1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2025 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "common/LLVMWarningsPush.hpp"
#include <llvm/Support/CommandLine.h>
#include <llvm/Support/Debug.h>
#include <llvmWrapper/Support/Alignment.h>
#include "common/LLVMWarningsPop.hpp"
#include "Compiler/Optimizer/PromoteToPredicatedMemoryAccess.hpp"
#include "GenISAIntrinsics/GenIntrinsics.h"
#include "Compiler/CISACodeGen/OpenCLKernelCodeGen.hpp"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/Legalizer/TypeLegalizer.h"
#include "Probe/Assertion.h"
#define DEBUG_TYPE "PromoteToPredicatedMemoryAccess"
using namespace llvm;
using namespace IGC;
using namespace IGC::Legalizer;
static cl::opt<int>
PredicatedMemOpIfConvertMaxInstrs("igc-predmem-ifconv-max-instrs", cl::init(5), cl::Hidden,
cl::desc("Max number of instructions in a block to consider replacing memory "
"access with predicated memory access and if-converting"));
#define PASS_FLAG "igc-promote-to-predicated-memory-access"
#define PASS_DESCRIPTION "Replace memory access with predicated memory access and if-convert"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(PromoteToPredicatedMemoryAccess, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(PromoteToPredicatedMemoryAccess, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
namespace IGC {
char PromoteToPredicatedMemoryAccess::ID = 0;
PromoteToPredicatedMemoryAccess::PromoteToPredicatedMemoryAccess() : FunctionPass(ID) {
initializePromoteToPredicatedMemoryAccessPass(*PassRegistry::getPassRegistry());
}
bool PromoteToPredicatedMemoryAccess::runOnFunction(Function &F) {
CodeGenContext *pCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
bool isStatlessToBindlessEnabled =
(pCtx->type == ShaderType::OPENCL_SHADER &&
static_cast<OpenCLProgramContext *>(pCtx)->m_InternalOptions.PromoteStatelessToBindless);
if (!pCtx->platform.hasLSC() || !pCtx->platform.LSCEnabled() || isStatlessToBindlessEnabled ||
pCtx->useStatelessToStateful()) {
LLVM_DEBUG(dbgs() << "Skip promotion to predicated memory operations because one of conditions is false:\n"
<< " - Platform has LSC: " << pCtx->platform.hasLSC() << "\n"
<< " - LSC is enabled: " << pCtx->platform.LSCEnabled() << "\n"
<< " - PromoteStatelessToBindless is disabled: " << !isStatlessToBindlessEnabled << "\n"
<< " - useStatelessToStateful is disabled: " << !pCtx->useStatelessToStateful() << "\n");
return false;
}
SmallVector<std::pair<BranchInst *, bool>, 8> WorkList;
for (auto &BB : F) {
auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
if (!BI || !BI->isConditional())
continue;
auto *Cond = BI->getCondition();
auto *TrueBB = BI->getSuccessor(0);
auto *FalseBB = BI->getSuccessor(1);
if (trySingleBlockIfConv(*Cond, BB, *TrueBB, *FalseBB))
WorkList.emplace_back(BI, false);
else if (trySingleBlockIfConv(*Cond, BB, *FalseBB, *TrueBB, true))
WorkList.emplace_back(BI, true);
}
for (auto &[BI, Inverse] : WorkList) {
auto *TrueBB = BI->getSuccessor(0);
auto *FalseBB = BI->getSuccessor(1);
auto *SplitBB = BI->getParent();
auto *TargetBB = Inverse ? FalseBB : TrueBB;
auto *JoinBB = Inverse ? TrueBB : FalseBB;
IRBuilder<> Builder(BI);
// Replace the branch with an unconditional one
Builder.CreateBr(TargetBB);
BI->eraseFromParent();
// Remove the phi nodes in the target block
for (auto &Phi : make_early_inc_range(JoinBB->phis()))
fixPhiNode(Phi, *TargetBB, *SplitBB);
}
return !WorkList.empty();
}
void PromoteToPredicatedMemoryAccess::fixPhiNode(PHINode &Phi, BasicBlock &Predecessor, BasicBlock &CondBlock) {
auto *IncomingV = Phi.getIncomingValueForBlock(&Predecessor);
