File: IGCConstantFolder.cpp

package info (click to toggle)
intel-graphics-compiler2 2.16.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 106,644 kB
  • sloc: cpp: 805,640; lisp: 287,672; ansic: 16,414; python: 3,952; yacc: 2,588; lex: 1,666; pascal: 313; sh: 186; makefile: 35
file content (473 lines) | stat: -rw-r--r-- 18,681 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/*========================== begin_copyright_notice ============================

Copyright (C) 2020-2025 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "common/LLVMWarningsPush.hpp"
#include "llvm/ADT/APFloat.h"
#include "common/LLVMWarningsPop.hpp"

#include "common/IGCConstantFolder.h"
#include <cfenv>
#include "Probe/Assertion.h"
#include "Types.hpp"
#include "iStdLib/utility.h"
#include <cmath>

namespace IGC {

llvm::Constant *IGCConstantFolder::CreateGradientXFine(llvm::Constant *C0) const { return CreateGradient(C0); }

llvm::Constant *IGCConstantFolder::CreateGradientYFine(llvm::Constant *C0) const { return CreateGradient(C0); }

llvm::Constant *IGCConstantFolder::CreateGradientX(llvm::Constant *C0) const { return CreateGradient(C0); }

llvm::Constant *IGCConstantFolder::CreateGradientY(llvm::Constant *C0) const { return CreateGradient(C0); }

llvm::Constant *IGCConstantFolder::CreateRsq(llvm::Constant *C0) const {
  IGC_ASSERT(nullptr != C0);
  if (llvm::isa<llvm::UndefValue>(C0)) {
    return nullptr;
  }
  IGC_ASSERT(llvm::isa<llvm::ConstantFP>(C0));
  IGC_ASSERT(nullptr != llvm::cast<llvm::ConstantFP>(C0));
  IGC_ASSERT(nullptr != C0->getType());
  auto APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
  double C0value = C0->getType()->isFloatTy() ? static_cast<double>(APF.convertToFloat()) : APF.convertToDouble();
  if (C0value > 0.0) {
    const double sq = sqrt(C0value);
    IGC_ASSERT(sq);
    return llvm::ConstantFP::get(C0->getType(), 1.0 / sq);
  } else {
    return nullptr;
  }
}

llvm::Constant *IGCConstantFolder::CreateRoundNE(llvm::Constant *C0) const {
  IGC_ASSERT(nullptr != C0);
  if (llvm::isa<llvm::UndefValue>(C0)) {
    return nullptr;
  }
  IGC_ASSERT(llvm::isa<llvm::ConstantFP>(C0));
  IGC_ASSERT(nullptr != llvm::cast<llvm::ConstantFP>(C0));
  IGC_ASSERT(nullptr != C0->getType());
  auto APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
  double C0value = C0->getType()->isFloatTy() ? static_cast<double>(APF.convertToFloat()) : APF.convertToDouble();
  const int currentRoundingMode = std::fegetround();
  // Round to nearest, ties round to even.
  std::fesetround(FE_TONEAREST);
  double result = std::rint(C0value);
  std::fesetround(currentRoundingMode);
  return llvm::ConstantFP::get(C0->getType(), result);
}

llvm::Constant *IGCConstantFolder::CreateFSat(llvm::Constant *C0) const {
  IGC_ASSERT(nullptr != C0);
  if (llvm::isa<llvm::UndefValue>(C0))
    return nullptr;
  IGC_ASSERT(llvm::isa<llvm::ConstantFP>(C0));
  IGC_ASSERT(nullptr != llvm::cast<llvm::ConstantFP>(C0));
  IGC_ASSERT(nullptr != C0->getType());
  auto APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
  const llvm::APFloat &zero = llvm::cast<llvm::ConstantFP>(llvm::ConstantFP::get(C0->getType(), 0.))->getValueAPF();
  const llvm::APFloat &One = llvm::cast<llvm::ConstantFP>(llvm::ConstantFP::get(C0->getType(), 1.))->getValueAPF();
  return llvm::ConstantFP::get(C0->getContext(), llvm::minnum(One, llvm::maxnum(zero, APF)));
}

llvm::Constant *IGCConstantFolder::CreateFAdd(llvm::Constant *C0, llvm::Constant *C1,
                                              llvm::APFloatBase::roundingMode roundingMode) const {
  if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1)) {
    return IGCLLVM::ConstantFolderBase::CreateBinOp(llvm::Instruction::FAdd, C0, C1);
  }
  llvm::ConstantFP *CFP0 = llvm::cast<llvm::ConstantFP>(C0);
  llvm::ConstantFP *CFP1 = llvm::cast<llvm::ConstantFP>(C1);
  llvm::APFloat firstOperand = CFP0->getValueAPF();
  llvm::APFloat secondOperand = CFP1->getValueAPF();
  llvm::APFloat::opStatus status = firstOperand.add(secondOperand, roundingMode);
  if (llvm::APFloat::opInvalidOp != status) {
    return llvm::ConstantFP::get(C0->getContext(), firstOperand);
  } else {
    return nullptr;
  }
}

