1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include <GenISAIntrinsics/GenIntrinsicInst.h>
#include "WaveShuffleIndexSinking.hpp"
#include "Compiler/IGCPassSupport.h"
#include <igc_regkeys.hpp>
#include "common/LLVMWarningsPush.hpp"
#include <llvm/ADT/DenseMap.h>
#include <llvm/ADT/SmallVector.h>
#include <llvm/IR/Dominators.h>
#include "common/LLVMWarningsPop.hpp"
#define DEBUG_TYPE "igc-wave-shuffle-index-sinking"
using namespace IGC;
using namespace llvm;
namespace IGC {
class WaveShuffleIndexSinkingImpl {
class ShuffleGroup {
// Group of WaveShuffleIndex instructions with constant lane indexes that have one or more identical instructions
// after ex. %0 = ... %1 = ... %2 = call i32 @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %0, i32 0, i32 0) %3 = add
// i32 %2, %1 %4 = shl i32 %3, 2 %use_4 = call @f(%4) %5 = call i32 @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %0,
// i32 1, i32 0) %6 = add i32 %5, %1 %7 = shl i32 %6, 2 %use_7 = call @f(%7) %8 = call i32
// @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %0, i32 2, i32 0) %9 = add i32 %8, %1 %10 = shl i32 %9, 2 %use_10 =
// call @f(%10)
//
// This can be transformed to the following since each WaveShuffleIndex is essentially a broadcast operation (from
// having a constant lane index) Uniform (Constant) operands in operations following a WaveShuffleIndex can be
// hoisted to the source Depending on the distributive properties of instructions, the shl in this example can be
// hoisted above the add, and afterwards hoisted before the WaveShuffleIndex %0 = ... %1 = ... %2 = shl i32 %0, 2 %3
// = shl i32 %1, 2 %4 = call i32 @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %2, i32 0, i32 0) %5 = add i32 %3, %4
// %use_4 = call @f(%5)
// %6 = call i32 @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %2, i32 1, i32 0)
// %7 = add i32 %3, %6
// %use_7 = call @f(%7)
// %8 = call i32 @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %2, i32 2, i32 0)
// %9 = add i32 %3, %8
// %use_10 = call @f(%9)
//
// This reduces the number of instructions in this particular ShuffleGroup from 3 * # of WaveShuffleIndex to 2 + 2 *
// # of WaveShuffleIndex The more WaveShuffleIndex instructions in a ShuffleGroup, the more effective this
// transformation is
public:
ShuffleGroup(WaveShuffleIndexIntrinsic *shuffleInst) { ShuffleOps.push_back(shuffleInst); }
// Attempt to match a new WaveShuffleIndex instruction to this ShuffleGroup
bool match(WaveShuffleIndexIntrinsic *shuffleInst) {
if (ShuffleOps.size() == 1) {
// Attempting to match with fresh ShuffleGroup, match the maximal number of instructions
SmallVector<BinaryOperator *> InstChainA;
SmallVector<BinaryOperator *> InstChainB;
SmallVector<bool> NewHoistOrAnchorInstsIdx;
unsigned numHoistable = compareWaveShuffleIndexes(ShuffleOps.front(), shuffleInst, InstChainA, InstChainB,
NewHoistOrAnchorInstsIdx);
if (numHoistable == 0) {
// Only match new shuffleInst with current ShuffleGroup if hoistable targets were found
return false;
}
// Update ShuffleGroup members
HoistOrAnchorInstsIdx = std::move(NewHoistOrAnchorInstsIdx);
InstChains.push_back(InstChainA);
InstChains.push_back(InstChainB);
ShuffleOps.push_back(shuffleInst);
return true;
} else {
// Use the first chain in the existing ShuffleGroup to check if the new shuffleInst can fit into the
// ShuffleGroup
SmallVector<BinaryOperator *> NewInstChain;
SmallVector<bool> NewHoistOrAnchorInstsIdx;
unsigned numHoistable = compareWaveShuffleIndexes(ShuffleOps.front(), shuffleInst, InstChains.front(),
NewInstChain, NewHoistOrAnchorInstsIdx);
if (numHoistable == 0) {
// Only match new shuffleInst with current ShuffleGroup if hoistable targets were found
return false;
}
// New shuffleInst fits, but NewInstChain.size() may be lesser than the existing instChains
// Reduce the hoistable instructions in the current group for now
// Truncated hoistable instructions will be processed in the next iteration when matching to a smaller
// ShuffleGroup (comprising of the existing InstChains and excluding NewInstChain)
for (auto &instChain : InstChains) {
instChain.truncate(NewInstChain.size());
}
// Update ShuffleGroup members
HoistOrAnchorInstsIdx = std::move(NewHoistOrAnchorInstsIdx); // this should be the same size as NewInstChain
InstChains.push_back(NewInstChain);
ShuffleOps.push_back(shuffleInst);
return true;
}
}
// Once entire ShuffleGroup is gathered, pre-process and find the instructions that are actually profitable to hoist
// ex. #WS = 2, Inst Cost = #WS * 6 (WS inst + mul + add + shl + add + shl) = 12
// %0 = ...
