}
bool StatelessToStateful::pointerIsFromKernelArgument(Value &ptr) {
// find the last gep
Value *base = ptr.stripPointerCasts();
// gep : the last gep of pointer address, null if no GEP at all.
GetElementPtrInst *gep = nullptr;
while (isa<GetElementPtrInst>(base)) {
gep = static_cast<GetElementPtrInst *>(base);
base = gep->getPointerOperand()->stripPointerCasts();
}
if (!m_supportNonGEPPtr && gep == nullptr)
return false;
if (getKernelArgFromPtr(*dyn_cast<PointerType>(ptr.getType()), base) != nullptr)
return true;
return false;
}
static alignment_t determinePointerAlignment(Value *Ptr, const DataLayout &DL, AssumptionCache *AC,
Instruction *InsertionPt) {
alignment_t BestAlign = 0;
// 1) Examine uses: look for loads/stores (which may carry explicit
// alignment) or a GEP that reveals an ABI alignment from its element
// type.
for (User *U : Ptr->users()) {
if (auto *LI = dyn_cast<LoadInst>(U)) {
// Load has an explicit alignment.
alignment_t LdAlign = LI->getAlign().value();
if (LdAlign > BestAlign)
BestAlign = LdAlign;
} else if (auto *SI = dyn_cast<StoreInst>(U)) {
// Store sets alignment only if the pointer we store into is Ptr.
if (SI->getPointerOperand() == Ptr) {
alignment_t StAlign = SI->getAlign().value();
if (StAlign > BestAlign)
BestAlign = StAlign;
}
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
// If the GEP's source element type is sized, we can guess an ABI
// alignment.
Type *BaseTy = GEP->getSourceElementType();
if (BaseTy && BaseTy->isSized()) {
alignment_t GEPAlign = DL.getABITypeAlign(BaseTy).value();
if (GEPAlign > BestAlign)
BestAlign = GEPAlign;
}
}
}
// 2) If this pointer is actually a function parameter, see if it has an
// alignment attribute.
if (auto *Arg = dyn_cast<Argument>(Ptr)) {
if (Arg->hasAttribute(llvm::Attribute::Alignment)) {
if (MaybeAlign ArgAlign = Arg->getParamAlign()) {
alignment_t ArgAlignOrOne = ArgAlign.valueOrOne().value();
if (ArgAlignOrOne > BestAlign)
BestAlign = ArgAlignOrOne;
}
}
}
// 3) Fallback: use LLVM's built-in assumption-based alignment analysis
// (based on a.o. llvm.assume intrinsics).
Align Known = getKnownAlignment(Ptr, DL, InsertionPt, AC);
if (Known > BestAlign)
BestAlign = Known.value();
return BestAlign;
}
bool StatelessToStateful::pointerIsPositiveOffsetFromKernelArgument(Function *F, Value *V, Value *&offset,
unsigned int &argNumber, bool ignoreSyncBuffer) {
const DataLayout *DL = &F->getParent()->getDataLayout();
AssumptionCache *AC = getAC(F);
PointerType *ptrType = dyn_cast<PointerType>(V->getType());
IGC_ASSERT_MESSAGE(ptrType, "Expected scalar Pointer (No support to vector of pointers");
if (!ptrType ||
(ptrType->getAddressSpace() != ADDRESS_SPACE_GLOBAL && ptrType->getAddressSpace() != ADDRESS_SPACE_CONSTANT)) {
return false;
}
SmallVector<GetElementPtrInst *, 4> GEPs;
Value *base = V->stripPointerCasts();
// gep : the last gep of pointer address, null if no GEP at all.
