File: StatelessToStateful.cpp

package info (click to toggle)
intel-graphics-compiler2 2.16.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 106,644 kB
  • sloc: cpp: 805,640; lisp: 287,672; ansic: 16,414; python: 3,952; yacc: 2,588; lex: 1,666; pascal: 313; sh: 186; makefile: 35
file content (1150 lines) | stat: -rw-r--r-- 46,146 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2024 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "Compiler/IGCPassSupport.h"
#include "Compiler/Optimizer/OCLBIUtils.h"
#include "Compiler/Optimizer/CodeAssumption.hpp"
#include "Compiler/Optimizer/OpenCLPasses/StatelessToStateful/StatelessToStateful.hpp"
#include "common/Stats.hpp"
#include "common/secure_string.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/Support/Alignment.h"
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/GetElementPtrTypeIterator.h>
#include <llvm/Analysis/ValueTracking.h>
#include <llvm/Transforms/Utils/Local.h>
#include "common/LLVMWarningsPop.hpp"
#include <string>
#include "Probe/Assertion.h"

using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;

// Register pass to igc-opt
#define PASS_FLAG "igc-stateless-to-stateful-resolution"
#define PASS_DESCRIPTION "Tries to convert stateless to stateful accesses"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(StatelessToStateful, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
IGC_INITIALIZE_PASS_END(StatelessToStateful, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)

static cl::opt<TargetAddressing> targetAddressingMode(
    "target-addressing-mode", cl::init(TargetAddressing::BINDFUL), cl::Hidden,
    cl::values(clEnumValN(TargetAddressing::BINDFUL, "bindful", "Set bindful as target addressing mode"),
               clEnumValN(TargetAddressing::BINDLESS, "bindless", "Set bindless as target addressing mode")),
    cl::desc("Set target addressing for stateful promotion"));

// This pass turns a global/constants address space (stateless) load/store into a stateful a load/store.
//
// The conservative approach is to search for any directly positively-indexed kernels argument, such as:
//
// __kernel void CopyBuffer(__global uint4* dst, __global uint4* src)
// {
//     uint4 data = src[ get_global_id(0) ];
//     dst[ get_global_id(0) ] = data;
// }
//
// ...and turn these accesses into stateful accesses.
//
// This has a several benefits
//  - Stateful pointer size is always 32bit - we always know the base so the binding table is always known
//  - OBus bandwidth is reduced with pointer size reduction
//    - 32bit data type bandwidth increases by ~50%
//  - Pointer math overhead is reduced by 50% on 64bit systems
//  - UMD has ability to set cacheability control per surface instead of globally
//
// Limitations:
//   - This is not safe unless the UMD can guarantee allocations can fit in a surface state
//     - Linux platforms allow > 4GB  allocations.
//       An internal flag "-cl-intel-greater-than-4GB-buffer-required" is used to pass buffer size
//       info to the compiler. If 4GB buffer is required, this optimization is off.
//   - Does not work for 'system SVM' platforms without knowing extra information about the platform
//   - UMD needs checks to make sure this binary is never saved and later run on a system SVM device
//     - this is not done yet!
//
//  Negative offset
//    This optimization is carried out if the address offset can be proven to be positive. Unless the
//    compiler does a fancy check on this,  it turns out that proving a positive offset would fail most
//    of time, at least this is the case for the current implementation as of 6/1/2017. To overcome
//    this issue, BUFFER_OFFSET implicit kernel arguments are added. With this, the compiler does not
//    need to prove the offset is positive any more.
//
//    The negative offset can happen under the following conditions:
//       1. clSetKernelArgSVMPointer() is used to set a kernel argument
//          with "P + offset", where P is returned from clSVMAlloc()
//       2. Kernel does have negative offset relative to its argument,
//            kernel void test(global float* svmptr,...)
//            {
//                ......  *(svmptr - c) ...   // negative, but (offset + c) >= 0
//            }
//    The compiler needs to handle this even though it rarely happens.  Note that if the svm is
//    the system SVM, "p" can be returned by malloc(), in which we cannot guarantee the 4GB buffer size.
//    Thus, this optimization must be turned off by the runtime by passing the flag to the compiler:
//             -cl-intel-greater-than-4GB-buffer-required"
//
//    We handle this case by passing "offset" in "P + offset" to the kernel, so that compiler
//    will add this offset to the address computation. With the above example,
//         kernel void test(global float* svmptr, int32 svmptr_offset,....)
//             stateless:   address = svmptr - c
//             stateful:   offset = svmptr_offset - c
//    Note that offset will be in 32 bit integer,  either signed or unsigned, the final result
//    should be correct if the kernel's code does not have out-of-bound memory access (in this case,
//    the kernel code is wrong, and we don't really care what the wrong address will be.).
//
//    To implement this,  the compiler generates a new patch token (DATA_PARAMETER_BUFFER_OFFSET)
//    to the runtime, asking to pass an offset for a kernel pointer argument. (One token for one
//    offset, so, 5 offsets will have 5 tokens). AddImplicitArgs add those implicit arguments to
//    kernel.
//
//    - Flag and keys:
//      a new internal flag:  -cl-intel-has-buffer-offset-arg
//            This is needed as the classic ocl runtime does not need to support it. The presence of
//            this flag means BUFFER_OFFSET is supported.
//      Those three keys are for debugging purpose:
//        igc key: EnableStatelessToStateful --> to turn this optimization on/off.
//        igc key: EnableSupportBufferOffset
//                 this is the key version of -cl-intel-has-buffer-offset-arg.
//        igc key: SToSProducesPositivePointer
//                 To assume all offsets are positive (all BUFFER_OFFSET = 0). Thus, no need to
//                 have implicit BUFFER_OFFSET arguments at all.
//

// Future things to look out for:
//  - This transformation cannot be done if a pointer is stored to or loaded from memory
//    In general, if an address of load/store cannot be resolved to the kernel argument, the load/store
//    will still use stateless access. Note that the mix of stateless and stateful accesses is okay
//    in terms of correctness, and it is true even though cacheability is set.
//  - Need to watch out for a final address that less than the address of kernel argument:
//     example: kernelArg[-2]
//
//
// Possible Todos:
//  - Fancier back tracing to a kernel argument
//  - Handle > 2 operand GetElementPtr instructions // DONE!
//

char StatelessToStateful::ID = 0;

StatelessToStateful::StatelessToStateful() : ModulePass(ID), m_targetAddressing(targetAddressingMode) {}

