1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2020-2025 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "common/LLVMWarningsPush.hpp"
#include "llvm/ADT/APFloat.h"
#include "common/LLVMWarningsPop.hpp"
#include "common/IGCConstantFolder.h"
#include <cfenv>
#include "Probe/Assertion.h"
#include "Types.hpp"
#include "iStdLib/utility.h"
#include <cmath>
namespace IGC {
llvm::Constant *IGCConstantFolder::CreateGradientXFine(llvm::Constant *C0) const { return CreateGradient(C0); }
llvm::Constant *IGCConstantFolder::CreateGradientYFine(llvm::Constant *C0) const { return CreateGradient(C0); }
llvm::Constant *IGCConstantFolder::CreateGradientX(llvm::Constant *C0) const { return CreateGradient(C0); }
llvm::Constant *IGCConstantFolder::CreateGradientY(llvm::Constant *C0) const { return CreateGradient(C0); }
llvm::Constant *IGCConstantFolder::CreateRsq(llvm::Constant *C0) const {
IGC_ASSERT(nullptr != C0);
if (llvm::isa<llvm::UndefValue>(C0)) {
return nullptr;
}
IGC_ASSERT(llvm::isa<llvm::ConstantFP>(C0));
IGC_ASSERT(nullptr != llvm::cast<llvm::ConstantFP>(C0));
IGC_ASSERT(nullptr != C0->getType());
auto APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
double C0value = C0->getType()->isFloatTy() ? static_cast<double>(APF.convertToFloat()) : APF.convertToDouble();
if (C0value > 0.0) {
const double sq = sqrt(C0value);
IGC_ASSERT(sq);
return llvm::ConstantFP::get(C0->getType(), 1.0 / sq);
} else {
return nullptr;
}
}
llvm::Constant *IGCConstantFolder::CreateRoundNE(llvm::Constant *C0) const {
IGC_ASSERT(nullptr != C0);
if (llvm::isa<llvm::UndefValue>(C0)) {
return nullptr;
}
IGC_ASSERT(llvm::isa<llvm::ConstantFP>(C0));
IGC_ASSERT(nullptr != llvm::cast<llvm::ConstantFP>(C0));
IGC_ASSERT(nullptr != C0->getType());
auto APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
double C0value = C0->getType()->isFloatTy() ? static_cast<double>(APF.convertToFloat()) : APF.convertToDouble();
const int currentRoundingMode = std::fegetround();
// Round to nearest, ties round to even.
std::fesetround(FE_TONEAREST);
double result = std::rint(C0value);
std::fesetround(currentRoundingMode);
return llvm::ConstantFP::get(C0->getType(), result);
}
llvm::Constant *IGCConstantFolder::CreateFSat(llvm::Constant *C0) const {
IGC_ASSERT(nullptr != C0);
if (llvm::isa<llvm::UndefValue>(C0))
return nullptr;
IGC_ASSERT(llvm::isa<llvm::ConstantFP>(C0));
IGC_ASSERT(nullptr != llvm::cast<llvm::ConstantFP>(C0));
IGC_ASSERT(nullptr != C0->getType());
auto APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
const llvm::APFloat &zero = llvm::cast<llvm::ConstantFP>(llvm::ConstantFP::get(C0->getType(), 0.))->getValueAPF();
const llvm::APFloat &One = llvm::cast<llvm::ConstantFP>(llvm::ConstantFP::get(C0->getType(), 1.))->getValueAPF();
return llvm::ConstantFP::get(C0->getContext(), llvm::minnum(One, llvm::maxnum(zero, APF)));
}
llvm::Constant *IGCConstantFolder::CreateFAdd(llvm::Constant *C0, llvm::Constant *C1,
llvm::APFloatBase::roundingMode roundingMode) const {
if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1)) {