GetElementPtrInst *gep = nullptr;
while (isa<GetElementPtrInst>(base)) {
gep = static_cast<GetElementPtrInst *>(base);
GEPs.push_back(gep);
base = gep->getPointerOperand()->stripPointerCasts();
}
if (!m_supportNonGEPPtr && gep == nullptr) {
return false;
}
// if the base is from kerenl argument
if (const KernelArg *arg = getKernelArgFromPtr(*ptrType, base)) {
// base is the argument!
if (ignoreSyncBuffer && arg->getArgType() == KernelArg::ArgType::IMPLICIT_SYNC_BUFFER)
return false;
// skip implicit buffers that are supported only in stateless mode by the runtime.
if (arg->getArgType() == KernelArg::ArgType::IMPLICIT_RT_GLOBAL_BUFFER ||
arg->getArgType() == KernelArg::ArgType::IMPLICIT_ASSERT_BUFFER) {
return false;
}
argNumber = arg->getAssociatedArgNo();
bool gepProducesPositivePointer = true;
// An address needs to be DW-aligned in order to be a base
// in a surface state. In another word, a unaligned argument
// cannot be used as a surface base unless buffer_offset is
// used, in which "argument + buffer_offset" is instead used
// as a surface base. (argument + buffer_offset is the original
// base of buffer created on host side, the original buffer is
// guarantted to be DW-aligned.)
//
// Note that implicit arg is always aligned.
bool isAlignedPointee = arg->isImplicitArg()
? true
: determinePointerAlignment(base, *DL, AC, F->getEntryBlock().getFirstNonPHI()) >= 4;
// If m_hasBufferOffsetArg is true, the offset argument is added to
// the final offset to make it definitely positive. Thus skip checking
// if an offset is positive.
//
// Howerver, if m_hasoptionalBufferOffsetArg is true, the buffer offset
// is not generated if all offsets can be proven positive (this has
// performance benefit as adding buffer offset is an additional add).
// Also, if an argument is unaligned, buffer offset must be ON and used;
// otherwise, no stateful conversion for the argument can be carried out.
//
// Note that offset should be positive for any implicit ptr argument,
// so no need to prove it!
if (!arg->isImplicitArg() && isAlignedPointee && (!m_hasBufferOffsetArg || m_hasOptionalBufferOffsetArg) &&
!m_hasPositivePointerOffset) {
// This is for proving that the offset is positive.
for (int i = 0, sz = GEPs.size(); i < sz; ++i) {
GetElementPtrInst *tgep = GEPs[i];
for (auto U = tgep->idx_begin(), E = tgep->idx_end(); U != E; ++U) {
Value *Idx = U->get();
gepProducesPositivePointer &= valueIsPositive(Idx, &(F->getParent()->getDataLayout()), AC);
}
}
if (m_hasOptionalBufferOffsetArg) {
updateArgInfo(arg, gepProducesPositivePointer);
}
}
if ((m_hasBufferOffsetArg || (gepProducesPositivePointer && isAlignedPointee)) &&
getOffsetFromGEP(F, GEPs, argNumber, arg->isImplicitArg(), offset)) {
return true;
}
}
return false;
}
bool StatelessToStateful::doPromoteUntypedAtomics(const GenISAIntrinsic::ID intrinID, const GenIntrinsicInst *Inst) {
// Only promote if oprand0 and oprand1 are the same for 64bit-pointer atomics
if (intrinID == GenISAIntrinsic::GenISA_intatomicrawA64 || intrinID == GenISAIntrinsic::GenISA_icmpxchgatomicrawA64 ||
intrinID == GenISAIntrinsic::GenISA_floatatomicrawA64 ||
intrinID == GenISAIntrinsic::GenISA_fcmpxchgatomicrawA64) {
if (Inst->getOperand(0) != Inst->getOperand(1)) {
return false;
}
}
// Qword untyped atomic int only support A64, so can't promote to stateful
if (Inst->getType()->isIntegerTy() && Inst->getType()->getScalarSizeInBits() == 64) {
return false;
}
return true;
}
bool StatelessToStateful::isUntypedAtomic(const GenISAIntrinsic::ID intrinID) {
return (