StatelessToStateful::StatelessToStateful(TargetAddressing addressing) : ModulePass(ID), m_targetAddressing(addressing) {
  initializeStatelessToStatefulPass(*PassRegistry::getPassRegistry());
}

bool StatelessToStateful::runOnModule(llvm::Module &M) {
  m_Module = &M;

  if (m_targetAddressing == TargetAddressing::BINDFUL && getModuleUsesBindless() == true) {
    return false;
  }

  for (auto &it : M.functions()) {
    handleFunction(it);
  }

  return m_changed;
}

void StatelessToStateful::handleFunction(llvm::Function &F) {
  MetaDataUtils *pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
  ModuleMetaData *modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();

  if (modMD->compOpt.OptDisable) {
    IGC_ASSERT_MESSAGE(0, "StatelessToStateful should be disabled for -O0!");
    return;
  }

  // skip non-entry functions
  if (!isEntryFunc(pMdUtils, &F)) {
    return;
  }

  m_F = &F;

  if (IGC_IS_FLAG_ENABLED(EnableCodeAssumption)) {
    // Use assumption cache
    m_ACT = &getAnalysis<AssumptionCacheTracker>();
    AssumptionCache &AC = m_ACT->getAssumptionCache(F);
    CodeAssumption::addAssumption(&F, &AC);
  } else {
    m_ACT = nullptr;
  }

  // Caching arguments during the transformation
  m_hasBufferOffsetArg = (IGC_IS_FLAG_ENABLED(EnableSupportBufferOffset) || modMD->compOpt.HasBufferOffsetArg);

  m_hasOptionalBufferOffsetArg = (m_hasBufferOffsetArg && (IGC_IS_FLAG_ENABLED(EnableOptionalBufferOffset) ||
                                                           modMD->compOpt.BufferOffsetArgOptional));

  m_hasPositivePointerOffset =
      (IGC_IS_FLAG_ENABLED(SToSProducesPositivePointer) || modMD->compOpt.HasPositivePointerOffset);

  m_pImplicitArgs = new ImplicitArgs(F, pMdUtils);
  m_ctx = static_cast<OpenCLProgramContext *>(getAnalysis<CodeGenContextWrapper>().getCodeGenContext());
  m_pKernelArgs = new KernelArgs(F, &(F.getParent()->getDataLayout()), pMdUtils, modMD, m_ctx->platform.getGRFSize());

  m_changed = hoistLoad();

  findPromotableInstructions();
  promote();

  finalizeArgInitialValue(&F);

  delete m_pImplicitArgs;
  delete m_pKernelArgs;
  m_promotionMap.clear();
}

bool StatelessToStateful::canWriteToMemoryTill(Instruction *Till) {
  BasicBlock *BB = Till->getParent();
  for (auto &I : *BB) {
    // Stop checking when we reach the PHINode
    if (&I == Till)
      break;

    if (I.mayWriteToMemory())
      return true;
  }

  return false;
}

// This function checks if it is safe to hoist the load instruction over the phi instruction.
// It supports the following cases (BB3 contains load and phi instructions):
//
// 1)
//   BB1  BB2
//   |   /
//    BB3
// Here the function will check that there are no instructions that can write to memory in BB3 (from phi instruction
// till load instruction).
//
// 2)
//  BB1
//  |  \
//  |   BB2
//  |  /
//   BB3
// Here the function will check that there are no instructions that can write to memory in the whole basic block BB2.
bool StatelessToStateful::isItSafeToHoistLoad(LoadInst *LI, PHINode *Phi) {
  BasicBlock *LoadBB = LI->getParent();

  // Check that the load instruction is not carried over an instruction that can write to memory in basic block with phi
  // instruction.
  if (canWriteToMemoryTill(LI))
    return false;

  // Iterate over incoming basic blocks of the phi instruction.
  for (unsigned i = 0; i < Phi->getNumIncomingValues(); ++i) {
    BasicBlock *IncomingBlock = Phi->getIncomingBlock(i);

    // Skip incoming block if it leads to the load block only.
    if (IncomingBlock->getTerminator()->getNumSuccessors() == 1)
      continue;

    // Get the successor of the incoming block that is not the load block.
    BasicBlock *TheOtherSuccessor = nullptr;
    auto IncomingBlockTerminator = IncomingBlock->getTerminator();
    for (unsigned j = 0; j < IncomingBlockTerminator->getNumSuccessors(); ++j) {
      BasicBlock *Successor = IncomingBlockTerminator->getSuccessor(j);
      if (Successor != LoadBB) {
        TheOtherSuccessor = Successor;
        break;
      }
    }

    // Iterate over phi incoming values again to check that TheOtherSuccessor is incoming block of the phi instruction.
    bool isSuccessorIncoming = false;
    for (unsigned k = 0; k < Phi->getNumIncomingValues(); ++k) {
      BasicBlock *BBToCheck = Phi->getIncomingBlock(k);
      if (BBToCheck != TheOtherSuccessor)
        continue;

      isSuccessorIncoming = true;

      // Check that TheOtherSuccessor does not have any instruction that can write to memory.
      if (canWriteToMemoryTill(TheOtherSuccessor->getTerminator()))
        return false;
    }

    // Check that TheOtherSuccessor is incomimg block of the phi instruction.
    if (!isSuccessorIncoming)
      return false;
  }

  return true;
}

bool StatelessToStateful::hoistLoad() {
  bool Changed = false;
  std::vector<std::tuple<PHINode *, LoadInst *>> Container;
  Container.reserve(128);

  // Collect all load instructions that can be hoisted.
  for (auto &BB : *m_F) {
    for (auto &I : BB) {
      auto *LI = dyn_cast<LoadInst>(&I);
      if (!LI)
        continue;

      Value *Addr = LI->getPointerOperand();
      if (!Addr)
        continue;

      // StatelessToStateful works only with global and constant address space pointers.
      PointerType *PtrType = cast<PointerType>(Addr->getType());
      if (!PtrType || (PtrType->getAddressSpace() != ADDRESS_SPACE_GLOBAL &&
                       PtrType->getAddressSpace() != ADDRESS_SPACE_CONSTANT)) {
        continue;
      }

      // Sometimes result of phi instruction can be casted before load instruction.
      PHINode *Phi = nullptr;
      if (isa<PHINode>(Addr)) {
        Phi = cast<PHINode>(Addr);
      } else if (auto *BCI = dyn_cast<BitCastInst>(Addr)) {
        if (!BCI->hasOneUser())
          continue;

        if (isa<PHINode>(BCI->getOperand(0)))
          Phi = cast<PHINode>(BCI->getOperand(0));
      }