// %1 = ...
// %2 = ...
// %3 = call i32 @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %0, i32 0, i32 0)
// %4 = mul i32 %3, 5 <- Hoistable
// %5 = add i32 %4, %1 <- Anchor
// %6 = shl i32 %5, 2 <- Hoistable, profitable to hoist past Anchor
// %7 = add i32 %6, %2 <- Anchor
// %8 = shl i32 %7, 3 <- Hoistable, not profitable to hoist past Anchor, demoted to Anchor
// %9 = call i32 @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %0, i32 1, i32 0)
// %10 = mul i32 %9, 5 <- Hoistable
// %11 = add i32 %10, %1 <- Anchor
// %12 = shl i32 %11, 2 <- Hoistable past Anchor
// %13 = add i32 %12, %2 <- Anchor
// %14 = shl i32 %13, 3 <- Hoistable, not profitable to hoist past Anchor, demoted to Anchor
//
// Result: Inst Cost = 3 (mul + shl + shl) + #WS * 4 (WS inst + add + add + shl) = 11
// %0 = ...
// %1 = ...
// %2 = ...
// %3 = mul i32 %0, 5
// %4 = shl i32 %3, 2
// %5 = shl i32 %1, 2
// %6 = call i32 @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %4, i32 0, i32 0)
// %7 = add i32 %6, %5 <- Anchor
// %8 = add i32 %7, %2 <- Anchor
// %9 = shl i32 %8, 3 <- Demoted Anchor
// %10 = call i32 @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %4, i32 1, i32 0)
// %11 = add i32 %10, %5 <- Anchor
// %12 = add i32 %11, %2 <- Anchor
// %13 = shl i32 %12, 3 <- Demoted Anchor
// Terms:
// - Anchor: BinaryOperator of which one operand is the preceding value in the InstChain
// (or the WaveShuffle, if the Anchor is the first inst), and the other operand is a non-constant
// - Hoistable: BinaryOperator of which one operand is the preceding value in the InstChain
// (or the WaveShuffle, if the Hoistable is the first inst), and the other operand is a constant
// - Hoistable past Anchor: Through distributive properties, a Hoistable further along the InstChain
// can have its operation distributed to the operands of an Anchor
// - Profitable to Hoist past Anchor: A "Hoistable past Anchor" instruction that when hoisted, does not result
// in more overall instructions than pre-hoist
unsigned preprocess() {
// Nothing to check
if (InstChains.empty() || InstChains.front().empty())
return false;
// Profitability:
// when an instruction is fully hoisted,
// - one new instruction added to the second operand of each preceding anchor instruction
// - one new instruction added to the singular source of all the WaveShuffleIndex instructions in the ShuffleGroup
// - one less instruction per WaveShuffleIndex instruction in the ShuffleGroup
// so if more instructions needed to be added for each anchor than removed for each shuffle op, optimization is no
// longer profitable
//
// Based on the metric above, some instructions that are currently marked as hoist may need to be demoted to
// anchor
unsigned previousAnchorCount = 0;
unsigned numProfitableHoistable = 0;
unsigned idx = 0;
while (idx < HoistOrAnchorInstsIdx.size()) {
if (previousAnchorCount >= ShuffleOps.size()) {
// not profitable anymore, demote all subsequent instructions to anchor regardless
HoistOrAnchorInstsIdx[idx] = false;
// no need to increment previousAnchorCount, all remaining iterations will enter this if block
} else {
if (!HoistOrAnchorInstsIdx[idx]) {
previousAnchorCount++;
} else {
numProfitableHoistable++;
}
}
idx++;
}