intrinID == GenISAIntrinsic::GenISA_intatomicraw || intrinID == GenISAIntrinsic::GenISA_floatatomicraw ||
intrinID == GenISAIntrinsic::GenISA_intatomicrawA64 || intrinID == GenISAIntrinsic::GenISA_floatatomicrawA64 ||
intrinID == GenISAIntrinsic::GenISA_icmpxchgatomicraw || intrinID == GenISAIntrinsic::GenISA_fcmpxchgatomicraw ||
intrinID == GenISAIntrinsic::GenISA_icmpxchgatomicrawA64 ||
intrinID == GenISAIntrinsic::GenISA_fcmpxchgatomicrawA64);
}
unsigned StatelessToStateful::encodeBindfulAddrspace(unsigned uavIndex) {
auto int32Ty = Type::getInt32Ty(m_Module->getContext());
auto resourceNumber = ConstantInt::get(int32Ty, uavIndex);
unsigned addrSpace = EncodeAS4GFXResource(*resourceNumber, BufferType::UAV);
setPointerSizeTo32bit(addrSpace, m_Module);
return addrSpace;
}
void StatelessToStateful::promoteIntrinsic(InstructionInfo &II) {
GenIntrinsicInst *I = cast<GenIntrinsicInst>(II.statelessInst);
Module *M = m_F->getParent();
const DebugLoc &DL = I->getDebugLoc();
GenISAIntrinsic::ID const intrinID = I->getIntrinsicID();
PointerType *pTy =
IGCLLVM::getWithSamePointeeType(dyn_cast<PointerType>(II.ptr->getType()), II.getStatefulAddrSpace());
if (m_targetAddressing == TargetAddressing::BINDLESS) {
Argument *srcOffset =
m_pImplicitArgs->getNumberedImplicitArg(*m_F, ImplicitArg::BINDLESS_OFFSET, II.getBaseArgIndex());
auto newBasePtr = IntToPtrInst::Create(Instruction::IntToPtr, srcOffset, pTy, "", I);
if (intrinID == GenISAIntrinsic::GenISA_simdBlockRead) {
Function *newBlockReadFunc =
GenISAIntrinsic::getDeclaration(M, GenISAIntrinsic::GenISA_simdBlockReadBindless,
{I->getType(), newBasePtr->getType(), Type::getInt32Ty(M->getContext())});
Instruction *newBlockRead = CallInst::Create(newBlockReadFunc, {newBasePtr, II.offset}, "", I);
newBlockRead->setDebugLoc(I->getDebugLoc());
I->replaceAllUsesWith(newBlockRead);
I->eraseFromParent();
setModuleUsesBindless();
} else if (intrinID == GenISAIntrinsic::GenISA_simdBlockWrite) {
Function *newBlockWriteFunc = GenISAIntrinsic::getDeclaration(
M, GenISAIntrinsic::GenISA_simdBlockWriteBindless,
{newBasePtr->getType(), I->getOperand(1)->getType(), Type::getInt32Ty(M->getContext())});
Instruction *newBlockWrite =
CallInst::Create(newBlockWriteFunc, {newBasePtr, I->getOperand(1), II.offset}, "", I);
newBlockWrite->setDebugLoc(I->getDebugLoc());
I->replaceAllUsesWith(newBlockWrite);
I->eraseFromParent();
setModuleUsesBindless();
}
return;
}
IGC_ASSERT(m_targetAddressing == TargetAddressing::BINDFUL);
Instruction *statefulPtr = IntToPtrInst::Create(Instruction::IntToPtr, II.offset, pTy, "", I);
Instruction *statefulInst = nullptr;
if (intrinID == GenISAIntrinsic::GenISA_simdBlockRead) {
Function *simdMediaBlockReadFunc = GenISAIntrinsic::getDeclaration(M, intrinID, {I->getType(), pTy});
statefulInst = CallInst::Create(simdMediaBlockReadFunc, {statefulPtr}, "", I);
} else if (intrinID == GenISAIntrinsic::GenISA_simdBlockWrite ||
intrinID == GenISAIntrinsic::GenISA_HDCuncompressedwrite) {
SmallVector<Value *, 2> args;
args.push_back(statefulPtr);
args.push_back(I->getOperand(1));
Function *pFunc = GenISAIntrinsic::getDeclaration(M, intrinID, {pTy, I->getOperand(1)->getType()});
statefulInst = CallInst::Create(pFunc, args, "", I);
} else if (intrinID == GenISAIntrinsic::GenISA_LSCStoreCmask) {
SmallVector<Value *, 6> args;
args.push_back(statefulPtr);
args.push_back(I->getOperand(1));
args.push_back(I->getOperand(2));
args.push_back(I->getOperand(3));
args.push_back(I->getOperand(4));
args.push_back(I->getOperand(5));
