File: SubGroupReductionPattern.cpp

package info (click to toggle)
intel-graphics-compiler2 2.16.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 106,644 kB
  • sloc: cpp: 805,640; lisp: 287,672; ansic: 16,414; python: 3,952; yacc: 2,588; lex: 1,666; pascal: 313; sh: 186; makefile: 35
file content (600 lines) | stat: -rw-r--r-- 21,621 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
/*========================== begin_copyright_notice ============================

Copyright (C) 2024 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "SubGroupReductionPattern.hpp"
#include "Compiler/IGCPassSupport.h"

#include "common/LLVMWarningsPush.hpp"
#include <llvm/IR/InstVisitor.h>
#include <llvm/Transforms/Utils/Local.h>
#include "llvmWrapper/IR/DerivedTypes.h"
#include <llvmWrapper/IR/PatternMatch.h>
#include "common/LLVMWarningsPop.hpp"

#include "common/igc_regkeys.hpp"
#include "Compiler/CISACodeGen/OpenCLKernelCodeGen.hpp"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "GenISAIntrinsics/GenIntrinsicInst.h"

using namespace llvm;
using namespace llvm::PatternMatch;
using namespace IGC;
using namespace IGCMD;

// Pattern of instructions:
//   %lane8 = call i32 <shuffle-op>(i32 %input, i32 8)
//   %value8 = <alu-op> i32 %input, %lane8
//   %lane4 = call i32 <shuffle-op>(i32 %value8, i32 4)
//   %value4 = <alu-op> i32 %value8, %lane4
//   %lane2 = call i32 <shuffle-op>(i32 %value4, i32 2)
//   %value2 = <alu-op> i32 %value4, %lane2
//   %lane1 = call i32 <shuffle-op>(i32 %value2, i32 1)
//   %result = <alu-op> i32 %value2, %lane1
//
// Where shuffle-op is a builtin returning a value from a different lane in the subgroup
// (like simdShuffleXor or WaveShuffleIndex).
class ShufflePattern {
public:
  struct PatternStep {
    PatternStep(Value *InputValue, GenIntrinsicInst *ShuffleOp, Instruction *Op, uint64_t Lane)
        : InputValue(InputValue), ShuffleOp(ShuffleOp), Op(Op), Lane(Lane) {}

    Value *InputValue;

    // Shuffle InputValue with other SIMD lane.
    GenIntrinsicInst *ShuffleOp;
    uint64_t Lane;

    // Op on InputValue and ShuffleOp result.
    Instruction *Op;
  };

  ShufflePattern(Value *InputValue, GenIntrinsicInst *ShuffleOp, Instruction *Op, WaveOps OpType, uint64_t Lane)
      : OpType(OpType) {
    Steps.emplace_back(InputValue, ShuffleOp, Op, Lane);
  }

  bool append(Value *InputValue, GenIntrinsicInst *ShuffleOp, Instruction *Op, WaveOps OpType, uint64_t Lane);

  WaveOps OpType;
  SmallVector<PatternStep, 8> Steps;
};

// A half of i64 shuffled as <2 x i32>.
// See SubGroupReductionPattern::matchVectorShufflePattern for details.
struct VectorShufflePattern {
  VectorShufflePattern(Instruction *Op, uint64_t Lane, uint64_t VectorIndex)
      : Op(Op), Lane(Lane), VectorIndex(VectorIndex) {}

  bool match(Instruction *Op, uint64_t Lane, uint64_t VectorIndex) {
    return this->Op == Op && this->Lane == Lane &&
           ((this->VectorIndex == 0 && VectorIndex == 1) || (this->VectorIndex == 1 && VectorIndex == 0));
  }

  Instruction *Op;
  uint64_t Lane;
  uint64_t VectorIndex;
};

// See SubGroupReductionPattern::getReductionType for explanation on each reduction type.
struct ReductionType {
  static ReductionType Invalid() { return {GenISAIntrinsic::no_intrinsic, 0, 0}; }
  static ReductionType WaveAll() { return {GenISAIntrinsic::GenISA_WaveAll, 0, 0}; }
  static ReductionType WaveClustered(int ClusterSize) {
    return {GenISAIntrinsic::GenISA_WaveClustered, ClusterSize, 0};
  }
  static ReductionType WaveInterleave(int InterleaveStep) {
    return {GenISAIntrinsic::GenISA_WaveInterleave, 0, InterleaveStep};
  }
  static ReductionType WaveClusteredInterleave(int ClusterSize, int InterleaveStep) {
    return {GenISAIntrinsic::GenISA_WaveClusteredInterleave, ClusterSize, InterleaveStep};
  }

  bool isValid() const { return IntrinsicType != GenISAIntrinsic::no_intrinsic; }

  const GenISAIntrinsic::ID IntrinsicType;
  const int ClusterSize;
  const int InterleaveStep;
};