      // Check that PHINode and load instructions are in the same basic block
      if (!Phi || Phi->getParent() != &BB)
        continue;

      if (!Phi->hasOneUser())
        continue;

      // Check that the instruction is not carried over an instruction that can write to memory.
      if (isItSafeToHoistLoad(LI, Phi))
        Container.push_back(std::make_tuple(Phi, LI));
    }
  }

  // Iterate over phi nodes and load instructions.
  // Hoist the load instructions to the incoming BBs.
  // Create new phi instruction with the hoisted load instructions as incoming values.
  // Update uses of the original load instruction with the new phi instruction.
  // Remove the load instruction and the bitcast inst instruction (if it exists) from the original BB.
  for (auto &[Phi, LI] : Container) {
    IRBuilder<> Builder(Phi->getContext());
    Builder.SetInsertPoint(Phi);

    Type *LoadType = LI->getType();
    Align LoadAlign = LI->getAlign();
    PHINode *NewPhi = Builder.CreatePHI(LoadType, Phi->getNumIncomingValues(), "new_phi");

    // Iterate over phi incoming basic blocks.
    for (unsigned i = 0; i < Phi->getNumIncomingValues(); ++i) {
      Value *IncomingValue = Phi->getIncomingValue(i);
      BasicBlock *IncomingBlock = Phi->getIncomingBlock(i);
      Instruction *Terminator = IncomingBlock->getTerminator();

      Builder.SetInsertPoint(Terminator);
      Type *IncomingPtrType = IncomingValue->getType();
      PointerType *LoadPtrType = dyn_cast<PointerType>(LI->getPointerOperand()->getType());

      // Cast the incoming value to the type of the load if it is needed.
      Value *Cast = IncomingValue;
      if (IncomingPtrType != LoadPtrType)
        Cast = Builder.CreateBitCast(IncomingValue, LoadPtrType);

      LoadInst *NewLoad = Builder.CreateAlignedLoad(LoadType, Cast, LoadAlign, "hoisted_" + LI->getName());
      NewPhi->addIncoming(NewLoad, IncomingBlock);
    }

    // Erase all old instructions and update uses.
    LI->replaceAllUsesWith(NewPhi);
    Value *Addr = LI->getPointerOperand();
    LI->eraseFromParent();
    if (auto *BCI = dyn_cast<BitCastInst>(Addr))
      BCI->eraseFromParent();
    Phi->eraseFromParent();
  }

  return Changed;
}

Argument *StatelessToStateful::getBufferOffsetArg(Function *F, uint32_t ArgNumber) {
  uint32_t nImplicitArgs = m_pImplicitArgs->size();
  uint32_t totalArgs = (uint32_t)F->arg_size();
  uint32_t nExplicitArgs = (totalArgs - nImplicitArgs);
  uint32_t implicit_ix = m_pImplicitArgs->getNumberedArgIndex(ImplicitArg::BUFFER_OFFSET, ArgNumber);
  uint32_t arg_ix = nExplicitArgs + implicit_ix;
  Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
  for (; AI != AE && AI->getArgNo() != arg_ix; ++AI)
    ;
  if (AI == AE) {
    IGC_ASSERT_MESSAGE(0, "Implicit arg for BUFFER_OFFSET is out of range!");
    return nullptr;
  }
  Argument *arg = &*AI;
  return arg;
}

//
// Convert GetElementPtrInst[s] into multiple instructions that compute the byte offset
// from the base represented by these GEP instructions. GEPs vector keeps its elements
// in the reverse order of execution, that is, the last element is the first GEP in the
// execution.
//
// Returns true if the GEP was able to be expanded to multiple instructions.
//
// The final instruction of the expansion is returned in 'offset'
//
bool StatelessToStateful::getOffsetFromGEP(Function *F, const SmallVector<GetElementPtrInst *, 4> &GEPs,
                                           uint32_t argNumber, bool isImplicitArg, Value *&offset) {
  Module *M = F->getParent();
  const DataLayout *DL = &M->getDataLayout();
  Type *int32Ty = Type::getInt32Ty(M->getContext());

  Value *PointerValue;
  // If m_hasPositivePointerOffset is true, BUFFER_OFFSET are assumed to be zero,
  // so is that for any implicit argument
  if (m_hasBufferOffsetArg && !isImplicitArg && !m_hasPositivePointerOffset) {
    PointerValue = getBufferOffsetArg(F, argNumber);
    if (PointerValue == nullptr) {
      // Sanity check
      return false;
    }
  } else {
    // BUFFER_OFFSET are zero.
    PointerValue = ConstantInt::get(int32Ty, 0);
  }

  const int nGEPs = GEPs.size();

  // GEPs is in the reverse order of execution! The last GEP is the first
  // one to execute.  For example:
  //    %37 = getelementptr inbounds float, float addrspace(1)* %signalw, i64 16384
  //    %38 = bitcast float addrspace(1)* %37 to[16 x[32 x[32 x float]]] addrspace(1)*
  //    %39 = getelementptr inbounds[16 x[32 x[32 x float]]], [16 x[32 x[32 x float]]]
  //                        addrspace(1)* %38, i64 0, i64 % 34, i64 % 17, i64 % 18
  //    store float %36, float addrspace(1)* %39, align 4
  //
  //  GEPs = [%39, %37]  // GEPs[0] = %39, GEPs[1] = %37
  //
  for (int i = nGEPs; i > 0; --i) {
    GetElementPtrInst *GEP = GEPs[i - 1];
    Value *PtrOp = GEP->getPointerOperand();
    PointerType *PtrTy = dyn_cast<PointerType>(PtrOp->getType());

    IGC_ASSERT_MESSAGE(PtrTy, "Only accept scalar pointer!");

    gep_type_iterator GTI = gep_type_begin(GEP);
    for (auto OI = GEP->op_begin() + 1, E = GEP->op_end(); OI != E; ++OI, ++GTI) {
      Value *Idx = *OI;
      if (StructType *StTy = GTI.getStructTypeOrNull()) {
        unsigned Field = int_cast<unsigned>(cast<ConstantInt>(Idx)->getZExtValue());
        if (Field) {
          uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);

          Value *OffsetValue = ConstantInt::get(int32Ty, Offset);

          PointerValue = BinaryOperator::CreateAdd(PointerValue, OffsetValue, "", GEP);
          cast<llvm::Instruction>(PointerValue)->setDebugLoc(GEP->getDebugLoc());
        }
      } else {
        Type *Ty = GTI.getIndexedType();
        if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
          if (!CI->isZero()) {
            uint64_t Offset = DL->getTypeAllocSize(Ty) * CI->getSExtValue();
            Value *OffsetValue = ConstantInt::get(int32Ty, Offset);