Function *pFunc = GenISAIntrinsic::getDeclaration(M, intrinID, {pTy, I->getOperand(2)->getType()});
statefulInst = CallInst::Create(pFunc, args, "", I);
} else if (intrinID == GenISAIntrinsic::GenISA_LSCLoadCmask) {
Function *pCurrInstFunc = I->getCalledFunction();
SmallVector<Value *, 5> args;
args.push_back(statefulPtr);
args.push_back(I->getOperand(1));
args.push_back(I->getOperand(2));
args.push_back(I->getOperand(3));
args.push_back(I->getOperand(4));
Function *pFunc = GenISAIntrinsic::getDeclaration(M, intrinID, {pCurrInstFunc->getReturnType(), pTy});
statefulInst = CallInst::Create(pFunc, args, "", I);
} else if (isUntypedAtomic(intrinID)) {
if (intrinID == GenISAIntrinsic::GenISA_intatomicrawA64 ||
intrinID == GenISAIntrinsic::GenISA_icmpxchgatomicrawA64 ||
intrinID == GenISAIntrinsic::GenISA_floatatomicrawA64 ||
intrinID == GenISAIntrinsic::GenISA_fcmpxchgatomicrawA64) {
statefulInst = CallInst::Create(GenISAIntrinsic::getDeclaration(M, intrinID, {I->getType(), pTy, pTy}),
{statefulPtr, statefulPtr, I->getOperand(2), I->getOperand(3)}, "", I);
} else {
statefulInst = CallInst::Create(GenISAIntrinsic::getDeclaration(M, intrinID, {I->getType(), pTy}),
{statefulPtr, II.offset, I->getOperand(2), I->getOperand(3)}, "", I);
}
}
IGC_ASSERT(statefulInst);
statefulInst->setDebugLoc(DL);
I->replaceAllUsesWith(statefulInst);
I->eraseFromParent();
}
void StatelessToStateful::promoteLoad(InstructionInfo &II) {
LoadInst *I = cast<LoadInst>(II.statelessInst);
PointerType *pTy = PointerType::get(I->getType(), II.getStatefulAddrSpace());
const DebugLoc &DL = I->getDebugLoc();
if (m_targetAddressing == TargetAddressing::BINDLESS) {
Argument *srcOffset =
m_pImplicitArgs->getNumberedImplicitArg(*m_F, ImplicitArg::BINDLESS_OFFSET, II.getBaseArgIndex());
auto newBasePtr = IntToPtrInst::Create(Instruction::IntToPtr, srcOffset, pTy, "", I);
auto bindlessLoad = IGC::CreateLoadRawIntrinsic(I, cast<Instruction>(newBasePtr), II.offset);
newBasePtr->setDebugLoc(DL);
bindlessLoad->setDebugLoc(DL);
I->replaceAllUsesWith(bindlessLoad);
I->eraseFromParent();
setModuleUsesBindless();
} else if (m_targetAddressing == TargetAddressing::BINDFUL) {
auto newBasePtr = IntToPtrInst::Create(Instruction::IntToPtr, II.offset, pTy, "", I);
auto bindfulLoad = new LoadInst(I->getType(), newBasePtr, "", I->isVolatile(), IGCLLVM::getAlign(*I),
I->getOrdering(), I->getSyncScopeID(), I);
newBasePtr->setDebugLoc(DL);
bindfulLoad->setDebugLoc(DL);
Value *ptr = I->getPointerOperand();
PointerType *ptrType = dyn_cast<PointerType>(ptr->getType());
if (ptrType && ptrType->getAddressSpace() == ADDRESS_SPACE_CONSTANT) {
LLVMContext &context = I->getContext();
MDString *const metadataName = MDString::get(context, "invariant.load");
MDNode *node = MDNode::get(context, metadataName);
bindfulLoad->setMetadata(LLVMContext::MD_invariant_load, node);
}
I->replaceAllUsesWith(bindfulLoad);
I->eraseFromParent();
} else {
IGC_ASSERT_MESSAGE(false, "Unsupported addressing!");
}
}
void StatelessToStateful::promoteStore(InstructionInfo &II) {
StoreInst *I = cast<StoreInst>(II.statelessInst);
Value *dataVal = I->getValueOperand();
PointerType *pTy = PointerType::get(dataVal->getType(), II.getStatefulAddrSpace());
const DebugLoc &DL = I->getDebugLoc();
if (m_targetAddressing == TargetAddressing::BINDLESS) {
Argument *srcOffset =
m_pImplicitArgs->getNumberedImplicitArg(*m_F, ImplicitArg::BINDLESS_OFFSET, II.getBaseArgIndex());
auto newBasePtr = IntToPtrInst::Create(Instruction::IntToPtr, srcOffset, pTy, "", I);
auto bindlessStore = IGC::CreateStoreRawIntrinsic(I, cast<Instruction>(newBasePtr), II.offset);