return numProfitableHoistable;
}
bool hoist(DenseMap<BasicBlock *, SmallVector<Instruction *, 4>> &MoveToCommonDominatorInstMap, DominatorTree &DT) {
// If there is no common dominator abort hoisting
BasicBlock *CommonDominator = findCommonDominator(DT);
if (!CommonDominator)
return false;
// Track the new source for all the ShuffleOps
auto *prev = ShuffleOps.front()->getSrc();
for (unsigned idx = 0; idx < HoistOrAnchorInstsIdx.size(); idx++) {
bool moveToCommonDominator = false;
if (HoistOrAnchorInstsIdx[idx]) {
// clone the inst to be hoisted
auto *hoistedInst = InstChains.front()[idx]->clone();
hoistedInst->setName(InstChains.front()[idx]->getName() + "_hoisted");
hoistedInst->insertBefore(ShuffleOps.front());
if (CommonDominator != hoistedInst->getParent()) {
moveToCommonDominator = true;
MoveToCommonDominatorInstMap[CommonDominator].emplace_back(hoistedInst);
}
// Replace the correct operand
auto *hoistedOp0 = hoistedInst->getOperand(0);
Instruction *hoistedOpPrev = (idx == 0) ? cast<Instruction>(ShuffleOps.front()) : InstChains.front()[idx - 1];
unsigned chainOpIdx = 0; // Record which operand is the previous inst in the InstChain
if (hoistedOp0 == hoistedOpPrev) {
hoistedInst->setOperand(0, prev);
} else {
chainOpIdx = 1;
hoistedInst->setOperand(1, prev);
}
prev = hoistedInst;
// Create copies for each anchor instruction further up the chain
for (unsigned anchorIdx = 0; anchorIdx < idx; anchorIdx++) {
// found anchor
if (!HoistOrAnchorInstsIdx[anchorIdx]) {
// clone the inst to be hoisted
auto *anchorHoistedInst = hoistedInst->clone();
anchorHoistedInst->setName(hoistedInst->getName() + "_for_" + InstChains.front()[anchorIdx]->getName());
anchorHoistedInst->insertBefore(InstChains.front()[anchorIdx]);
// Replace the correct operand
// ex.
// %0 = ...
// %1 = ...
// %2 = call i32 @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %0, i32 0, i32 0)
// %3 = add i32 %2, %1 <- Anchor
// %4 = shl i32 %3, 2 <- Hoistable past Anchor
// Result:
// %0 = ...
// %1 = ...
// %2 = shl i32 %0, 2 <- hoistedInst (WaveShuffle path)
// %3 = shl i32 %1, 2 <- anchorHoistedInst (Anchor path)
// %4 = call i32 @llvm.genx.GenISA.WaveShuffleIndex.i32(i32 %2, i32 0, i32 0)
// %5 = add i32 %4, %2 <- Anchor
// Find the operand that originates from outside the chain to use in anchorHoistedInst
auto *anchorOp0 = InstChains.front()[anchorIdx]->getOperand(0);
auto *anchorOp1 = InstChains.front()[anchorIdx]->getOperand(1);
Instruction *anchorOpPrev =
(anchorIdx == 0) ? cast<Instruction>(ShuffleOps.front()) : InstChains.front()[anchorIdx - 1];
if (anchorOp0 == anchorOpPrev) {
anchorHoistedInst->setOperand(chainOpIdx, anchorOp1);
} else {
anchorHoistedInst->setOperand(chainOpIdx, anchorOp0);
}
// Properly set the anchor instructions in all chains to use the new anchorHoistedInst
for (unsigned i = 0; i < ShuffleOps.size(); i++) {
auto *anchorOp0 = InstChains[i][anchorIdx]->getOperand(0);
Instruction *anchorOpPrev =
(anchorIdx == 0) ? cast<Instruction>(ShuffleOps[i]) : InstChains[i][anchorIdx - 1];
if (anchorOp0 == anchorOpPrev) {
InstChains[i][anchorIdx]->setOperand(1, anchorHoistedInst);
} else {
InstChains[i][anchorIdx]->setOperand(0, anchorHoistedInst);
}
}
// If hoisted instruction is moved, it's safe to move anchor as well.