llvm::Constant *IGCConstantFolder::CreateFMul(llvm::Constant *C0, llvm::Constant *C1,
                                              llvm::APFloatBase::roundingMode roundingMode) const {
  if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1)) {
    return IGCLLVM::ConstantFolderBase::CreateBinOp(llvm::Instruction::FMul, C0, C1);
  }
  llvm::ConstantFP *CFP0 = llvm::cast<llvm::ConstantFP>(C0);
  llvm::ConstantFP *CFP1 = llvm::cast<llvm::ConstantFP>(C1);
  llvm::APFloat firstOperand = CFP0->getValueAPF();
  llvm::APFloat secondOperand = CFP1->getValueAPF();
  llvm::APFloat::opStatus status = firstOperand.multiply(secondOperand, roundingMode);
  if (llvm::APFloat::opInvalidOp != status) {
    return llvm::ConstantFP::get(C0->getContext(), firstOperand);
  } else {
    return nullptr;
  }
}

llvm::Constant *IGCConstantFolder::CreateFPTrunc(llvm::Constant *C0, llvm::Type *dstType,
                                                 llvm::APFloatBase::roundingMode roundingMode) const {
  if (llvm::isa<llvm::UndefValue>(C0)) {
    return IGCLLVM::ConstantFolderBase::CreateFPCast(C0, dstType);
  }
  llvm::APFloat APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
  bool losesInfo = false;
  llvm::APFloat::opStatus status = APF.convert(dstType->getFltSemantics(), roundingMode, &losesInfo);
  if (llvm::APFloat::opInvalidOp != status) {
    return llvm::ConstantFP::get(C0->getContext(), APF);
  } else {
    return nullptr;
  }
}

// Helper structure to describe a floating point type
// See llvm.org/doxygen/APFloat_8cpp_source.html
struct FloatSemantics {
  /* The largest E such that 2^E is representable; this matches the
     definition of IEEE 754.  */
  int32_t maxExponent;

  /* The smallest E such that 2^E is a normalized number; this
     matches the definition of IEEE 754.  */
  int32_t minExponent;

  /* Number of bits in the significand.  This includes the integer
     bit.  */
  unsigned int precision;

  /* Number of bits actually used in the semantics. */
  unsigned int sizeInBits;

  /* Has no Inf, only NaN */
  bool hasNoInf = false;
};
// IEEE binary16 format
static constexpr FloatSemantics semHF = {15, -14, 11, 16};
// Note: LLVM 16+ supports E5M2 and E4M3 types in APFloat
// E5M2 format
static constexpr FloatSemantics semBF8 = {15, -14, 3, 8};
// E4M3 format, has no Inf
static constexpr FloatSemantics semHF8 = {8, -6, 4, 8, true};

inline uint32_t Round(uint32_t man, uint32_t numLostBits, bool isNegative, uint32_t roundingMode) {
  uint32_t lostBitsMask = BITMASK(numLostBits);
  uint32_t lostBits = man & lostBitsMask;
  uint32_t lostBitsHalfMinusOne = BITMASK(numLostBits - 1);
  uint32_t tieToEvenBias = (man & BIT(numLostBits)) >> numLostBits;

  switch (roundingMode) {
  case ROUND_TO_NEAREST_EVEN:
    man += lostBitsHalfMinusOne + tieToEvenBias;
    man >>= numLostBits;
    break;
  case ROUND_TO_NEGATIVE:
    man >>= numLostBits;
    if (lostBits != 0 && isNegative) {
      man += 1;
    }
    break;
  case ROUND_TO_POSITIVE:
    man >>= numLostBits;
    if (lostBits != 0 && !isNegative) {
      man += 1;
    }
    break;
  case ROUND_TO_ZERO:
    man >>= numLostBits;
    break;
  default:
    man >>= numLostBits;
    IGC_ASSERT_MESSAGE(0, "Unsupported rounding mode");
    break;
  }
  return man;
}