// Pass for matching common manual subgroup reduction pattern and replacing them
// with corresponding GenISA.Wave* call.
class SubGroupReductionPattern : public llvm::FunctionPass, public llvm::InstVisitor<SubGroupReductionPattern> {
public:
  static char ID; // Pass identification, replacement for typeid

  SubGroupReductionPattern();

  virtual llvm::StringRef getPassName() const override { return "SubGroupReductionPattern"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  virtual bool runOnFunction(Function &F) override;

  void visitCallInst(llvm::CallInst &C);

private:
  void visitSimdShuffleXor(GenIntrinsicInst &ShuffleOp);
  void visitWaveShuffleIndex(GenIntrinsicInst &ShuffleOp);

  void matchShufflePattern(GenIntrinsicInst &ShuffleOp, uint64_t Lane);
  void matchVectorShufflePattern(GenIntrinsicInst &ShuffleOp, uint64_t Lane);
  void addShufflePattern(Value *InputValue, GenIntrinsicInst &ShuffleOp, Instruction *Op, uint64_t Lane);

  bool reduce(ShufflePattern &Pattern);
  ReductionType getReductionType(ShufflePattern &Pattern);
  bool isSupportedWaveClusteredInterleave(ShufflePattern &Pattern, int ClusterSize, int InterleaveStep);

  static WaveOps getWaveOp(Instruction *Op);

  CodeGenContext *CGC = nullptr;

  int SubGroupSize = 0;
  bool Modified = false;

  SmallVector<ShufflePattern, 8> Matches;

  // For i64 shuffle done as two i32 shuffles (vector <2 x i32>), each
  // of i32 shuffle is matched as separate pattern. This map temporary
  // holds first of the matched pair.
  DenseMap<Instruction *, VectorShufflePattern> VectorShufflePatterns;
};

SubGroupReductionPattern::SubGroupReductionPattern() : FunctionPass(ID) {
  initializeSubGroupReductionPatternPass(*PassRegistry::getPassRegistry());
}

void SubGroupReductionPattern::getAnalysisUsage(llvm::AnalysisUsage &AU) const {
  AU.addRequired<CodeGenContextWrapper>();
  AU.addRequired<MetaDataUtilsWrapper>();
  AU.setPreservesCFG();
}

bool SubGroupReductionPattern::runOnFunction(llvm::Function &F) {
  if (F.hasOptNone())
    return false;

  CGC = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
  auto MDU = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
  auto FII = MDU->findFunctionsInfoItem(&F);
  if (FII == MDU->end_FunctionsInfo())
    return false;

  auto SubGroupSizeMD = FII->second->getSubGroupSize();
  if (!SubGroupSizeMD->hasValue())
    return false;

  SubGroupSize = SubGroupSizeMD->getSIMDSize();

  Modified = false;
  Matches.clear();

  // Collect matches.
  visit(F);

  // Replace matches.
  for (auto &Match : Matches) {
    Modified |= reduce(Match);
  }

  return Modified;
}

void SubGroupReductionPattern::visitCallInst(llvm::CallInst &C) {
  if (GenIntrinsicInst *I = llvm::dyn_cast<GenIntrinsicInst>(&C)) {
    switch (I->getIntrinsicID()) {
    case GenISAIntrinsic::GenISA_simdShuffleXor:
      return visitSimdShuffleXor(*I);
    case GenISAIntrinsic::GenISA_WaveShuffleIndex:
      return visitWaveShuffleIndex(*I);
    default:
      return;
    }
  }
}

void SubGroupReductionPattern::visitSimdShuffleXor(GenIntrinsicInst &ShuffleOp) {
  // Expected pattern:
  //   %simdShuffleXor = call i32 @llvm.genx.GenISA.simdShuffleXor.i32(i32 %value, i32 8)
  //   %result = <op> i32 %value, %simdShuffleXor