if (moveToCommonDominator) {
MoveToCommonDominatorInstMap[CommonDominator].emplace_back(anchorHoistedInst);
}
}
}
}
}
// prev is last hoisted instruction, use as new src operand for all the shuffle ops in ShuffleGroup
for (auto *waveShuffle : ShuffleOps) {
waveShuffle->setSrc(prev);
}
// Rewire all operations around the hoisted instructions
// This means removing the hoisted instructions in the InstChains path
// Done for all InstChains
for (unsigned i = 0; i < InstChains.size(); i++) {
int lastAnchorIdx = -1;
for (unsigned rewireIdx = 0; rewireIdx < HoistOrAnchorInstsIdx.size(); rewireIdx++) {
if (HoistOrAnchorInstsIdx[rewireIdx]) {
// no-op for hoisted insts
continue;
} else if (lastAnchorIdx + 1 == rewireIdx) {
// already wired correctly, just increment
lastAnchorIdx++;
} else {
Instruction *lastAnchor =
lastAnchorIdx == -1 ? cast<Instruction>(ShuffleOps[i]) : InstChains[i][lastAnchorIdx];
// operand to be replaced
Instruction *rewirePrev = InstChains[i][rewireIdx - 1];
unsigned rewireOpIdx = InstChains[i][rewireIdx]->getOperand(0) == rewirePrev ? 0 : 1;
InstChains[i][rewireIdx]->setOperand(rewireOpIdx, lastAnchor);
lastAnchorIdx = rewireIdx;
}
}
if (lastAnchorIdx != HoistOrAnchorInstsIdx.size() - 1) {
// one or more hoisted insts between last anchor and end of InstChain, one last rewire
Instruction *lastAnchor =
lastAnchorIdx == -1 ? cast<Instruction>(ShuffleOps[i]) : InstChains[i][lastAnchorIdx];
InstChains[i].back()->replaceAllUsesWith(lastAnchor);
}
}
for (auto &instChain : InstChains) {
for (unsigned i = 0; i < HoistOrAnchorInstsIdx.size(); i++) {
if (HoistOrAnchorInstsIdx[i])
instChain[i]->eraseFromParent();
}
}
return true;
}
SmallVector<WaveShuffleIndexIntrinsic *> ShuffleOps; // all the WaveShuffleIndex instructions in the group
private:
BasicBlock *findCommonDominator(DominatorTree &DT) {
BasicBlock *DomBB = ShuffleOps.front()->getParent();
for (auto &inst : ShuffleOps) {
BasicBlock *UseBB = inst->getParent();
DomBB = DT.findNearestCommonDominator(DomBB, UseBB);
}
return DomBB;
}
SmallVector<SmallVector<BinaryOperator *>>
InstChains; // all common instructions shared by the shuffle ops, some can be hoisted
SmallVector<bool> HoistOrAnchorInstsIdx; // Type of each Binary Operator in each InstChain: true -
// Hoistable/Hoistable past previous Anchors, false - Anchor
}; // ShuffleGroup
public:
WaveShuffleIndexSinkingImpl(Function &F) : F(F) {}
bool run();
private:
bool splitWaveShuffleIndexes();
bool mergeWaveShuffleIndexes();
bool moveToCommonDominator();
void gatherShuffleGroups();
bool sinkShuffleGroups();
static unsigned compareWaveShuffleIndexes(WaveShuffleIndexIntrinsic *waveShuffleIndex,
WaveShuffleIndexIntrinsic *newWaveShuffleIndex,
SmallVector<BinaryOperator *> &InstChain,
SmallVector<BinaryOperator *> &newInstChain,
SmallVector<bool> &hoistOrAnchor);
static bool isHoistable(BinaryOperator *inst);
static bool isHoistableOverAnchor(BinaryOperator *instToHoist, BinaryOperator *anchorInst);
Function &F;
DominatorTree DT;
DenseMap<BasicBlock *, SmallVector<Instruction *, 4>> MoveToCommonDominatorInstMap;
DenseMap<Value *, SmallVector<ShuffleGroup, 4>> ShuffleGroupMap;
DenseSet<WaveShuffleIndexIntrinsic *> Visited;
};
class WaveShuffleIndexSinking : public FunctionPass {
public:
static char ID;
WaveShuffleIndexSinking() : FunctionPass(ID) {}
StringRef getPassName() const override { return "WaveShuffleIndexSinking"; }
bool runOnFunction(Function &F) override;
};
FunctionPass *createWaveShuffleIndexSinking() { return new WaveShuffleIndexSinking(); }
} // namespace IGC
// Split any WaveShuffleIndex instructions that have more than one user
// This may uncover more hoisting opportunities