inline uint32_t ConvertFloat(uint32_t intVal, const FloatSemantics &srcSem, const FloatSemantics &dstSem,
                             uint32_t roundingMode = ROUND_TO_NEAREST_EVEN, bool saturate = false) {
  uint32_t srcNumManBits = srcSem.precision - 1;
  uint32_t srcNumExpBits = srcSem.sizeInBits - srcNumManBits - 1;
  uint32_t dstNumManBits = dstSem.precision - 1;
  uint32_t dstNumExpBits = dstSem.sizeInBits - dstNumManBits - 1;

  uint32_t expBits = (intVal >> srcNumManBits) & BITMASK(srcNumExpBits);
  uint32_t manBits = intVal & BITMASK(srcNumManBits);
  bool isNegative = (intVal & BIT(srcSem.sizeInBits - 1)) != 0;
  bool isPositive = !isNegative;
  bool isDenorm = expBits == 0 && manBits > 0;
  bool isZero = expBits == 0 && manBits == 0;
  bool isInf = srcSem.hasNoInf ? false : (expBits == BITMASK(srcNumExpBits) && manBits == 0);
  bool isNan = srcSem.hasNoInf ? ((BITMASK(srcSem.sizeInBits - 1) & intVal) == BITMASK(srcSem.sizeInBits - 1))
                               : (expBits == BITMASK(srcNumExpBits) && manBits != 0);

  int32_t srcExpBias = 1 - srcSem.minExponent;
  int32_t dstExpBias = 1 - dstSem.minExponent;
  // Calculate the exponent and mantissa
  int32_t exp = isDenorm ? srcSem.minExponent : (int_cast<int32_t>(expBits) - srcExpBias);
  // Add the implicit leading 1 for normal numbers.
  int32_t man = (isZero || isDenorm) ? manBits : (manBits | BIT(srcNumManBits));

  // Calculate special values for the destination format.
  uint32_t signVal = isNegative ? BIT(dstSem.sizeInBits - 1) : 0;
  uint32_t nanVal = signVal | BITMASK(dstSem.sizeInBits - 1);
  uint32_t infVal = signVal | (BITMASK(dstNumExpBits) << dstNumManBits);
  uint32_t maxVal = signVal | (BITMASK(dstSem.sizeInBits - 1) & ~BIT(dstNumManBits));
  if (dstSem.hasNoInf) {
    infVal = nanVal;
    // E4M3 max normal = S.1111.110
    maxVal = signVal | (BITMASK(dstSem.sizeInBits - 1) & ~1);
  }

  // Handle special cases
  if (isZero) {
    return signVal;
  }
  if (isInf) {
    return infVal;
  }
  if (isNan) {
    return nanVal;
  }

  // Normalize the mantissa
  while ((man & BIT(srcNumManBits)) == 0) {
    man <<= 1;
    exp--;
  }
  if (exp < dstSem.minExponent) {
    if (dstSem.minExponent - exp - 1 > int_cast<int32_t>(dstNumManBits)) {
      // Underflow
      return signVal;
    }
    // Denorm
    int32_t dstManLsb = srcNumManBits - dstNumManBits + dstSem.minExponent - exp;
    if (dstManLsb > 0) {
      man = Round(man, dstManLsb, isNegative, roundingMode);
    } else {
      man <<= -dstManLsb;
    }
    return signVal | man;
  }
  // Remove the implicit leading 1.
  man &= ~BIT(srcNumManBits);
  if (dstNumManBits < srcNumManBits) {
    int32_t dstManLsb = srcNumManBits - dstNumManBits;
    man = Round(man, dstManLsb, isNegative, roundingMode);
    // Mantissa overflow
    if ((man & BIT(dstNumManBits)) != 0) {
      man = 0;
      exp++;
    }
  } else {
    man <<= (dstNumManBits - srcNumManBits);
  }
  // Overflow
  if (exp > dstSem.maxExponent) {
    if (roundingMode == ROUND_TO_NEGATIVE && isPositive) {
      return maxVal;
    } else if (roundingMode == ROUND_TO_POSITIVE && isNegative) {
      return maxVal;
    } else if (saturate) {
      return maxVal;
    }
    return infVal;
  }
  expBits = (exp + dstExpBias) << dstNumManBits;
  if (saturate && dstSem.hasNoInf && (expBits | man) > maxVal) {
    return maxVal;
  }
  return signVal | expBits | man;
}

llvm::Constant *IGCConstantFolder::CreateHFToBF8Trunc(llvm::Constant *C0, llvm::Type *dstType, uint32_t roundingMode,
                                                      bool saturate) const {
  IGC_ASSERT(dstType->isIntegerTy());
  if (llvm::isa<llvm::UndefValue>(C0)) {
    return llvm::UndefValue::get(dstType);
  }
  llvm::APFloat APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
  uint32_t intVal = int_cast<uint32_t>(APF.bitcastToAPInt().getZExtValue());
  intVal = ConvertFloat(intVal, semHF, semBF8, roundingMode, saturate);
  return llvm::ConstantInt::get(dstType, intVal);
}