            PointerValue = BinaryOperator::CreateAdd(PointerValue, OffsetValue, "", GEP);
            cast<llvm::Instruction>(PointerValue)->setDebugLoc(GEP->getDebugLoc());
          }
        } else {
          Value *NewIdx = CastInst::CreateTruncOrBitCast(Idx, int32Ty, "", GEP);
          cast<llvm::Instruction>(NewIdx)->setDebugLoc(GEP->getDebugLoc());

          APInt ElementSize = APInt((unsigned int)int32Ty->getPrimitiveSizeInBits(), DL->getTypeAllocSize(Ty));

          if (ElementSize != 1) {
            NewIdx = BinaryOperator::CreateMul(NewIdx, ConstantInt::get(int32Ty, ElementSize), "", GEP);
            cast<llvm::Instruction>(NewIdx)->setDebugLoc(GEP->getDebugLoc());
          }

          PointerValue = BinaryOperator::CreateAdd(PointerValue, NewIdx, "", GEP);
          cast<llvm::Instruction>(PointerValue)->setDebugLoc(GEP->getDebugLoc());
        }
      }
    }
  }
  offset = PointerValue;
  return true;
}

const KernelArg *StatelessToStateful::getKernelArgFromPtr(const PointerType &ptrType, Value *pVal) {
  if (pVal == nullptr)
    return nullptr;
  Value *base = pVal;

  // stripPointerCasts might skip addrSpaceCast, thus check if AS is still
  // the original one.
  unsigned int ptrAS = ptrType.getAddressSpace();
  if (cast<PointerType>(base->getType())->getAddressSpace() == ptrAS && !isa<Instruction>(base)) {
    if (const KernelArg *arg = getKernelArg(base))
      return arg;
  }
  return nullptr;
}

bool StatelessToStateful::pointerIsFromKernelArgument(Value &ptr) {
  // find the last gep
  Value *base = ptr.stripPointerCasts();
  // gep : the last gep of pointer address, null if no GEP at all.
  GetElementPtrInst *gep = nullptr;
  while (isa<GetElementPtrInst>(base)) {
    gep = static_cast<GetElementPtrInst *>(base);
    base = gep->getPointerOperand()->stripPointerCasts();
  }

  if (!m_supportNonGEPPtr && gep == nullptr)
    return false;

  if (getKernelArgFromPtr(*dyn_cast<PointerType>(ptr.getType()), base) != nullptr)
    return true;
  return false;
}

static alignment_t determinePointerAlignment(Value *Ptr, const DataLayout &DL, AssumptionCache *AC,
                                             Instruction *InsertionPt) {
  alignment_t BestAlign = 0;

  // 1) Examine uses: look for loads/stores (which may carry explicit
  //    alignment) or a GEP that reveals an ABI alignment from its element
  //    type.
  for (User *U : Ptr->users()) {
    if (auto *LI = dyn_cast<LoadInst>(U)) {
      // Load has an explicit alignment.
      alignment_t LdAlign = LI->getAlign().value();
      if (LdAlign > BestAlign)
        BestAlign = LdAlign;
    } else if (auto *SI = dyn_cast<StoreInst>(U)) {
      // Store sets alignment only if the pointer we store into is Ptr.
      if (SI->getPointerOperand() == Ptr) {
        alignment_t StAlign = SI->getAlign().value();
        if (StAlign > BestAlign)
          BestAlign = StAlign;
      }
    } else if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
      // If the GEP's source element type is sized, we can guess an ABI
      // alignment.
      Type *BaseTy = GEP->getSourceElementType();
      if (BaseTy && BaseTy->isSized()) {
        alignment_t GEPAlign = DL.getABITypeAlign(BaseTy).value();
        if (GEPAlign > BestAlign)
          BestAlign = GEPAlign;
      }
    }
  }

  // 2) If this pointer is actually a function parameter, see if it has an
  //    alignment attribute.
  if (auto *Arg = dyn_cast<Argument>(Ptr)) {
    if (Arg->hasAttribute(llvm::Attribute::Alignment)) {
      if (MaybeAlign ArgAlign = Arg->getParamAlign()) {
        alignment_t ArgAlignOrOne = ArgAlign.valueOrOne().value();
        if (ArgAlignOrOne > BestAlign)
          BestAlign = ArgAlignOrOne;
      }
    }
  }

  // 3) Fallback: use LLVM's built-in assumption-based alignment analysis
  //    (based on a.o. llvm.assume intrinsics).
  Align Known = getKnownAlignment(Ptr, DL, InsertionPt, AC);
  if (Known > BestAlign)
    BestAlign = Known.value();

  return BestAlign;
}

bool StatelessToStateful::pointerIsPositiveOffsetFromKernelArgument(Function *F, Value *V, Value *&offset,
                                                                    unsigned int &argNumber, bool ignoreSyncBuffer) {
  const DataLayout *DL = &F->getParent()->getDataLayout();

  AssumptionCache *AC = getAC(F);

  PointerType *ptrType = dyn_cast<PointerType>(V->getType());
  IGC_ASSERT_MESSAGE(ptrType, "Expected scalar Pointer (No support to vector of pointers");
  if (!ptrType ||
      (ptrType->getAddressSpace() != ADDRESS_SPACE_GLOBAL && ptrType->getAddressSpace() != ADDRESS_SPACE_CONSTANT)) {
    return false;
  }

  SmallVector<GetElementPtrInst *, 4> GEPs;
  Value *base = V->stripPointerCasts();
  // gep : the last gep of pointer address, null if no GEP at all.
  GetElementPtrInst *gep = nullptr;
  while (isa<GetElementPtrInst>(base)) {
    gep = static_cast<GetElementPtrInst *>(base);
    GEPs.push_back(gep);
    base = gep->getPointerOperand()->stripPointerCasts();
  }

  if (!m_supportNonGEPPtr && gep == nullptr) {
    return false;
  }

  // if the base is from kerenl argument
  if (const KernelArg *arg = getKernelArgFromPtr(*ptrType, base)) {
    // base is the argument!
    if (ignoreSyncBuffer && arg->getArgType() == KernelArg::ArgType::IMPLICIT_SYNC_BUFFER)
      return false;