// If none of the instructions were able to be hoisted, the split instructions will be merged back together at the end
bool WaveShuffleIndexSinkingImpl::splitWaveShuffleIndexes() {
bool Changed = false;
SmallVector<WaveShuffleIndexIntrinsic *> InstsToSplit;
for (auto &BB : F) {
for (auto &I : BB) {
if (auto *waveShuffleInst = dyn_cast<WaveShuffleIndexIntrinsic>(&I)) {
if (auto *constantChannel = dyn_cast<ConstantInt>(waveShuffleInst->getChannel())) {
// Do not split WaveShuffleIndex insts that do not have a constant index since they cannot be optimized by
// this pass anyways
if (!waveShuffleInst->getUniqueUndroppableUser()) {
// More than one user, split to potentially uncover more chances sink each individual WaveShuffleIndex
Changed = true;
InstsToSplit.push_back(waveShuffleInst);
}
}
}
}
}
for (auto *instToSplit : InstsToSplit) {
SmallVector<std::pair<Instruction *, Instruction *>> ReplacementPairs;
// Multiple users, split instruction
for (auto *user : instToSplit->users()) {
auto *userInst = cast<Instruction>(user);
auto *clonedWaveShuffleInst = instToSplit->clone();
clonedWaveShuffleInst->setName(instToSplit->getName() + "_clone");
clonedWaveShuffleInst->insertBefore(instToSplit);
// Track replacement to perform after loop since iterators will be messed up if performed mid loop
ReplacementPairs.emplace_back(userInst, clonedWaveShuffleInst);
}
for (auto &p : ReplacementPairs) {
p.first->replaceUsesOfWith(instToSplit, p.second);
}
// Each user is now using a cloned instruction, original should be safe to remove
if (instToSplit->isSafeToRemove()) {
instToSplit->eraseFromParent();
}
}
return Changed;
}
bool WaveShuffleIndexSinkingImpl::moveToCommonDominator() {
// hoisted intruction needs to be moved to common dominator BB.
// If instructions in shuffle group are from different basic blocks
// there is a risk of non-dominating all users.
bool Changed = false;
for (auto &bb : MoveToCommonDominatorInstMap) {
auto instrInsertPtr = (&*bb.first->getFirstInsertionPt());
for (auto &inst : bb.second) {
inst->moveBefore(instrInsertPtr);
Changed = true;
}
}
return Changed;
}
// Merge WaveShuffleIndex instructions that have the same source operand and the same constant lane/channel operand
bool WaveShuffleIndexSinkingImpl::mergeWaveShuffleIndexes() {
// Map from Source to (Map from Lane to list of duplicate instructions)
DenseMap<Value *, DenseMap<ConstantInt *, SmallVector<WaveShuffleIndexIntrinsic *>>> mergeMap;
for (auto &BB : F) {
for (auto &I : BB) {
if (auto *waveShuffleInst = dyn_cast<WaveShuffleIndexIntrinsic>(&I)) {
if (auto *constantChannel = dyn_cast<ConstantInt>(waveShuffleInst->getChannel())) {
mergeMap[waveShuffleInst->getSrc()][constantChannel].push_back(waveShuffleInst);
}
}
}
}
bool Changed = false;
for (auto &srcToLaneAndInstsMap : mergeMap) {
for (auto &laneToInstsMap : srcToLaneAndInstsMap.second) {
// Only 1 WaveShuffleIndex using the same src with the same constant channel index, nothing to merge
auto &duplicateInsts = laneToInstsMap.second;
if (duplicateInsts.size() < 2)
continue;
Changed = true;
auto *mainShuffleIndex = duplicateInsts.front();
// Find common dominator for main WaveShuffleIndex
bool moveToCommonDominator = false;
BasicBlock *DomBB = mainShuffleIndex->getParent();
for (unsigned i = 1; i < duplicateInsts.size(); i++) {
BasicBlock *UseBB = duplicateInsts[i]->getParent();
DomBB = DT.findNearestCommonDominator(DomBB, UseBB);
}
if (!DomBB) {
// Do not merge if Common Dominator is not found
Changed = false;
continue;
}
moveToCommonDominator = DomBB != mainShuffleIndex->getParent() ? true : false;
// replace uses of other WaveShuffleIndex with the first one