  ConstantInt *Lane = nullptr;

  if (match(ShuffleOp.getOperand(1), m_ConstantInt(Lane)))
    matchShufflePattern(ShuffleOp, Lane->getZExtValue());
}

void SubGroupReductionPattern::visitWaveShuffleIndex(GenIntrinsicInst &ShuffleOp) {
  // Expected pattern:
  //   %simdLaneId = call i16 @llvm.genx.GenISA.simdLaneId()
  //   %0 = xor i16 %simdLaneId, 16
  //   %1 = zext i16 %xor16 to i32
  //   %simdShuffle = call i32 @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %value, i32 %1, i32 0)
  //   %result = <op> i32 %value, %simdShuffle

  ConstantInt *HelperLanes = dyn_cast<ConstantInt>(ShuffleOp.getOperand(2));
  if (!HelperLanes || HelperLanes->getZExtValue() != 0)
    return;

  Value *SimdLaneId = nullptr;
  ConstantInt *Lane = nullptr;

  if (match(ShuffleOp.getOperand(1), m_ZExt(m_c_Xor(m_Value(SimdLaneId), m_ConstantInt(Lane)))) ||
      match(ShuffleOp.getOperand(1), m_c_Xor(m_ZExt(m_Value(SimdLaneId)), m_ConstantInt(Lane)))) {
    if (GenIntrinsicInst *I = dyn_cast<GenIntrinsicInst>(SimdLaneId)) {
      if (I->getIntrinsicID() == GenISAIntrinsic::GenISA_simdLaneId)
        matchShufflePattern(ShuffleOp, Lane->getZExtValue());
    }
  }
}

void SubGroupReductionPattern::matchShufflePattern(GenIntrinsicInst &ShuffleOp, uint64_t Lane) {
  if (Lane != 1 && Lane % 2 != 0)
    return;

  if (!ShuffleOp.hasOneUse())
    return;

  Instruction *Op = ShuffleOp.user_back();

  if (isa<InsertElementInst>(Op)) {
    return matchVectorShufflePattern(ShuffleOp, Lane);
  }

  if (getWaveOp(Op) == WaveOps::UNDEF)
    return;

  Value *InputValue = ShuffleOp.getOperand(0);
  if (((Op->getOperand(0) == InputValue && Op->getOperand(1) == &ShuffleOp) ||
       (Op->getOperand(0) == &ShuffleOp && Op->getOperand(1) == InputValue)) == false)
    return;

  addShufflePattern(InputValue, ShuffleOp, Op, Lane);
}

void SubGroupReductionPattern::addShufflePattern(Value *InputValue, GenIntrinsicInst &ShuffleOp, Instruction *Op,
                                                 uint64_t Lane) {
  WaveOps OpType = getWaveOp(Op);
  if (OpType == WaveOps::UNDEF)
    return;

  // Check if type is supported.
  if (Op->getType()->isIntegerTy(64) && CGC->platform.need64BitEmulation())
    return;

  // Continues previous pattern?
  for (auto &Match : Matches) {
    if (Match.append(InputValue, &ShuffleOp, Op, OpType, Lane))
      return;
  }

  // New pattern.
  Matches.emplace_back(InputValue, &ShuffleOp, Op, OpType, Lane);
}

// Shuffle of i64 type can be split into two shuffles of i32 type. This method handles
// such case; it matches the following pattern:
//
//   %3 = bitcast i64 %value to <2 x i32>
//   %value1 = extractelement <2 x i32> %3, i64 0
//   %value2 = extractelement <2 x i32> %3, i64 1
//   %simdShuffleXor1 = call i32 @llvm.genx.GenISA.simdShuffleXor.i32(i32 %value1, i32 8)
//   %simdShuffleXor2 = call i32 @llvm.genx.GenISA.simdShuffleXor.i32(i32 %value2, i32 8)
//   %shuffledVec1 = insertelement <2 x i32> undef, i32 %simdShuffleXor1, i64 0
//   %shuffledVec2 = insertelement <2 x i32> %shuffledVec1, i32 %simdShuffleXor2, i64 1
//   %shuffled = bitcast <2 x i32> %shuffledVec2 to i64
//   %result = <op> i64 %value, %shuffled
void SubGroupReductionPattern::matchVectorShufflePattern(GenIntrinsicInst &ShuffleOp, uint64_t Lane) {
  auto CheckVectorType = [](Type *Ty) {
    if (auto *VTy = dyn_cast<IGCLLVM::FixedVectorType>(Ty))
      return VTy->getNumElements() == 2;
    return false;
  };

  // Match instructions that happen before shuffle, that is:
  //
  //   %3 = bitcast i64 %value to <2 x i32>
  //   %value1 = extractelement <2 x i32> %3, i64 0
  //   %value2 = extractelement <2 x i32> %3, i64 1
  //   %simdShuffleXor1 = call i32 @llvm.genx.GenISA.simdShuffleXor.i32(i32 %value1, i32 8)
  //   %simdShuffleXor2 = call i32 @llvm.genx.GenISA.simdShuffleXor.i32(i32 %value2, i32 8)
  //
  // Collect:
  //    1. Input value.
  //    2. BitCast instruction (to validate type).
  //    2. ExtractElement index.