    // skip implicit buffers that are supported only in stateless mode by the runtime.
    if (arg->getArgType() == KernelArg::ArgType::IMPLICIT_RT_GLOBAL_BUFFER ||
        arg->getArgType() == KernelArg::ArgType::IMPLICIT_ASSERT_BUFFER) {
      return false;
    }

    argNumber = arg->getAssociatedArgNo();
    bool gepProducesPositivePointer = true;

    // An address needs to be DW-aligned in order to be a base
    // in a surface state.  In another word, a unaligned argument
    // cannot be used as a surface base unless buffer_offset is
    // used, in which "argument + buffer_offset" is instead used
    // as a surface base. (argument + buffer_offset is the original
    // base of buffer created on host side, the original buffer is
    // guarantted to be DW-aligned.)
    //
    // Note that implicit arg is always aligned.
    bool isAlignedPointee = arg->isImplicitArg()
                                ? true
                                : determinePointerAlignment(base, *DL, AC, F->getEntryBlock().getFirstNonPHI()) >= 4;

    // If m_hasBufferOffsetArg is true, the offset argument is added to
    // the final offset to make it definitely positive. Thus skip checking
    // if an offset is positive.
    //
    // Howerver, if m_hasoptionalBufferOffsetArg is true, the buffer offset
    // is not generated if all offsets can be proven positive (this has
    // performance benefit as adding buffer offset is an additional add).
    // Also, if an argument is unaligned, buffer offset must be ON and used;
    // otherwise, no stateful conversion for the argument can be carried out.
    //
    // Note that offset should be positive for any implicit ptr argument,
    // so no need to prove it!
    if (!arg->isImplicitArg() && isAlignedPointee && (!m_hasBufferOffsetArg || m_hasOptionalBufferOffsetArg) &&
        !m_hasPositivePointerOffset) {
      // This is for proving that the offset is positive.
      for (int i = 0, sz = GEPs.size(); i < sz; ++i) {
        GetElementPtrInst *tgep = GEPs[i];
        for (auto U = tgep->idx_begin(), E = tgep->idx_end(); U != E; ++U) {
          Value *Idx = U->get();
          gepProducesPositivePointer &= valueIsPositive(Idx, &(F->getParent()->getDataLayout()), AC);
        }
      }

      if (m_hasOptionalBufferOffsetArg) {
        updateArgInfo(arg, gepProducesPositivePointer);
      }
    }
    if ((m_hasBufferOffsetArg || (gepProducesPositivePointer && isAlignedPointee)) &&
        getOffsetFromGEP(F, GEPs, argNumber, arg->isImplicitArg(), offset)) {
      return true;
    }
  }

  return false;
}

bool StatelessToStateful::doPromoteUntypedAtomics(const GenISAIntrinsic::ID intrinID, const GenIntrinsicInst *Inst) {
  // Only promote if oprand0 and oprand1 are the same for 64bit-pointer atomics
  if (intrinID == GenISAIntrinsic::GenISA_intatomicrawA64 || intrinID == GenISAIntrinsic::GenISA_icmpxchgatomicrawA64 ||
      intrinID == GenISAIntrinsic::GenISA_floatatomicrawA64 ||
      intrinID == GenISAIntrinsic::GenISA_fcmpxchgatomicrawA64) {
    if (Inst->getOperand(0) != Inst->getOperand(1)) {
      return false;
    }
  }

  // Qword untyped atomic int only support A64, so can't promote to stateful
  if (Inst->getType()->isIntegerTy() && Inst->getType()->getScalarSizeInBits() == 64) {
    return false;
  }

  return true;
}

bool StatelessToStateful::isUntypedAtomic(const GenISAIntrinsic::ID intrinID) {
  return (
      intrinID == GenISAIntrinsic::GenISA_intatomicraw || intrinID == GenISAIntrinsic::GenISA_floatatomicraw ||
      intrinID == GenISAIntrinsic::GenISA_intatomicrawA64 || intrinID == GenISAIntrinsic::GenISA_floatatomicrawA64 ||
      intrinID == GenISAIntrinsic::GenISA_icmpxchgatomicraw || intrinID == GenISAIntrinsic::GenISA_fcmpxchgatomicraw ||
      intrinID == GenISAIntrinsic::GenISA_icmpxchgatomicrawA64 ||
      intrinID == GenISAIntrinsic::GenISA_fcmpxchgatomicrawA64);
}

unsigned StatelessToStateful::encodeBindfulAddrspace(unsigned uavIndex) {
  auto int32Ty = Type::getInt32Ty(m_Module->getContext());
  auto resourceNumber = ConstantInt::get(int32Ty, uavIndex);

  unsigned addrSpace = EncodeAS4GFXResource(*resourceNumber, BufferType::UAV);
  setPointerSizeTo32bit(addrSpace, m_Module);

  return addrSpace;
}

void StatelessToStateful::promoteIntrinsic(InstructionInfo &II) {
  GenIntrinsicInst *I = cast<GenIntrinsicInst>(II.statelessInst);
  Module *M = m_F->getParent();
  const DebugLoc &DL = I->getDebugLoc();
  GenISAIntrinsic::ID const intrinID = I->getIntrinsicID();
  PointerType *pTy =
      IGCLLVM::getWithSamePointeeType(dyn_cast<PointerType>(II.ptr->getType()), II.getStatefulAddrSpace());

  if (m_targetAddressing == TargetAddressing::BINDLESS) {
    Argument *srcOffset =
        m_pImplicitArgs->getNumberedImplicitArg(*m_F, ImplicitArg::BINDLESS_OFFSET, II.getBaseArgIndex());
    auto newBasePtr = IntToPtrInst::Create(Instruction::IntToPtr, srcOffset, pTy, "", I);
    if (intrinID == GenISAIntrinsic::GenISA_simdBlockRead) {
      Function *newBlockReadFunc =
          GenISAIntrinsic::getDeclaration(M, GenISAIntrinsic::GenISA_simdBlockReadBindless,
                                          {I->getType(), newBasePtr->getType(), Type::getInt32Ty(M->getContext())});
      Instruction *newBlockRead = CallInst::Create(newBlockReadFunc, {newBasePtr, II.offset}, "", I);
      newBlockRead->setDebugLoc(I->getDebugLoc());
      I->replaceAllUsesWith(newBlockRead);
      I->eraseFromParent();

      setModuleUsesBindless();
    } else if (intrinID == GenISAIntrinsic::GenISA_simdBlockWrite) {
      Function *newBlockWriteFunc = GenISAIntrinsic::getDeclaration(
          M, GenISAIntrinsic::GenISA_simdBlockWriteBindless,
          {newBasePtr->getType(), I->getOperand(1)->getType(), Type::getInt32Ty(M->getContext())});
      Instruction *newBlockWrite =
          CallInst::Create(newBlockWriteFunc, {newBasePtr, I->getOperand(1), II.offset}, "", I);
      newBlockWrite->setDebugLoc(I->getDebugLoc());
      I->replaceAllUsesWith(newBlockWrite);
      I->eraseFromParent();

      setModuleUsesBindless();
    }
    return;
  }

  IGC_ASSERT(m_targetAddressing == TargetAddressing::BINDFUL);