llvm::Constant *IGCConstantFolder::CreateHFToHF8Trunc(llvm::Constant *C0, llvm::Type *dstType, uint32_t roundingMode,
                                                      bool saturate) const {
  IGC_ASSERT(dstType->isIntegerTy());
  if (llvm::isa<llvm::UndefValue>(C0)) {
    return llvm::UndefValue::get(dstType);
  }
  llvm::APFloat APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
  uint32_t intVal = int_cast<uint32_t>(APF.bitcastToAPInt().getZExtValue());
  intVal = ConvertFloat(intVal, semHF, semHF8, roundingMode, saturate);
  return llvm::ConstantInt::get(dstType, intVal);
}

llvm::Constant *IGCConstantFolder::CreateBF8ToHF(llvm::Constant *C0) const {
  llvm::Type *halfTy = llvm::Type::getHalfTy(C0->getContext());
  if (llvm::isa<llvm::UndefValue>(C0)) {
    return llvm::UndefValue::get(halfTy);
  }
  uint32_t intVal = int_cast<uint32_t>(llvm::cast<llvm::ConstantInt>(C0)->getZExtValue());
  intVal = ConvertFloat(intVal, semBF8, semHF);
  llvm::APFloat halfVal(halfTy->getFltSemantics(), llvm::APInt(16, intVal));
  return llvm::ConstantFP::get(halfTy, halfVal);
}

llvm::Constant *IGCConstantFolder::CreateHF8ToHF(llvm::Constant *C0) const {
  llvm::Type *halfTy = llvm::Type::getHalfTy(C0->getContext());
  if (llvm::isa<llvm::UndefValue>(C0)) {
    return llvm::UndefValue::get(halfTy);
  }
  uint32_t intVal = int_cast<uint32_t>(llvm::cast<llvm::ConstantInt>(C0)->getZExtValue());
  intVal = ConvertFloat(intVal, semHF8, semHF);
  llvm::APFloat halfVal(halfTy->getFltSemantics(), llvm::APInt(16, intVal));
  return llvm::ConstantFP::get(halfTy, halfVal);
}

llvm::Constant *IGCConstantFolder::CreateUbfe(llvm::Constant *C0, llvm::Constant *C1, llvm::Constant *C2) const {
  if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1) || llvm::isa<llvm::UndefValue>(C2)) {
    return nullptr;
  }
  llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0); // width
  llvm::ConstantInt *CI1 = llvm::cast<llvm::ConstantInt>(C1); // offset
  llvm::ConstantInt *CI2 = llvm::cast<llvm::ConstantInt>(C2); // the number to shift
  uint32_t width = int_cast<uint32_t>(CI0->getZExtValue());
  uint32_t offset = int_cast<uint32_t>(CI1->getZExtValue());
  uint32_t bitwidth = CI2->getType()->getBitWidth();

  llvm::APInt result = CI2->getValue();
  if ((width + offset) < bitwidth) {
    result = result.shl(bitwidth - (width + offset));
    result = result.lshr(bitwidth - width);
  } else {
    // For HW only bits 0..4 in offset value are relevant
    result = result.lshr(offset & BITMASK_RANGE(0, 4));
  }
  return llvm::ConstantInt::get(C0->getContext(), result);
}

llvm::Constant *IGCConstantFolder::CreateIbfe(llvm::Constant *C0, llvm::Constant *C1, llvm::Constant *C2) const {
  if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1) || llvm::isa<llvm::UndefValue>(C2) ||
      C2->getType()->getIntegerBitWidth() != 32) {
    return nullptr;
  }
  llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0); // width
  llvm::ConstantInt *CI1 = llvm::cast<llvm::ConstantInt>(C1); // offset
  llvm::ConstantInt *CI2 = llvm::cast<llvm::ConstantInt>(C2); // the number to shift
  uint32_t width = int_cast<uint32_t>(CI0->getZExtValue());
  uint32_t offset = int_cast<uint32_t>(CI1->getZExtValue());
  uint32_t bitwidth = CI2->getType()->getBitWidth();

  llvm::APInt result = CI2->getValue();
  if ((width + offset) < bitwidth) {
    result = result.shl(bitwidth - (width + offset));
    result = result.ashr(bitwidth - width);
  } else {
    // For HW only bits 0..4 in offset value are relevant
    result = result.ashr(offset & BITMASK_RANGE(0, 4));
  }
  return llvm::ConstantInt::get(C0->getContext(), result);
}