  Value *InputValue = nullptr;
  Instruction *BitCast = nullptr;
  uint64_t VectorIndex = 0;

  if (!match(ShuffleOp.getOperand(0),
             m_OneUse(m_ExtractElt(m_CombineAnd(m_Instruction(BitCast), m_BitCast(m_Value(InputValue))),
                                   m_ConstantInt(VectorIndex)))))
    return;

  if (VectorIndex != 0 && VectorIndex != 1)
    return;

  if (InputValue->getType()->isVectorTy() || !CheckVectorType(BitCast->getType()))
    return;

  // Match instructions that happen after shuffle, that is:
  //
  //   %simdShuffleXor1 = call i32 @llvm.genx.GenISA.simdShuffleXor.i32(i32 %value1, i32 8)
  //   %simdShuffleXor2 = call i32 @llvm.genx.GenISA.simdShuffleXor.i32(i32 %value2, i32 8)
  //   %shuffledVec1 = insertelement <2 x i32> undef, i32 %simdShuffleXor1, i64 0
  //   %shuffledVec2 = insertelement <2 x i32> %shuffledVec1, i32 %simdShuffleXor2, i64 1
  //   %shuffled = bitcast <2 x i32> %shuffledVec2 to i64
  //   %result = <op> i64 %value, %shuffled
  //
  // Collect:
  //    1. InsertElement instruction (to validate type).

  Instruction *InsertElement = nullptr;

  // First pattern - shuffle is used in second insertelement.
  auto Pattern1 = m_OneUse(m_BitCast(
      m_OneUse(m_CombineAnd(m_Instruction(InsertElement),
                            m_InsertElt(m_Value(), m_OneUse(m_Specific(&ShuffleOp)), m_SpecificInt(VectorIndex))))));

  // Second pattern - shuffle is used in first insertelement.
  auto Pattern2 = m_OneUse(m_BitCast(m_OneUse(m_InsertElt(
      m_OneUse(m_CombineAnd(m_Instruction(InsertElement),
                            m_InsertElt(m_Undef(), m_OneUse(m_Specific(&ShuffleOp)), m_SpecificInt(VectorIndex)))),
      m_Value(), m_SpecificInt(VectorIndex ? 0 : 1)))));

  for (auto *User : InputValue->users()) {
    Instruction *Op = cast<Instruction>(User);

    if (match(Op, m_c_BinOp(m_Specific(InputValue), Pattern1)) ||
        match(Op, m_c_BinOp(m_Specific(InputValue), Pattern2))) {
      if (!CheckVectorType(InsertElement->getType()))
        return;

      // Now that pattern is matched, check if this is the first or second shuffle of the pair.
      if (VectorShufflePatterns.count(Op)) {
        if (VectorShufflePatterns.find(Op)->second.match(Op, Lane, VectorIndex)) {
          // Collected two parts of i64 shuffle, create new pattern.
          addShufflePattern(InputValue, ShuffleOp, Op, Lane);
        }
      } else {
        // First part of i64 shuffle, store for later matching.
        VectorShufflePatterns.try_emplace(Op, Op, Lane, VectorIndex);
      }

      return;
    }
  }
}

bool ShufflePattern::append(Value *InputValue, GenIntrinsicInst *ShuffleOp, Instruction *Op, WaveOps OpType,
                            uint64_t Lane) {
  if (this->OpType != OpType)
    return false;

  Instruction *PreviousValue = Steps.back().Op;

  if (PreviousValue->getNumUses() != 2)
    return false;

  if (InputValue != PreviousValue)
    return false;

  if (Op->getOperand(0) != InputValue && Op->getOperand(1) != InputValue)
    return false;

  Steps.emplace_back(InputValue, ShuffleOp, Op, Lane);
  return true;
}

bool SubGroupReductionPattern::reduce(ShufflePattern &Pattern) {
  auto RTy = getReductionType(Pattern);
  if (!RTy.isValid())
    return false;

  auto *InputValue = Pattern.Steps.front().InputValue;
  auto *FirstShuffle = Pattern.Steps.front().ShuffleOp;
  auto *LastOp = Pattern.Steps.back().Op;