for (unsigned i = 1; i < duplicateInsts.size(); i++) {
duplicateInsts[i]->replaceAllUsesWith(mainShuffleIndex);
duplicateInsts[i]->eraseFromParent();
}
if (moveToCommonDominator) {
MoveToCommonDominatorInstMap[DomBB].emplace_back(mainShuffleIndex);
}
}
}
return Changed;
}
// Find WaveShuffleIndex instructions and group them together based on common successor instructions
void WaveShuffleIndexSinkingImpl::gatherShuffleGroups() {
for (auto &BB : F) {
for (auto &I : BB) {
if (auto *waveShuffleInst = dyn_cast<WaveShuffleIndexIntrinsic>(&I)) {
if (Visited.count(waveShuffleInst) || !isa<ConstantInt>(waveShuffleInst->getChannel())) {
// Processed in prior iteration and nothing changed or does not have a constant channel
// Save compute and do not re-process/ create a new ShuffleGroup
continue;
}
if (ShuffleGroupMap.count(waveShuffleInst->getSrc())) {
// Found existing group(s) with the same source, try to match with one of the groups
bool match = false;
for (auto &shuffleGroup : ShuffleGroupMap[waveShuffleInst->getSrc()]) {
if (shuffleGroup.match(waveShuffleInst)) {
match = true;
break;
}
}
// create new ShuffleGroup since no suitable match was found
if (!match) {
ShuffleGroupMap[waveShuffleInst->getSrc()].emplace_back(waveShuffleInst);
}
} else {
// create new ShuffleGroup for broadcast operations
ShuffleGroupMap[waveShuffleInst->getSrc()].emplace_back(waveShuffleInst);
}
}
}
}
}
// Run profitability function and decide whether to sink ShuffleGroups or not
bool WaveShuffleIndexSinkingImpl::sinkShuffleGroups() {
bool Changed = false;
for (auto &kvp : ShuffleGroupMap) {
for (auto &shuffleGroup : kvp.second) {
unsigned numProfitableToHoist = shuffleGroup.preprocess();
if (numProfitableToHoist > 0) {
// Pre-process found profitable instructions left to hoist
Changed |= shuffleGroup.hoist(MoveToCommonDominatorInstMap, DT);
} else {
// No-op, mark all WaveShuffleInst in the current shuffle group as visited
for (auto *waveShuffleInst : shuffleGroup.ShuffleOps) {
Visited.insert(waveShuffleInst);
}
}
}
}
return Changed;
}
unsigned WaveShuffleIndexSinkingImpl::compareWaveShuffleIndexes(WaveShuffleIndexIntrinsic *waveShuffleIndex,
WaveShuffleIndexIntrinsic *newWaveShuffleIndex,
SmallVector<BinaryOperator *> &InstChain,
SmallVector<BinaryOperator *> &NewInstChain,
SmallVector<bool> &hoistOrAnchor) {
// Only search up to the number of existing instructions in InstChain, if it is prepopulated
// InstChain will be pre-populated if newWaveShuffleIndex is being compared to a developed ShuffleGroup (two or more
// shuffle ops in group)
std::optional<unsigned> limit;
bool EmptyStartingInstChain = InstChain.empty();
if (!EmptyStartingInstChain) {
limit = InstChain.size();
}
Instruction *curInstA = waveShuffleIndex;
Instruction *curInstB = newWaveShuffleIndex;
unsigned idx = 0;
unsigned numHoistable = 0;
while (curInstA->hasOneUse() && curInstB->hasOneUse() && (!limit.has_value() || idx < limit)) {
// Only attempt to search past BinaryOperator for now
auto *instA = dyn_cast<BinaryOperator>(curInstA->getUniqueUndroppableUser());
auto *instB = dyn_cast<BinaryOperator>(curInstB->getUniqueUndroppableUser());
if (!instA || !instB)
break;
if (!instA->isSameOperationAs(instB))
break;
// Check that both operands match
auto *opA0 = instA->getOperand(0);
auto *opA1 = instA->getOperand(1);
auto *opB0 = instB->getOperand(0);
auto *opB1 = instB->getOperand(1);
if (instA->isCommutative()) {
// covers all four cases
// ex.
// add i32 %ws1, %a | add i32 %a, %ws1
// ... | ...
// add i32 %ws2, %a | add i32 %a, %ws2
//-------------------|-----------------
// add i32 %ws1, %a | add i32 %a, %ws1
// ... | ...