llvm::Constant *IGCConstantFolder::CreateCanonicalize(llvm::Constant *C0, bool flushDenorms /*= true*/) const {
  if (llvm::isa<llvm::UndefValue>(C0)) {
    return C0;
  }
  auto APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
  if (flushDenorms && APF.isDenormal()) {
    APF = llvm::APFloat::getZero(APF.getSemantics(), APF.isNegative());
  }
  return llvm::ConstantFP::get(C0->getContext(), APF);
}

llvm::Constant *IGCConstantFolder::CreateGradient(llvm::Constant *C0) const {
  IGC_ASSERT(nullptr != C0);
  if (llvm::isa<llvm::UndefValue>(C0)) {
    return nullptr;
  }
  IGC_ASSERT(llvm::isa<llvm::ConstantFP>(C0));
  IGC_ASSERT(nullptr != llvm::cast<llvm::ConstantFP>(C0));
  if (llvm::cast<llvm::ConstantFP>(C0)->getValueAPF().isFinite()) {
    IGC_ASSERT(nullptr != C0->getType());
    return llvm::ConstantFP::get(C0->getType(), 0.0f);
  } else {
    // Preserve nan or infinite value
    return C0;
  }
}

llvm::Constant *IGCConstantFolder::CreateFirstBitHi(llvm::Constant *C0) const {
  if (llvm::isa<llvm::UndefValue>(C0)) {
    return nullptr;
  }
  llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0);
  const unsigned fbh = CI0->getValue().countLeadingZeros();
  if (fbh == CI0->getType()->getBitWidth()) {
    return llvm::ConstantInt::get(C0->getType(), -1);
  }
  return llvm::ConstantInt::get(C0->getType(), fbh);
}

llvm::Constant *IGCConstantFolder::CreateFirstBitShi(llvm::Constant *C0) const {
  if (llvm::isa<llvm::UndefValue>(C0)) {
    return nullptr;
  }
  IGC_ASSERT(llvm::isa<llvm::ConstantInt>(C0));
  llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0);
  const uint32_t fbs = CI0->isNegative() ? CI0->getValue().countLeadingOnes() : CI0->getValue().countLeadingZeros();
  if (fbs == CI0->getType()->getBitWidth()) {
    return llvm::ConstantInt::get(C0->getType(), -1);
  }
  return llvm::ConstantInt::get(C0->getType(), fbs);
}

llvm::Constant *IGCConstantFolder::CreateFirstBitLo(llvm::Constant *C0) const {
  if (llvm::isa<llvm::UndefValue>(C0)) {
    return nullptr;
  }
  IGC_ASSERT(llvm::isa<llvm::ConstantInt>(C0));
  llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0);
  const unsigned fbl = CI0->getValue().countTrailingZeros();
  if (fbl == CI0->getType()->getBitWidth()) {
    return llvm::ConstantInt::get(C0->getType(), -1);
  }
  return llvm::ConstantInt::get(C0->getType(), fbl);
}

llvm::Constant *IGCConstantFolder::CreateBfi(llvm::Constant *C0, llvm::Constant *C1, llvm::Constant *C2,
                                             llvm::Constant *C3) const {
  if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1) || llvm::isa<llvm::UndefValue>(C2)) {
    return nullptr;
  }
  llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0); // width
  llvm::ConstantInt *CI1 = llvm::cast<llvm::ConstantInt>(C1); // offset
  llvm::ConstantInt *CI2 = llvm::cast<llvm::ConstantInt>(C2); // the number the bits are taken from.
  llvm::ConstantInt *CI3 = llvm::cast<llvm::ConstantInt>(C3); // the number with bits to be replaced.
  uint32_t width = int_cast<uint32_t>(CI0->getZExtValue());
  uint32_t offset = int_cast<uint32_t>(CI1->getZExtValue());
  uint32_t bitwidth = CI2->getType()->getBitWidth();
  llvm::APInt bitmask = llvm::APInt::getBitsSet(bitwidth, offset, offset + width);
  llvm::APInt result = CI2->getValue();
  result = result.shl(offset);
  result = (result & bitmask) | (CI3->getValue() & ~bitmask);
  return llvm::ConstantInt::get(C0->getContext(), result);
}

llvm::Constant *IGCConstantFolder::CreateBfrev(llvm::Constant *C0) const {
  if (llvm::isa<llvm::UndefValue>(C0)) {
    return nullptr;
  }
  llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0);
  llvm::APInt result = CI0->getValue();
  result = result.reverseBits();
  return llvm::ConstantInt::get(C0->getContext(), result);
}

} // namespace IGC