newBasePtr->setDebugLoc(DL);
bindlessStore->setDebugLoc(DL);
I->eraseFromParent();
setModuleUsesBindless();
} else if (m_targetAddressing == TargetAddressing::BINDFUL) {
auto newBasePtr = IntToPtrInst::Create(Instruction::IntToPtr, II.offset, pTy, "", I);
auto bindfulStore = new StoreInst(dataVal, newBasePtr, I->isVolatile(), IGCLLVM::getAlign(*I), I->getOrdering(),
I->getSyncScopeID(), I);
newBasePtr->setDebugLoc(DL);
bindfulStore->setDebugLoc(DL);
I->eraseFromParent();
} else {
IGC_ASSERT_MESSAGE(false, "Unsupported addressing!");
}
}
void StatelessToStateful::promoteInstruction(StatelessToStateful::InstructionInfo &InstInfo) {
switch (InstInfo.statelessInst->getOpcode()) {
case Instruction::Load:
promoteLoad(InstInfo);
break;
case Instruction::Store:
promoteStore(InstInfo);
break;
case Instruction::Call:
promoteIntrinsic(InstInfo);
break;
default:
IGC_ASSERT_MESSAGE(false, "Unsupported instruction!");
}
}
void StatelessToStateful::promote() {
if (m_promotionMap.empty())
return;
CodeGenContext *ctx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
ModuleMetaData *modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
FunctionMetaData *funcMD = &modMD->FuncMD[m_F];
ResourceAllocMD *resAllocMD = &funcMD->resAllocMD;
IGC_ASSERT_MESSAGE(resAllocMD->argAllocMDList.size() > 0, "ArgAllocMDList is empty.");
unsigned bufferPos = 0;
for (auto &[baseArgIndex, instsToPromote] : m_promotionMap) {
IGC_ASSERT(bufferPos < maxPromotionCount);
unsigned statefullAddrspace = 0;
if (m_targetAddressing == TargetAddressing::BINDLESS) {
statefullAddrspace =
IGC::EncodeAS4GFXResource(*UndefValue::get(Type::getInt32Ty(m_Module->getContext())), IGC::BINDLESS);
setPointerSizeTo32bit(statefullAddrspace, m_Module);
setModuleUsesBindless();
} else {
ArgAllocMD *argAlloc = &resAllocMD->argAllocMDList[baseArgIndex];
// If the support for dynamic BTIs allocation is disabled, then BTIs are pre-assigned
// in ResourceAllocator pass for all resources independently whether they are
// accessed through stateful addressing model or not.
if (ctx->platform.supportDynamicBTIsAllocation()) {
argAlloc->type = ResourceTypeEnum::UAVResourceType;
argAlloc->indexType = resAllocMD->uavsNumType + bufferPos;
}
statefullAddrspace = encodeBindfulAddrspace(argAlloc->indexType);
}
for (auto &instInfo : instsToPromote) {
instInfo.setStatefulAddrspace(statefullAddrspace);
instInfo.setBaseArgIndex(baseArgIndex);
promoteInstruction(instInfo);
}
bufferPos++;
m_changed = true;
}
resAllocMD->uavsNumType += m_promotionMap.size();
}
void StatelessToStateful::addToPromotionMap(Instruction &I, Value *Ptr) {
Value *offset = nullptr;
unsigned baseArgNumber = 0;
bool isPromotable = m_promotionMap.size() < maxPromotionCount &&
pointerIsPositiveOffsetFromKernelArgument(m_F, Ptr, offset, baseArgNumber, true);
if (isPromotable) {
InstructionInfo II(&I, Ptr, offset);
m_promotionMap[baseArgNumber].push_back(II);
}
}
void StatelessToStateful::visitCallInst(CallInst &I) {
auto Inst = dyn_cast<GenIntrinsicInst>(&I);
if (!Inst)
return;
GenISAIntrinsic::ID const intrinID = Inst->getIntrinsicID();
if (intrinID == GenISAIntrinsic::GenISA_simdBlockRead || intrinID == GenISAIntrinsic::GenISA_simdBlockWrite ||
intrinID == GenISAIntrinsic::GenISA_HDCuncompressedwrite ||
(IGC_IS_FLAG_ENABLED(EnableStatefulAtomic) && isUntypedAtomic(intrinID) &&
doPromoteUntypedAtomics(intrinID, Inst))) {
Value *ptr = Inst->getOperand(0);
PointerType *ptrTy = dyn_cast<PointerType>(ptr->getType());
// If not global/constant, skip.