Phi.replaceAllUsesWith(IncomingV);
Phi.eraseFromParent();
}
namespace {
bool IsTypeLegal(Type *Ty) {
if (!Ty->isIntOrIntVectorTy())
return true;
unsigned Width = Ty->getScalarSizeInBits();
return TypeLegalizer::isLegalInteger(Width) || Width == 1;
}
} // namespace
bool PromoteToPredicatedMemoryAccess::trySingleBlockIfConv(Value &Cond, BasicBlock &BranchBB, BasicBlock &ConvBB,
BasicBlock &SuccBB, bool Inverse) {
if (!ConvBB.hasNPredecessors(1))
return false;
if (!SuccBB.hasNPredecessors(2))
return false;
if (ConvBB.getSingleSuccessor() != &SuccBB)
return false;
const auto NumInstrs = count_if(ConvBB, [](const Instruction &I) {
return !I.isTerminator() && !isa<CastInst>(&I) && !isa<PHINode>(&I) && !isa<ExtractElementInst>(&I) &&
!isa<DbgInfoIntrinsic>(&I);
});
if (NumInstrs > PredicatedMemOpIfConvertMaxInstrs) {
LLVM_DEBUG(dbgs() << "Skip block, number of instructions " << NumInstrs << " is more than threshold "
<< PredicatedMemOpIfConvertMaxInstrs << "\n"
<< "For ConvBB: " << ConvBB << "\n");
return false;
}
// Map with a `key` that is a memory instruction that should be converted to
// predicated and for loads `value` is a merge value that should be used for
// stores `value` is always nullptr
SmallDenseMap<Instruction *, Value *> SimpleInsts;
// Map with a `key` that is a load instruction that should be converted to
// predicated. The difference from SimpleInsts is loaded value is a vector
// that is scalarized and scalar values are used in PHI in the next basic
// block, not direct result of load, so it should be handled differently Map
// `value` is a vector of Values, that should be used to compose merge value
// for predicated load
SmallDenseMap<Instruction *, SmallVector<Value *, 4>> ScalarizedInsts;
// Collect all the instructions that are used outside the candidate block
for (auto &Phi : SuccBB.phis()) {
int Idx = Phi.getBasicBlockIndex(&ConvBB);
if (Idx == -1)
continue;
auto *Inst = dyn_cast<Instruction>(Phi.getIncomingValue(Idx));
if (!Inst)
return false;
if (auto *LI = dyn_cast<LoadInst>(Inst)) {
if (!LI->isSimple() || !IsTypeLegal(Inst->getType()))
return false;
SimpleInsts[Inst] = Phi.getIncomingValueForBlock(&BranchBB);
continue;
}
// Support scalarized case:
// ConvBB:
// %17 = load <4 x float>, ptr addrspace(1) %16
// %.scalar = extractelement <4 x float> %17, i64 0
// %.scalar15 = extractelement <4 x float> %17, i64 1
// %.scalar16 = extractelement <4 x float> %17, i64 2
// %.scalar17 = extractelement <4 x float> %17, i64 3
// br label %SuccBB
// SuccBB:
// %bc311 = phi float [ %.scalar, %ConvBB ], [ 0.000000e+00, %BranchBB ]
// %bc312 = phi float [ %.scalar15, %ConvBB ], [ 0.000000e+00, %BranchBB ]
// %bc313 = phi float [ %.scalar16, %ConvBB ], [ 0.000000e+00, %BranchBB ]
// %bc314 = phi float [ %.scalar17, %ConvBB ], [ 0.000000e+00, %BranchBB ]
if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) {
if (!isa<ConstantInt>(EE->getIndexOperand()))
return false;
auto *Load = dyn_cast<LoadInst>(EE->getVectorOperand());
if (!Load || !Load->isSimple() || !IsTypeLegal(Load->getType()))
return false;
if (Load->getParent() != &ConvBB)
return false;
// Compose merge value for load
auto &MergeVector = ScalarizedInsts[Load];
if (MergeVector.empty()) {
FixedVectorType *VecTy = cast<FixedVectorType>(Load->getType());
MergeVector.resize(VecTy->getNumElements(), Constant::getNullValue(EE->getType()));
}
unsigned Idx = cast<ConstantInt>(EE->getIndexOperand())->getZExtValue();
if (Idx >= MergeVector.size()) {
LLVM_DEBUG(dbgs() << "Skip block, index " << Idx << " is more than vector size " << MergeVector.size() << "\n"