  Instruction *statefulPtr = IntToPtrInst::Create(Instruction::IntToPtr, II.offset, pTy, "", I);
  Instruction *statefulInst = nullptr;

  if (intrinID == GenISAIntrinsic::GenISA_simdBlockRead) {
    Function *simdMediaBlockReadFunc = GenISAIntrinsic::getDeclaration(M, intrinID, {I->getType(), pTy});
    statefulInst = CallInst::Create(simdMediaBlockReadFunc, {statefulPtr}, "", I);
  } else if (intrinID == GenISAIntrinsic::GenISA_simdBlockWrite ||
             intrinID == GenISAIntrinsic::GenISA_HDCuncompressedwrite) {
    SmallVector<Value *, 2> args;
    args.push_back(statefulPtr);
    args.push_back(I->getOperand(1));
    Function *pFunc = GenISAIntrinsic::getDeclaration(M, intrinID, {pTy, I->getOperand(1)->getType()});
    statefulInst = CallInst::Create(pFunc, args, "", I);
  } else if (intrinID == GenISAIntrinsic::GenISA_LSCStoreCmask) {
    SmallVector<Value *, 6> args;
    args.push_back(statefulPtr);
    args.push_back(I->getOperand(1));
    args.push_back(I->getOperand(2));
    args.push_back(I->getOperand(3));
    args.push_back(I->getOperand(4));
    args.push_back(I->getOperand(5));
    Function *pFunc = GenISAIntrinsic::getDeclaration(M, intrinID, {pTy, I->getOperand(2)->getType()});
    statefulInst = CallInst::Create(pFunc, args, "", I);
  } else if (intrinID == GenISAIntrinsic::GenISA_LSCLoadCmask) {
    Function *pCurrInstFunc = I->getCalledFunction();
    SmallVector<Value *, 5> args;
    args.push_back(statefulPtr);
    args.push_back(I->getOperand(1));
    args.push_back(I->getOperand(2));
    args.push_back(I->getOperand(3));
    args.push_back(I->getOperand(4));
    Function *pFunc = GenISAIntrinsic::getDeclaration(M, intrinID, {pCurrInstFunc->getReturnType(), pTy});
    statefulInst = CallInst::Create(pFunc, args, "", I);
  } else if (isUntypedAtomic(intrinID)) {
    if (intrinID == GenISAIntrinsic::GenISA_intatomicrawA64 ||
        intrinID == GenISAIntrinsic::GenISA_icmpxchgatomicrawA64 ||
        intrinID == GenISAIntrinsic::GenISA_floatatomicrawA64 ||
        intrinID == GenISAIntrinsic::GenISA_fcmpxchgatomicrawA64) {
      statefulInst = CallInst::Create(GenISAIntrinsic::getDeclaration(M, intrinID, {I->getType(), pTy, pTy}),
                                      {statefulPtr, statefulPtr, I->getOperand(2), I->getOperand(3)}, "", I);
    } else {
      statefulInst = CallInst::Create(GenISAIntrinsic::getDeclaration(M, intrinID, {I->getType(), pTy}),
                                      {statefulPtr, II.offset, I->getOperand(2), I->getOperand(3)}, "", I);
    }
  }

  IGC_ASSERT(statefulInst);
  statefulInst->setDebugLoc(DL);
  I->replaceAllUsesWith(statefulInst);
  I->eraseFromParent();
}

void StatelessToStateful::promoteLoad(InstructionInfo &II) {
  LoadInst *I = cast<LoadInst>(II.statelessInst);
  PointerType *pTy = PointerType::get(I->getType(), II.getStatefulAddrSpace());

  const DebugLoc &DL = I->getDebugLoc();

  if (m_targetAddressing == TargetAddressing::BINDLESS) {
    Argument *srcOffset =
        m_pImplicitArgs->getNumberedImplicitArg(*m_F, ImplicitArg::BINDLESS_OFFSET, II.getBaseArgIndex());
    auto newBasePtr = IntToPtrInst::Create(Instruction::IntToPtr, srcOffset, pTy, "", I);
    auto bindlessLoad = IGC::CreateLoadRawIntrinsic(I, cast<Instruction>(newBasePtr), II.offset);

    newBasePtr->setDebugLoc(DL);
    bindlessLoad->setDebugLoc(DL);

    I->replaceAllUsesWith(bindlessLoad);
    I->eraseFromParent();
    setModuleUsesBindless();
  } else if (m_targetAddressing == TargetAddressing::BINDFUL) {
    auto newBasePtr = IntToPtrInst::Create(Instruction::IntToPtr, II.offset, pTy, "", I);
    auto bindfulLoad = new LoadInst(I->getType(), newBasePtr, "", I->isVolatile(), IGCLLVM::getAlign(*I),
                                    I->getOrdering(), I->getSyncScopeID(), I);

    newBasePtr->setDebugLoc(DL);
    bindfulLoad->setDebugLoc(DL);

    Value *ptr = I->getPointerOperand();
    PointerType *ptrType = dyn_cast<PointerType>(ptr->getType());
    if (ptrType && ptrType->getAddressSpace() == ADDRESS_SPACE_CONSTANT) {
      LLVMContext &context = I->getContext();
      MDString *const metadataName = MDString::get(context, "invariant.load");
      MDNode *node = MDNode::get(context, metadataName);
      bindfulLoad->setMetadata(LLVMContext::MD_invariant_load, node);
    }

    I->replaceAllUsesWith(bindfulLoad);
    I->eraseFromParent();
  } else {
    IGC_ASSERT_MESSAGE(false, "Unsupported addressing!");
  }
}

void StatelessToStateful::promoteStore(InstructionInfo &II) {
  StoreInst *I = cast<StoreInst>(II.statelessInst);