if (ptrTy->getPointerAddressSpace() != ADDRESS_SPACE_GLOBAL &&
ptrTy->getPointerAddressSpace() != ADDRESS_SPACE_CONSTANT) {
return;
}
addToPromotionMap(I, ptr);
} else if (intrinID == GenISAIntrinsic::GenISA_LSCLoadCmask || intrinID == GenISAIntrinsic::GenISA_LSCStoreCmask) {
Value *ptr = Inst->getOperand(0);
PointerType *ptrTy = dyn_cast<PointerType>(ptr->getType());
// If not global, skip.
if (ptrTy->getPointerAddressSpace() != ADDRESS_SPACE_GLOBAL) {
return;
}
addToPromotionMap(I, ptr);
}
// check if there's non-kernel-arg load/store
if (IGC_IS_FLAG_ENABLED(DumpHasNonKernelArgLdSt)) {
// FIXME: should use the helper functions defined in Compiler/CISACodeGen/helper.h
auto isLoadIntrinsic = [](const GenISAIntrinsic::ID id) {
switch (id) {
case GenISAIntrinsic::GenISA_simdBlockRead:
// FIXME: GenISA_LSC2DBlockRead is not considered, not sure if its Operand 0
// is the address
case GenISAIntrinsic::GenISA_LSCLoad:
case GenISAIntrinsic::GenISA_LSCLoadBlock:
case GenISAIntrinsic::GenISA_LSCPrefetch:
case GenISAIntrinsic::GenISA_LSCLoadCmask:
return true;
default:
break;
}
return false;
};
auto isStoreIntrinsic = [](const GenISAIntrinsic::ID id) {
switch (id) {
case GenISAIntrinsic::GenISA_HDCuncompressedwrite:
case GenISAIntrinsic::GenISA_LSCStore:
case GenISAIntrinsic::GenISA_LSCStoreBlock:
case GenISAIntrinsic::GenISA_simdBlockWrite:
case GenISAIntrinsic::GenISA_LSCStoreCmask:
return true;
default:
break;
}
return false;
};
auto isAtomicsIntrinsic = [&](const GenISAIntrinsic::ID id) {
switch (id) {
case GenISAIntrinsic::GenISA_LSCAtomicFP32:
case GenISAIntrinsic::GenISA_LSCAtomicFP64:
case GenISAIntrinsic::GenISA_LSCAtomicInts:
return true;
default:
break;
}
return isUntypedAtomic(id);
};
if (isLoadIntrinsic(intrinID) || isStoreIntrinsic(intrinID) || isAtomicsIntrinsic(intrinID)) {
Value *ptr = Inst->getOperand(0);
if (!pointerIsFromKernelArgument(*ptr)) {
ModuleMetaData *modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
FunctionMetaData *funcMD = &modMD->FuncMD[Inst->getParent()->getParent()];
if (isStoreIntrinsic(intrinID))
funcMD->hasNonKernelArgStore = true;
else if (isLoadIntrinsic(intrinID))
funcMD->hasNonKernelArgLoad = true;
else
funcMD->hasNonKernelArgAtomic = true;
}
}
}
}
void StatelessToStateful::visitLoadInst(LoadInst &I) {
Value *ptr = I.getPointerOperand();
addToPromotionMap(I, ptr);
// check if there's non-kernel-arg load/store
if (IGC_IS_FLAG_ENABLED(DumpHasNonKernelArgLdSt) && ptr != nullptr && !pointerIsFromKernelArgument(*ptr)) {
ModuleMetaData *modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
FunctionMetaData *funcMD = &modMD->FuncMD[m_F];
funcMD->hasNonKernelArgLoad = true;
}
}
void StatelessToStateful::visitStoreInst(StoreInst &I) {
Value *ptr = I.getPointerOperand();
addToPromotionMap(I, ptr);
if (IGC_IS_FLAG_ENABLED(DumpHasNonKernelArgLdSt) && ptr != nullptr && !pointerIsFromKernelArgument(*ptr)) {
ModuleMetaData *modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
FunctionMetaData *funcMD = &modMD->FuncMD[m_F];
funcMD->hasNonKernelArgStore = true;
}
}
void StatelessToStateful::findPromotableInstructions() {
// fill m_promotionMap
visit(m_F);
}
// This is used to set the size for a pointer to a given addrspace, which is created
// and used by and within IGC. As this is a new address space, all the existing ones
// will not be affected by this at all. (And it definitely does not change any existing
// memory layout.)