  IRBuilder<> IRB(FirstShuffle);
  IRB.SetCurrentDebugLocation(LastOp->getDebugLoc());

  SmallVector<Value *, 4> Args;
  Args.push_back(InputValue);
  Args.push_back(IRB.getInt8((uint8_t)Pattern.OpType));
  switch (RTy.IntrinsicType) {
  case GenISAIntrinsic::GenISA_WaveClustered:
    Args.push_back(IRB.getInt32(RTy.ClusterSize));
    break;
  case GenISAIntrinsic::GenISA_WaveInterleave:
    Args.push_back(IRB.getInt32(RTy.InterleaveStep));
    break;
  case GenISAIntrinsic::GenISA_WaveClusteredInterleave:
    Args.push_back(IRB.getInt32(RTy.ClusterSize));
    Args.push_back(IRB.getInt32(RTy.InterleaveStep));
    break;
  default:
    break;
  }
  Args.push_back(IRB.getInt32(0));

  Function *WaveFunc = GenISAIntrinsic::getDeclaration(FirstShuffle->getCalledFunction()->getParent(),
                                                       RTy.IntrinsicType, Args[0]->getType());

  LastOp->replaceAllUsesWith(IRB.CreateCall(WaveFunc, Args));
  RecursivelyDeleteTriviallyDeadInstructions(LastOp);

  return true;
}

ReductionType SubGroupReductionPattern::getReductionType(ShufflePattern &Pattern) {
  // Check what shuffles are engaged in reduction.
  uint64_t XorMask = 0;
  for (auto &Step : Pattern.Steps) {
    if (XorMask & Step.Lane)
      return ReductionType::Invalid(); // Each xor must be unique
    XorMask |= Step.Lane;
  }

  if (XorMask == 0 || XorMask >= SubGroupSize)
    return ReductionType::Invalid();

  // WaveAll - Full reduction, all work items mixed. Xor mask has all relevant bits set.
  //
  // Example for SIMD8:
  //   XorMask = 111 => xors 1, 2, 4 (order doesn't matter)
  if (XorMask == (SubGroupSize - 1))
    return ReductionType::WaveAll();

  int LowBit = 0;
  for (; (XorMask & 1) == 0; XorMask >>= 1)
    LowBit += 1;

  int HighBit = LowBit;
  for (; (XorMask & 1) == 1; XorMask >>= 1)
    HighBit += 1;

  // Mask should be zero.
  if (XorMask)
    return ReductionType::Invalid();

  int ClusterSize = 1 << HighBit;
  int InterleaveStep = 1 << LowBit;

  // WaveClustered - Splits subgroup into smaller clusters of consecutive work items and reduces each cluster.
  //   Xor mask is expressed as lower N bits set.
  //
  // Example for SIMD8:
  //   XorMask = 011 => xors 1, 2 => cluster size 4
  //
  //   Work Item |       0 |       1 |       2 |       3 |       4 |       5 |       6 |       7 |
  //   xor 1     |     0,1 |     0,1 |     2,3 |     2,3 |     4,5 |     4,5 |     6,7 |     6,7 |
  //   xor 2     | 0,1,2,3 | 0,1,2,3 | 0,1,2,3 | 0,1,2,3 | 4,5,6,7 | 4,5,6,7 | 4,5,6,7 | 4,5,6,7 |
  if (InterleaveStep == 1)
    return ReductionType::WaveClustered(ClusterSize);

  // WaveInterleave - Reduces together every n-th work item, where n defines interleave step.
  //   Xor mask is expressed as upper N bits set.
  //
  // Example for SIMD8:
  //   XorMask = 110 => xors 2, 4 => interleave step 2
  //
  //   Work Item |       0 |       1 |       2 |       3 |       4 |       5 |       6 |       7 |
  //   xor 2     |     0,2 |     1,3 |     0,2 |     1,3 |     4,6 |     5,7 |     4,6 |     5,7 |
  //   xor 4     | 0,2,4,6 | 1,3,5,7 | 0,2,4,6 | 1,3,5,7 | 0,2,4,6 | 1,3,5,7 | 0,2,4,6 | 1,3,5,7 |
  if (SubGroupSize == ClusterSize)
    return ReductionType::WaveInterleave(InterleaveStep);