  Value *dataVal = I->getValueOperand();
  PointerType *pTy = PointerType::get(dataVal->getType(), II.getStatefulAddrSpace());

  const DebugLoc &DL = I->getDebugLoc();

  if (m_targetAddressing == TargetAddressing::BINDLESS) {
    Argument *srcOffset =
        m_pImplicitArgs->getNumberedImplicitArg(*m_F, ImplicitArg::BINDLESS_OFFSET, II.getBaseArgIndex());
    auto newBasePtr = IntToPtrInst::Create(Instruction::IntToPtr, srcOffset, pTy, "", I);
    auto bindlessStore = IGC::CreateStoreRawIntrinsic(I, cast<Instruction>(newBasePtr), II.offset);

    newBasePtr->setDebugLoc(DL);
    bindlessStore->setDebugLoc(DL);

    I->eraseFromParent();
    setModuleUsesBindless();
  } else if (m_targetAddressing == TargetAddressing::BINDFUL) {
    auto newBasePtr = IntToPtrInst::Create(Instruction::IntToPtr, II.offset, pTy, "", I);
    auto bindfulStore = new StoreInst(dataVal, newBasePtr, I->isVolatile(), IGCLLVM::getAlign(*I), I->getOrdering(),
                                      I->getSyncScopeID(), I);

    newBasePtr->setDebugLoc(DL);
    bindfulStore->setDebugLoc(DL);

    I->eraseFromParent();
  } else {
    IGC_ASSERT_MESSAGE(false, "Unsupported addressing!");
  }
}

void StatelessToStateful::promoteInstruction(StatelessToStateful::InstructionInfo &InstInfo) {
  switch (InstInfo.statelessInst->getOpcode()) {
  case Instruction::Load:
    promoteLoad(InstInfo);
    break;
  case Instruction::Store:
    promoteStore(InstInfo);
    break;
  case Instruction::Call:
    promoteIntrinsic(InstInfo);
    break;
  default:
    IGC_ASSERT_MESSAGE(false, "Unsupported instruction!");
  }
}

void StatelessToStateful::promote() {
  if (m_promotionMap.empty())
    return;

  CodeGenContext *ctx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
  ModuleMetaData *modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
  FunctionMetaData *funcMD = &modMD->FuncMD[m_F];
  ResourceAllocMD *resAllocMD = &funcMD->resAllocMD;
  IGC_ASSERT_MESSAGE(resAllocMD->argAllocMDList.size() > 0, "ArgAllocMDList is empty.");

  unsigned bufferPos = 0;
  for (auto &[baseArgIndex, instsToPromote] : m_promotionMap) {
    IGC_ASSERT(bufferPos < maxPromotionCount);

    unsigned statefullAddrspace = 0;
    if (m_targetAddressing == TargetAddressing::BINDLESS) {
      statefullAddrspace =
          IGC::EncodeAS4GFXResource(*UndefValue::get(Type::getInt32Ty(m_Module->getContext())), IGC::BINDLESS);
      setPointerSizeTo32bit(statefullAddrspace, m_Module);
      setModuleUsesBindless();
    } else {
      ArgAllocMD *argAlloc = &resAllocMD->argAllocMDList[baseArgIndex];

      // If the support for dynamic BTIs allocation is disabled, then BTIs are pre-assigned
      // in ResourceAllocator pass for all resources independently whether they are
      // accessed through stateful addressing model or not.
      if (ctx->platform.supportDynamicBTIsAllocation()) {
        argAlloc->type = ResourceTypeEnum::UAVResourceType;
        argAlloc->indexType = resAllocMD->uavsNumType + bufferPos;
      }

      statefullAddrspace = encodeBindfulAddrspace(argAlloc->indexType);
    }

    for (auto &instInfo : instsToPromote) {
      instInfo.setStatefulAddrspace(statefullAddrspace);
      instInfo.setBaseArgIndex(baseArgIndex);
      promoteInstruction(instInfo);
    }
    bufferPos++;
    m_changed = true;
  }

  resAllocMD->uavsNumType += m_promotionMap.size();
}

void StatelessToStateful::addToPromotionMap(Instruction &I, Value *Ptr) {
  Value *offset = nullptr;
  unsigned baseArgNumber = 0;

  bool isPromotable = m_promotionMap.size() < maxPromotionCount &&
                      pointerIsPositiveOffsetFromKernelArgument(m_F, Ptr, offset, baseArgNumber, true);

  if (isPromotable) {
    InstructionInfo II(&I, Ptr, offset);
    m_promotionMap[baseArgNumber].push_back(II);
  }
}

void StatelessToStateful::visitCallInst(CallInst &I) {
  auto Inst = dyn_cast<GenIntrinsicInst>(&I);
  if (!Inst)
    return;

  GenISAIntrinsic::ID const intrinID = Inst->getIntrinsicID();

  if (intrinID == GenISAIntrinsic::GenISA_simdBlockRead || intrinID == GenISAIntrinsic::GenISA_simdBlockWrite ||
      intrinID == GenISAIntrinsic::GenISA_HDCuncompressedwrite ||
      (IGC_IS_FLAG_ENABLED(EnableStatefulAtomic) && isUntypedAtomic(intrinID) &&
       doPromoteUntypedAtomics(intrinID, Inst))) {
    Value *ptr = Inst->getOperand(0);
    PointerType *ptrTy = dyn_cast<PointerType>(ptr->getType());
    // If not global/constant, skip.
    if (ptrTy->getPointerAddressSpace() != ADDRESS_SPACE_GLOBAL &&
        ptrTy->getPointerAddressSpace() != ADDRESS_SPACE_CONSTANT) {
      return;
    }

    addToPromotionMap(I, ptr);
  } else if (intrinID == GenISAIntrinsic::GenISA_LSCLoadCmask || intrinID == GenISAIntrinsic::GenISA_LSCStoreCmask) {
    Value *ptr = Inst->getOperand(0);
    PointerType *ptrTy = dyn_cast<PointerType>(ptr->getType());
    // If not global, skip.
    if (ptrTy->getPointerAddressSpace() != ADDRESS_SPACE_GLOBAL) {
      return;
    }

