1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2018-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#ifndef IGCLLVM_IR_INSTRUCTIONS_H
#define IGCLLVM_IR_INSTRUCTIONS_H
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/User.h"
#include "llvmWrapper/Support/ModRef.h"
#if LLVM_VERSION_MAJOR < 11
#include "llvm/Analysis/OrderedBasicBlock.h"
#endif
#if LLVM_VERSION_MAJOR < 14
#include "DerivedTypes.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#endif
#include "Probe/Assertion.h"
namespace {
#if LLVM_VERSION_MAJOR < 14
// The following is ported from LLVM 14 Instructions.cpp.
static bool isSingleSourceMaskImpl(llvm::ArrayRef<int> Mask, int NumOpElts) {
assert(!Mask.empty() && "Shuffle mask must contain elements");
bool UsesLHS = false;
bool UsesRHS = false;
for (int I : Mask) {
if (I == -1)
continue;
assert(I >= 0 && I < (NumOpElts * 2) && "Out-of-bounds shuffle mask element");
UsesLHS |= (I < NumOpElts);
UsesRHS |= (I >= NumOpElts);
if (UsesLHS && UsesRHS)
return false;
}
// Allow for degenerate case: completely undef mask means neither source is used.
return UsesLHS || UsesRHS;
}
static bool isIdentityMaskImpl(llvm::ArrayRef<int> Mask, int NumOpElts) {
if (!isSingleSourceMaskImpl(Mask, NumOpElts))
return false;
for (int i = 0, NumMaskElts = (int)Mask.size(); i < NumMaskElts; ++i) {
if (Mask[i] == -1)
continue;
if (Mask[i] != i && Mask[i] != (NumOpElts + i))
return false;
}
return true;
}
static bool isInsertSubvectorMaskImpl(llvm::ShuffleVectorInst *SVI, int &NumSubElts, int &Index) {
if (IGCLLVM::isScalable(*SVI->getType()))
return false;
llvm::SmallVector<int, 32> Mask;
SVI->getShuffleMask(Mask);
int NumSrcElts = (int)llvm::cast<IGCLLVM::FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
int NumMaskElts = (int)Mask.size();
// Don't try to match if we're shuffling to a smaller size.
if (NumMaskElts < NumSrcElts)
return false;
// TODO: We don't recognize self-insertion/widening.
if (isSingleSourceMaskImpl(Mask, NumSrcElts))
return false;
// Determine which mask elements are attributed to which source.
llvm::APInt UndefElts(NumMaskElts, 0);
llvm::APInt Src0Elts(NumMaskElts, 0);
llvm::APInt Src1Elts(NumMaskElts, 0);
bool Src0Identity = true;
bool Src1Identity = true;
for (int i = 0; i != NumMaskElts; ++i) {
int M = Mask[i];
if (M < 0) {
UndefElts.setBit(i);
continue;
}
if (M < NumSrcElts) {
Src0Elts.setBit(i);
Src0Identity &= (M == i);
continue;
}
Src1Elts.setBit(i);
Src1Identity &= (M == (i + NumSrcElts));
}
assert((Src0Elts | Src1Elts | UndefElts).isAllOnesValue() && "unknown shuffle elements");
assert(!Src0Elts.isNullValue() && !Src1Elts.isNullValue() && "2-source shuffle not found");
// Determine lo/hi span ranges.
// TODO: How should we handle undefs at the start of subvector insertions?
int Src0Lo = Src0Elts.countTrailingZeros();
int Src1Lo = Src1Elts.countTrailingZeros();
int Src0Hi = NumMaskElts - Src0Elts.countLeadingZeros();
int Src1Hi = NumMaskElts - Src1Elts.countLeadingZeros();
// If src0 is in place, see if the src1 elements is inplace within its own
// span.
if (Src0Identity) {
int NumSub1Elts = Src1Hi - Src1Lo;
llvm::SmallVector<int, 32> Sub1Mask;
for (int i = 0; i < NumSub1Elts; i++)
Sub1Mask.push_back(Mask[i + Src1Lo]);
if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
NumSubElts = NumSub1Elts;
Index = Src1Lo;
return true;
}
}
// If src1 is in place, see if the src0 elements is inplace within its own
// span.