// add i32 %a, %ws2 | add i32 %ws2, %a
if (!(opA0 == curInstA && opB0 == curInstB && opA1 == opB1) &&
!(opA0 == curInstA && opB1 == curInstB && opA1 == opB0) &&
!(opA1 == curInstA && opB0 == curInstB && opA0 == opB1) &&
!(opA1 == curInstA && opB1 == curInstB && opA0 == opB0))
break;
} else {
// covers the 2 cases in row 1 above
if (!(opA0 == curInstA && opB0 == curInstB && opA1 == opB1) &&
!(opA1 == curInstA && opB1 == curInstB && opA0 == opB0))
break;
}
if (isHoistable(instA)) {
bool canHoistPastAnchor = true;
// start checking from last instruction
for (int i = hoistOrAnchor.size() - 1; i >= 0; i--) {
// hoistOrAnchor[i] is an anchor and cannot hoist instA over an anchor
if (!hoistOrAnchor[i] && !isHoistableOverAnchor(instA, InstChain[i])) {
canHoistPastAnchor = false;
}
}
if (canHoistPastAnchor) {
numHoistable++;
hoistOrAnchor.push_back(true);
} else {
hoistOrAnchor.push_back(false);
}
} else {
hoistOrAnchor.push_back(false);
}
if (!limit.has_value()) {
// Only update InstChain if it was a fresh vector
InstChain.push_back(instA);
}
NewInstChain.push_back(instB);
curInstA = instA;
curInstB = instB;
idx++;
}
return numHoistable;
}
bool WaveShuffleIndexSinkingImpl::isHoistable(BinaryOperator *inst) {
// One operand has to be a constant, representing uniformity and allowing the operation to be performed on all simd
// lanes prior to broadcast operation
return isa<ConstantInt>(inst->getOperand(0)) || isa<ConstantFP>(inst->getOperand(0)) ||
isa<ConstantInt>(inst->getOperand(1)) || isa<ConstantFP>(inst->getOperand(1));
}
// Combination of leftDistributesOverRight and rightDistributesOverLeft from LLVM InstCombining.cpp
bool WaveShuffleIndexSinkingImpl::isHoistableOverAnchor(BinaryOperator *instToHoist, BinaryOperator *anchorInst) {
if (instToHoist->isCommutative()) {
Instruction::BinaryOps FirstOp = anchorInst->getOpcode();
Instruction::BinaryOps SecondOp = instToHoist->getOpcode();
// X & (Y | Z) <--> (X & Y) | (X & Z)
// X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
// In practice, FirstOp is unlikely to be And, Or, or Xor as they would themselves be hoistable and thus, never an
// anchor inst
if (SecondOp == Instruction::And)
return FirstOp == Instruction::Or || FirstOp == Instruction::Xor;
// X | (Y & Z) <--> (X | Y) & (X | Z)
if (SecondOp == Instruction::Or)
return FirstOp == Instruction::And;
// X * (Y + Z) <--> (X * Y) + (X * Z)
// X * (Y - Z) <--> (X * Y) - (X * Z)
if (SecondOp == Instruction::Mul)
return FirstOp == Instruction::Add || FirstOp == Instruction::Sub;
return false;
} else {
return anchorInst->isBitwiseLogicOp() || instToHoist->isShift();
}
}
bool WaveShuffleIndexSinkingImpl::run() {
DT.recalculate(F);
bool Changed = splitWaveShuffleIndexes();
unsigned numIters = 0;
while (numIters < IGC_GET_FLAG_VALUE(WaveShuffleIndexSinkingMaxIterations)) {
gatherShuffleGroups();
if (sinkShuffleGroups()) {
Changed = true;
} else {
break;
}
numIters++;
ShuffleGroupMap.clear();
}
Changed |= mergeWaveShuffleIndexes();
Changed |= moveToCommonDominator();
return Changed;
}
bool WaveShuffleIndexSinking::runOnFunction(Function &F) {
WaveShuffleIndexSinkingImpl WorkerInstance(F);
return WorkerInstance.run();
}
char WaveShuffleIndexSinking::ID = 0;
#define PASS_FLAG "igc-wave-shuffle-index-sinking"
#define PASS_DESCRIPTION "WaveShuffleIndexSinking"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(WaveShuffleIndexSinking, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_END(WaveShuffleIndexSinking, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
|