//
// Note this is consistent with CodeGenContext::getRegisterPointerSizeInBits() for now.
void StatelessToStateful::setPointerSizeTo32bit(int32_t AddrSpace, Module *M) {
const DataLayout &DL = M->getDataLayout();
// If default is 32bit (or it has been set to 32bit already), no need to set it.
if (DL.getPointerSize(AddrSpace) == 4) {
// Already 4 bytes,
return;
}
const std::string StrDL = DL.getStringRepresentation();
char data[64];
if (DL.isDefault()) {
sprintf_s(data, sizeof(data), "p%d:32:32:32", AddrSpace);
} else {
// this is a new addrspace, it should not be in the
// existing DataLayout, but if it exists, just return.
// We don't want to change any existing one!
sprintf_s(data, sizeof(data), "p%d:", AddrSpace);
if (StrDL.find(data) != std::string::npos) {
return;
}
sprintf_s(data, sizeof(data), "-p%d:32:32:32", AddrSpace);
}
std::string newStrDL = StrDL + data;
M->setDataLayout(newStrDL);
}
void StatelessToStateful::updateArgInfo(const KernelArg *kernelArg, bool isPositive) {
auto II = m_argsInfo.find(kernelArg);
if (II == m_argsInfo.end()) {
m_argsInfo[kernelArg] = 1; // default to true
}
if (!isPositive) {
m_argsInfo[kernelArg] = 0;
}
}
void StatelessToStateful::finalizeArgInitialValue(Function *F) {
if (!m_hasOptionalBufferOffsetArg) {
return;
}
Module *M = F->getParent();
Type *int32Ty = Type::getInt32Ty(M->getContext());
Value *ZeroValue = ConstantInt::get(int32Ty, 0);
for (const auto &II : m_argsInfo) {
const KernelArg *kernelArg = II.first;
int mapVal = II.second;
bool allOffsetPositive = (mapVal == 1);
if (allOffsetPositive) {
const KernelArg *offsetArg = getBufferOffsetKernelArg(kernelArg);
IGC_ASSERT_MESSAGE(offsetArg, "Missing BufferOffset arg!");
Value *BufferOffsetArg = const_cast<Argument *>(offsetArg->getArg());
BufferOffsetArg->replaceAllUsesWith(ZeroValue);
}
}
m_argsInfo.clear();
// Clear add instructions created in StatelessToStateful::getOffsetFromGEP
DenseSet<Instruction *> AddInstructionsToLower;
for (auto U : ZeroValue->users())
if (auto I = dyn_cast<Instruction>(U))
if (I->getOpcode() == Instruction::Add && I->getOperand(0) == ZeroValue)
AddInstructionsToLower.insert(I);
for (auto AddInst : AddInstructionsToLower) {
AddInst->replaceAllUsesWith(AddInst->getOperand(1));
AddInst->eraseFromParent();
}
}
void StatelessToStateful::setModuleUsesBindless() {
auto MD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
MD->ModuleUsesBindless = true;
IGC::serialize(*MD, m_Module);
}
bool StatelessToStateful::getModuleUsesBindless() {
return getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData()->ModuleUsesBindless;
}
|