  // WaveClusteredInterleave - Splits subgroup into smaller clusters (WaveClustered) and executes
  //   interleave reduction on each cluster (WaveInterleave).
  //
  // Example for SIMD8:
  //   XorMask = 010 => xors 2 => cluster size 4, interleave step 2
  //   clusters: { 0, 1, 2, 3 }, { 4, 5, 6, 7 }
  //
  //   Work Item |       0 |       1 |       2 |       3 |       4 |       5 |       6 |       7 |
  //   xor 2     |     0,2 |     1,3 |     0,2 |     1,3 |     4,6 |     5,7 |     4,6 |     5,7 |
  if (isSupportedWaveClusteredInterleave(Pattern, ClusterSize, InterleaveStep))
    return ReductionType::WaveClusteredInterleave(ClusterSize, InterleaveStep);

  return ReductionType::Invalid();
}

bool SubGroupReductionPattern::isSupportedWaveClusteredInterleave(ShufflePattern &Pattern, int ClusterSize,
                                                                  int InterleaveStep) {
  // WaveClusteredInterleave has very limited opportunity to optimize over normal shuffles. The basic
  // rule is that the longer the pattern, the more likely it is WaveClusteredInterleave will be more
  // efficient. Require at least two shuffles.
  if (Pattern.Steps.size() < 2)
    return false;

  // Only HPC platforms are supported.
  bool Valid = CGC->platform.isProductChildOf(IGFX_PVC);

  // At the moment only a selected number of scenarios are supported.
  auto *Type = Pattern.Steps.front().Op->getType();
  bool Is32BitType = Type->isIntegerTy(32) || Type->isFloatTy();
  bool Is64BitType = Type->isIntegerTy(64) || Type->isDoubleTy();

  Valid &= (SubGroupSize == 32 && ClusterSize == 16 && InterleaveStep == 2 && (Is32BitType || Is64BitType)) ||
           (SubGroupSize == 32 && ClusterSize == 8 && InterleaveStep == 2 && Is32BitType);

  if (IGC_IS_FLAG_ENABLED(PrintWaveClusteredInterleave)) {
    std::string DebugStr;
    llvm::raw_string_ostream OS(DebugStr);
    OS << (Valid ? "Replacing" : "Ignoring") << " ClusteredInterleave pattern in ["
       << Pattern.Steps.front().Op->getParent()->getParent()->getName() << "]"
       << "; SubGroupSize=" << SubGroupSize << "; ClusterSize=" << ClusterSize << "; InterleaveStep=" << InterleaveStep
       << "; Type=";
    Pattern.Steps.front().Op->getType()->print(OS);
    CGC->EmitWarning(OS.str().c_str());
  }

  return Valid;
}

WaveOps SubGroupReductionPattern::getWaveOp(Instruction *Op) {

  if (IntrinsicInst *I = llvm::dyn_cast<IntrinsicInst>(Op)) {
    switch (I->getIntrinsicID()) {
#if LLVM_VERSION_MAJOR >= 12
    case Intrinsic::umin:
      return WaveOps::UMIN;
    case Intrinsic::umax:
      return WaveOps::UMAX;
    case Intrinsic::smin:
      return WaveOps::IMIN;
    case Intrinsic::smax:
      return WaveOps::IMAX;
#endif
    case Intrinsic::minnum:
      return WaveOps::FMIN;
    case Intrinsic::maxnum:
      return WaveOps::FMAX;
    default:
      return WaveOps::UNDEF;
    }
  }

  if (!isa<BinaryOperator>(Op))
    return WaveOps::UNDEF;

  switch (Op->getOpcode()) {
  case Instruction::Add:
    return WaveOps::SUM;
  case Instruction::Mul:
    return WaveOps::PROD;
  case Instruction::Or:
    return WaveOps::OR;
  case Instruction::Xor:
    return WaveOps::XOR;
  case Instruction::And:
    return WaveOps::AND;
  case Instruction::FAdd:
    return WaveOps::FSUM;
  case Instruction::FMul:
    return WaveOps::FPROD;
  default:
    return WaveOps::UNDEF;
  }
}

// Register pass to igc-opt
#define PASS_FLAG "igc-subgroup-reduction-pattern"
#define PASS_DESCRIPTION "Matches common patterns for subgroup reductions"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(SubGroupReductionPattern, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(SubGroupReductionPattern, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)

char SubGroupReductionPattern::ID = 0;

FunctionPass *IGC::createSubGroupReductionPatternPass() { return new SubGroupReductionPattern(); }