<< "For ConvBB: " << ConvBB << "\n");
IGC_ASSERT_MESSAGE(0, "Index is more than vector size");
return false;
}
MergeVector[Idx] = Phi.getIncomingValueForBlock(&BranchBB);
continue;
}
// Unsupported instruction coming from Phi
return false;
}
// Collect the rest of the instructions
for (auto &I : ConvBB) {
// Check if this load is handled in the previous loop
if (isa<LoadInst>(&I) && (SimpleInsts.count(&I) || ScalarizedInsts.count(&I)))
continue;
// Store
if (auto *SI = dyn_cast<StoreInst>(&I)) {
if (!SI->isSimple() || !IsTypeLegal(SI->getValueOperand()->getType()))
return false;
SimpleInsts[&I] = nullptr;
continue;
}
if (I.mayHaveSideEffects() || I.mayReadFromMemory())
return false;
if (CallInst *CI = dyn_cast<CallInst>(&I); CI && CI->isConvergent())
return false;
}
LLVM_DEBUG(dbgs() << "Found if-convertible block:\n"
<< " Branch: " << *BranchBB.getTerminator() << "\n"
<< " ConvBB: " << ConvBB << "\n"
<< " SuccBB: " << SuccBB << "\n");
for (auto &[Inst, MergeV] : SimpleInsts) {
LLVM_DEBUG(dbgs() << "Converting instruction: " << *Inst << "\n");
convertMemoryAccesses(Inst, MergeV, &Cond, Inverse);
}
for (auto &[Inst, MergeV] : ScalarizedInsts) {
LLVM_DEBUG(dbgs() << "Converting scalarized instruction: " << *Inst << "\n");
Value *MergeVVec = PoisonValue::get(Inst->getType());
IRBuilder<> Builder(Inst);
for (unsigned i = 0; i < MergeV.size(); ++i)
MergeVVec = Builder.CreateInsertElement(MergeVVec, MergeV[i], i);
convertMemoryAccesses(Inst, MergeVVec, &Cond, Inverse);
}
return !SimpleInsts.empty() || !ScalarizedInsts.empty();
}
void PromoteToPredicatedMemoryAccess::convertMemoryAccesses(Instruction *Mem, Value *MergeV, Value *Cond,
bool Inverse) {
LLVM_DEBUG(dbgs() << "Converting memory access: " << *Mem << "\n");
bool IsLoad = isa<LoadInst>(Mem);
IGC_ASSERT(IsLoad || isa<StoreInst>(Mem));
IGC_ASSERT(!IsLoad || MergeV);
IRBuilder<> Builder(Mem);
Module *Mod = Mem->getParent()->getModule();
LLVMContext &Ctx = Mem->getContext();
Type *Int64Ty = Type::getInt64Ty(Ctx);
if (Inverse) {
Cond = Builder.CreateNot(Cond);
LLVM_DEBUG(dbgs() << "Inverting predicate: " << *Cond << "\n");
}
if (IsLoad) {
LoadInst *Load = cast<LoadInst>(Mem);
Type *MemType = Mem->getType();
Value *Ptr = Load->getPointerOperand();
GenISAIntrinsic::ID iid = GenISAIntrinsic::GenISA_PredicatedLoad;
Type *ITys[3] = {MemType, Ptr->getType(), MemType};
Function *predLoadFunc = GenISAIntrinsic::getDeclaration(Mod, iid, ITys);
Value *AlignV = ConstantInt::get(Int64Ty, IGCLLVM::getAlignmentValue(Load));
Value *Args[4] = {Ptr, AlignV, Cond, MergeV};
Instruction *PredLoad = Builder.CreateCall(predLoadFunc, Args);
PredLoad->takeName(Mem);
PredLoad->setDebugLoc(Mem->getDebugLoc());
if (MDNode *lscMetadata = Mem->getMetadata("lsc.cache.ctrl"))
PredLoad->setMetadata("lsc.cache.ctrl", lscMetadata);
Mem->replaceAllUsesWith(PredLoad);
LLVM_DEBUG(dbgs() << "Converted memory access: " << *PredLoad << "\n");
} else {
StoreInst *Store = cast<StoreInst>(Mem);
Value *ValToStore = Store->getValueOperand();
Value *Ptr = Store->getPointerOperand();
GenISAIntrinsic::ID iid = GenISAIntrinsic::GenISA_PredicatedStore;
Type *ITys[2] = {Ptr->getType(), ValToStore->getType()};
Function *predStoreFunc = GenISAIntrinsic::getDeclaration(Mod, iid, ITys);
Value *AlignV = ConstantInt::get(Int64Ty, IGCLLVM::getAlignmentValue(Store));
Value *Args[4] = {Ptr, ValToStore, AlignV, Cond};
Instruction *PredStore = Builder.CreateCall(predStoreFunc, Args);
PredStore->setDebugLoc(Mem->getDebugLoc());
LLVM_DEBUG(dbgs() << "Converted memory access: " << *PredStore << "\n");
}
Mem->eraseFromParent();
}
} // namespace IGC
|