if (Src1Identity) {
int NumSub0Elts = Src0Hi - Src0Lo;
llvm::SmallVector<int, 32> Sub0Mask;
for (int i = 0; i < NumSub0Elts; i++)
Sub0Mask.push_back(Mask[i + Src0Lo]);
if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
NumSubElts = NumSub0Elts;
Index = Src0Lo;
return true;
}
}
return false;
}
#endif // LLVM_VERSION_MAJOR < 14
} // end anonymous namespace
namespace IGCLLVM {
inline llvm::Value *getCalledValue(llvm::CallInst &CI) {
#if LLVM_VERSION_MAJOR <= 10
return CI.getCalledValue();
#else
return CI.getCalledOperand();
#endif
}
inline llvm::Value *getCalledValue(llvm::CallInst *CI) {
#if LLVM_VERSION_MAJOR <= 10
return CI->getCalledValue();
#else
return CI->getCalledOperand();
#endif
}
inline const llvm::Value *getCalledValue(const llvm::CallInst *CI) {
#if LLVM_VERSION_MAJOR <= 10
return CI->getCalledValue();
#else
return CI->getCalledOperand();
#endif
}
inline unsigned getNumArgOperands(const llvm::CallInst *CI) {
#if LLVM_VERSION_MAJOR < 14
return CI->getNumArgOperands();
#else
return CI->arg_size();
#endif
}
inline unsigned getArgOperandNo(llvm::CallInst &CI, const llvm::Use *U) {
#if LLVM_VERSION_MAJOR < 10
IGC_ASSERT_MESSAGE(CI.isArgOperand(U), "Arg operand # out of range!");
return (unsigned)(U - CI.arg_begin());
#else
return CI.getArgOperandNo(U);
#endif
}
// We repeat the implementation for llvm::Function here - trying to proxy the
// calls through CB.getCalledFunction() would leave indirect calls unhandled.
inline void setMemoryEffects(llvm::CallBase &CB, IGCLLVM::MemoryEffects ME) {
CB.removeFnAttrs(ME.getOverridenAttrKinds());
for (const auto &MemAttr : ME.getAsAttributeSet(CB.getContext()))
CB.addFnAttr(MemAttr);
}
inline void setDoesNotAccessMemory(llvm::CallBase &CB) { setMemoryEffects(CB, IGCLLVM::MemoryEffects::none()); }
inline void setOnlyReadsMemory(llvm::CallBase &CB) { setMemoryEffects(CB, IGCLLVM::MemoryEffects::readOnly()); }
inline void setOnlyWritesMemory(llvm::CallBase &CB) { setMemoryEffects(CB, IGCLLVM::MemoryEffects::writeOnly()); }
inline void setOnlyAccessesArgMemory(llvm::CallBase &CB) { setMemoryEffects(CB, IGCLLVM::MemoryEffects::argMemOnly()); }
inline void setOnlyAccessesInaccessibleMemory(llvm::CallBase &CB) {
setMemoryEffects(CB, IGCLLVM::MemoryEffects::inaccessibleMemOnly());
}
inline void setOnlyAccessesInaccessibleMemOrArgMem(llvm::CallBase &CB) {
setMemoryEffects(CB, IGCLLVM::MemoryEffects::inaccessibleOrArgMemOnly());
}
inline llvm::Constant *getShuffleMaskForBitcode(llvm::ShuffleVectorInst *SVI) {
#if LLVM_VERSION_MAJOR < 11
return SVI->getMask();
#else
return llvm::ShuffleVectorInst::convertShuffleMaskForBitcode(SVI->getShuffleMask(), SVI->getType());
#endif
}
inline bool isInsertSubvectorMask(llvm::ShuffleVectorInst *SVI, int &NumSubElts, int &Index) {
#if LLVM_VERSION_MAJOR < 14
return isInsertSubvectorMaskImpl(SVI, NumSubElts, Index);
#else
return SVI->isInsertSubvectorMask(NumSubElts, Index);
#endif
}
inline bool isFreezeInst(llvm::Instruction *I) {
#if LLVM_VERSION_MAJOR < 10
(void)I;
return false;
#else
return llvm::isa<llvm::FreezeInst>(I);
#endif
}
inline bool isDebugOrPseudoInst(const llvm::Instruction &I) {
#if LLVM_VERSION_MAJOR < 14
return llvm::isa<llvm::DbgInfoIntrinsic>(&I);
#else
return I.isDebugOrPseudoInst();
#endif
}
inline bool comesBefore(llvm::Instruction *A, llvm::Instruction *B) {
#if LLVM_VERSION_MAJOR < 11
return llvm::OrderedBasicBlock(A->getParent()).dominates(A, B);
#else
return A->comesBefore(B);
#endif
}
inline llvm::Type *getGEPIndexedType(llvm::Type *Ty, llvm::SmallVectorImpl<unsigned> &indices) {
llvm::SmallVector<llvm::Value *, 8> gepIndices;
gepIndices.reserve(indices.size() + 1);
auto *int32Ty = llvm::IntegerType::getInt32Ty(Ty->getContext());
gepIndices.push_back(llvm::ConstantInt::get(int32Ty, 0));
for (unsigned idx : indices) {
gepIndices.push_back(llvm::ConstantInt::get(int32Ty, idx));
}
return llvm::GetElementPtrInst::getIndexedType(Ty, gepIndices);
}
inline llvm::Type *getGEPIndexedType(llvm::Type *Ty, llvm::ArrayRef<llvm::Value *> indices) {
return llvm::GetElementPtrInst::getIndexedType(Ty, indices);
}
} // namespace IGCLLVM
#endif
|