    addToPromotionMap(I, ptr);
  }

  // check if there's non-kernel-arg load/store
  if (IGC_IS_FLAG_ENABLED(DumpHasNonKernelArgLdSt)) {
    // FIXME: should use the helper functions defined in Compiler/CISACodeGen/helper.h
    auto isLoadIntrinsic = [](const GenISAIntrinsic::ID id) {
      switch (id) {
      case GenISAIntrinsic::GenISA_simdBlockRead:
        // FIXME: GenISA_LSC2DBlockRead is not considered, not sure if its Operand 0
        // is the address
      case GenISAIntrinsic::GenISA_LSCLoad:
      case GenISAIntrinsic::GenISA_LSCLoadBlock:
      case GenISAIntrinsic::GenISA_LSCPrefetch:
      case GenISAIntrinsic::GenISA_LSCLoadCmask:
        return true;
      default:
        break;
      }
      return false;
    };
    auto isStoreIntrinsic = [](const GenISAIntrinsic::ID id) {
      switch (id) {
      case GenISAIntrinsic::GenISA_HDCuncompressedwrite:
      case GenISAIntrinsic::GenISA_LSCStore:
      case GenISAIntrinsic::GenISA_LSCStoreBlock:
      case GenISAIntrinsic::GenISA_simdBlockWrite:
      case GenISAIntrinsic::GenISA_LSCStoreCmask:
        return true;
      default:
        break;
      }
      return false;
    };
    auto isAtomicsIntrinsic = [&](const GenISAIntrinsic::ID id) {
      switch (id) {
      case GenISAIntrinsic::GenISA_LSCAtomicFP32:
      case GenISAIntrinsic::GenISA_LSCAtomicFP64:
      case GenISAIntrinsic::GenISA_LSCAtomicInts:
        return true;
      default:
        break;
      }
      return isUntypedAtomic(id);
    };
    if (isLoadIntrinsic(intrinID) || isStoreIntrinsic(intrinID) || isAtomicsIntrinsic(intrinID)) {
      Value *ptr = Inst->getOperand(0);
      if (!pointerIsFromKernelArgument(*ptr)) {
        ModuleMetaData *modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
        FunctionMetaData *funcMD = &modMD->FuncMD[Inst->getParent()->getParent()];
        if (isStoreIntrinsic(intrinID))
          funcMD->hasNonKernelArgStore = true;
        else if (isLoadIntrinsic(intrinID))
          funcMD->hasNonKernelArgLoad = true;
        else
          funcMD->hasNonKernelArgAtomic = true;
      }
    }
  }
}

void StatelessToStateful::visitLoadInst(LoadInst &I) {
  Value *ptr = I.getPointerOperand();
  addToPromotionMap(I, ptr);

  // check if there's non-kernel-arg load/store
  if (IGC_IS_FLAG_ENABLED(DumpHasNonKernelArgLdSt) && ptr != nullptr && !pointerIsFromKernelArgument(*ptr)) {
    ModuleMetaData *modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
    FunctionMetaData *funcMD = &modMD->FuncMD[m_F];
    funcMD->hasNonKernelArgLoad = true;
  }
}

void StatelessToStateful::visitStoreInst(StoreInst &I) {
  Value *ptr = I.getPointerOperand();
  addToPromotionMap(I, ptr);

  if (IGC_IS_FLAG_ENABLED(DumpHasNonKernelArgLdSt) && ptr != nullptr && !pointerIsFromKernelArgument(*ptr)) {
    ModuleMetaData *modMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
    FunctionMetaData *funcMD = &modMD->FuncMD[m_F];
    funcMD->hasNonKernelArgStore = true;
  }
}

void StatelessToStateful::findPromotableInstructions() {
  // fill m_promotionMap
  visit(m_F);
}

// This is used to set the size for a pointer to a given addrspace, which is created
// and used by and within IGC. As this is a new address space,  all the existing ones
// will not be affected by this at all.  (And it definitely does not change any existing
// memory layout.)
//
// Note this is consistent with CodeGenContext::getRegisterPointerSizeInBits() for now.
void StatelessToStateful::setPointerSizeTo32bit(int32_t AddrSpace, Module *M) {
  const DataLayout &DL = M->getDataLayout();

  // If default is 32bit (or it has been set to 32bit already), no need to set it.
  if (DL.getPointerSize(AddrSpace) == 4) {
    // Already 4 bytes,
    return;
  }

  const std::string StrDL = DL.getStringRepresentation();
  char data[64];
  if (DL.isDefault()) {
    sprintf_s(data, sizeof(data), "p%d:32:32:32", AddrSpace);
  } else {
    // this is a new addrspace, it should not be in the
    // existing DataLayout, but if it exists, just return.
    // We don't want to change any existing one!
    sprintf_s(data, sizeof(data), "p%d:", AddrSpace);
    if (StrDL.find(data) != std::string::npos) {
      return;
    }
    sprintf_s(data, sizeof(data), "-p%d:32:32:32", AddrSpace);
  }

  std::string newStrDL = StrDL + data;
  M->setDataLayout(newStrDL);
}

void StatelessToStateful::updateArgInfo(const KernelArg *kernelArg, bool isPositive) {
  auto II = m_argsInfo.find(kernelArg);
  if (II == m_argsInfo.end()) {
    m_argsInfo[kernelArg] = 1; // default to true
  }
  if (!isPositive) {
    m_argsInfo[kernelArg] = 0;
  }
}

void StatelessToStateful::finalizeArgInitialValue(Function *F) {
  if (!m_hasOptionalBufferOffsetArg) {
    return;
  }

  Module *M = F->getParent();
  Type *int32Ty = Type::getInt32Ty(M->getContext());
  Value *ZeroValue = ConstantInt::get(int32Ty, 0);

  for (const auto &II : m_argsInfo) {
    const KernelArg *kernelArg = II.first;
    int mapVal = II.second;
    bool allOffsetPositive = (mapVal == 1);
    if (allOffsetPositive) {
      const KernelArg *offsetArg = getBufferOffsetKernelArg(kernelArg);
      IGC_ASSERT_MESSAGE(offsetArg, "Missing BufferOffset arg!");
      Value *BufferOffsetArg = const_cast<Argument *>(offsetArg->getArg());
      BufferOffsetArg->replaceAllUsesWith(ZeroValue);
    }
  }

  m_argsInfo.clear();

  // Clear add instructions created in StatelessToStateful::getOffsetFromGEP
  DenseSet<Instruction *> AddInstructionsToLower;
  for (auto U : ZeroValue->users())
    if (auto I = dyn_cast<Instruction>(U))
      if (I->getOpcode() == Instruction::Add && I->getOperand(0) == ZeroValue)
        AddInstructionsToLower.insert(I);

  for (auto AddInst : AddInstructionsToLower) {
    AddInst->replaceAllUsesWith(AddInst->getOperand(1));
    AddInst->eraseFromParent();
  }
}

void StatelessToStateful::setModuleUsesBindless() {
  auto MD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();
  MD->ModuleUsesBindless = true;
  IGC::serialize(*MD, m_Module);
}

bool StatelessToStateful::getModuleUsesBindless() {
  return getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData()->ModuleUsesBindless;
}