return IGCLLVM::ConstantFolderBase::CreateBinOp(llvm::Instruction::FAdd, C0, C1);
}
llvm::ConstantFP *CFP0 = llvm::cast<llvm::ConstantFP>(C0);
llvm::ConstantFP *CFP1 = llvm::cast<llvm::ConstantFP>(C1);
llvm::APFloat firstOperand = CFP0->getValueAPF();
llvm::APFloat secondOperand = CFP1->getValueAPF();
llvm::APFloat::opStatus status = firstOperand.add(secondOperand, roundingMode);
if (llvm::APFloat::opInvalidOp != status) {
return llvm::ConstantFP::get(C0->getContext(), firstOperand);
} else {
return nullptr;
}
}
llvm::Constant *IGCConstantFolder::CreateFMul(llvm::Constant *C0, llvm::Constant *C1,
llvm::APFloatBase::roundingMode roundingMode) const {
if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1)) {
return IGCLLVM::ConstantFolderBase::CreateBinOp(llvm::Instruction::FMul, C0, C1);
}
llvm::ConstantFP *CFP0 = llvm::cast<llvm::ConstantFP>(C0);
llvm::ConstantFP *CFP1 = llvm::cast<llvm::ConstantFP>(C1);
llvm::APFloat firstOperand = CFP0->getValueAPF();
llvm::APFloat secondOperand = CFP1->getValueAPF();
llvm::APFloat::opStatus status = firstOperand.multiply(secondOperand, roundingMode);
if (llvm::APFloat::opInvalidOp != status) {
return llvm::ConstantFP::get(C0->getContext(), firstOperand);
} else {
return nullptr;
}
}
llvm::Constant *IGCConstantFolder::CreateFPTrunc(llvm::Constant *C0, llvm::Type *dstType,
llvm::APFloatBase::roundingMode roundingMode) const {
if (llvm::isa<llvm::UndefValue>(C0)) {
return IGCLLVM::ConstantFolderBase::CreateFPCast(C0, dstType);
}
llvm::APFloat APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
bool losesInfo = false;
llvm::APFloat::opStatus status = APF.convert(dstType->getFltSemantics(), roundingMode, &losesInfo);
if (llvm::APFloat::opInvalidOp != status) {
return llvm::ConstantFP::get(C0->getContext(), APF);
} else {
return nullptr;
}
}
// Helper structure to describe a floating point type
// See llvm.org/doxygen/APFloat_8cpp_source.html
struct FloatSemantics {
/* The largest E such that 2^E is representable; this matches the
definition of IEEE 754. */
int32_t maxExponent;
/* The smallest E such that 2^E is a normalized number; this
matches the definition of IEEE 754. */
int32_t minExponent;
/* Number of bits in the significand. This includes the integer
bit. */
unsigned int precision;
/* Number of bits actually used in the semantics. */
unsigned int sizeInBits;
/* Has no Inf, only NaN */
bool hasNoInf = false;
};
// IEEE binary16 format
static constexpr FloatSemantics semHF = {15, -14, 11, 16};
// Note: LLVM 16+ supports E5M2 and E4M3 types in APFloat
// E5M2 format
static constexpr FloatSemantics semBF8 = {15, -14, 3, 8};
// E4M3 format, has no Inf
static constexpr FloatSemantics semHF8 = {8, -6, 4, 8, true};
inline uint32_t Round(uint32_t man, uint32_t numLostBits, bool isNegative, uint32_t roundingMode) {
uint32_t lostBitsMask = BITMASK(numLostBits);
uint32_t lostBits = man & lostBitsMask;
uint32_t lostBitsHalfMinusOne = BITMASK(numLostBits - 1);
uint32_t tieToEvenBias = (man & BIT(numLostBits)) >> numLostBits;
switch (roundingMode) {
case ROUND_TO_NEAREST_EVEN:
man += lostBitsHalfMinusOne + tieToEvenBias;
man >>= numLostBits;
break;
case ROUND_TO_NEGATIVE:
man >>= numLostBits;
if (lostBits != 0 && isNegative) {
man += 1;
}
break;
case ROUND_TO_POSITIVE:
man >>= numLostBits;
if (lostBits != 0 && !isNegative) {
man += 1;
}
break;
case ROUND_TO_ZERO:
man >>= numLostBits;
break;
default:
man >>= numLostBits;
IGC_ASSERT_MESSAGE(0, "Unsupported rounding mode");
break;
}
return man;
}
inline uint32_t ConvertFloat(uint32_t intVal, const FloatSemantics &srcSem, const FloatSemantics &dstSem,
uint32_t roundingMode = ROUND_TO_NEAREST_EVEN, bool saturate = false) {
uint32_t srcNumManBits = srcSem.precision - 1;
uint32_t srcNumExpBits = srcSem.sizeInBits - srcNumManBits - 1;
uint32_t dstNumManBits = dstSem.precision - 1;
uint32_t dstNumExpBits = dstSem.sizeInBits - dstNumManBits - 1;
uint32_t expBits = (intVal >> srcNumManBits) & BITMASK(srcNumExpBits);
uint32_t manBits = intVal & BITMASK(srcNumManBits);
bool isNegative = (intVal & BIT(srcSem.sizeInBits - 1)) != 0;
bool isPositive = !isNegative;
bool isDenorm = expBits == 0 && manBits > 0;
bool isZero = expBits == 0 && manBits == 0;
bool isInf = srcSem.hasNoInf ? false : (expBits == BITMASK(srcNumExpBits) && manBits == 0);
bool isNan = srcSem.hasNoInf ? ((BITMASK(srcSem.sizeInBits - 1) & intVal) == BITMASK(srcSem.sizeInBits - 1))
: (expBits == BITMASK(srcNumExpBits) && manBits != 0);
int32_t srcExpBias = 1 - srcSem.minExponent;
int32_t dstExpBias = 1 - dstSem.minExponent;
// Calculate the exponent and mantissa
int32_t exp = isDenorm ? srcSem.minExponent : (int_cast<int32_t>(expBits) - srcExpBias);
// Add the implicit leading 1 for normal numbers.
int32_t man = (isZero || isDenorm) ? manBits : (manBits | BIT(srcNumManBits));
// Calculate special values for the destination format.
uint32_t signVal = isNegative ? BIT(dstSem.sizeInBits - 1) : 0;
uint32_t nanVal = signVal | BITMASK(dstSem.sizeInBits - 1);
uint32_t infVal = signVal | (BITMASK(dstNumExpBits) << dstNumManBits);
uint32_t maxVal = signVal | (BITMASK(dstSem.sizeInBits - 1) & ~BIT(dstNumManBits));
if (dstSem.hasNoInf) {
infVal = nanVal;
// E4M3 max normal = S.1111.110
maxVal = signVal | (BITMASK(dstSem.sizeInBits - 1) & ~1);
}
// Handle special cases
if (isZero) {
return signVal;
}
if (isInf) {
return infVal;
}
if (isNan) {
return nanVal;
}
// Normalize the mantissa
while ((man & BIT(srcNumManBits)) == 0) {
man <<= 1;
exp--;
}
if (exp < dstSem.minExponent) {
if (dstSem.minExponent - exp - 1 > int_cast<int32_t>(dstNumManBits)) {
// Underflow
return signVal;
}
// Denorm
int32_t dstManLsb = srcNumManBits - dstNumManBits + dstSem.minExponent - exp;
if (dstManLsb > 0) {
man = Round(man, dstManLsb, isNegative, roundingMode);
} else {
man <<= -dstManLsb;
}
return signVal | man;
}
// Remove the implicit leading 1.
man &= ~BIT(srcNumManBits);
if (dstNumManBits < srcNumManBits) {
int32_t dstManLsb = srcNumManBits - dstNumManBits;
man = Round(man, dstManLsb, isNegative, roundingMode);
// Mantissa overflow
if ((man & BIT(dstNumManBits)) != 0) {
man = 0;
exp++;
}
} else {
man <<= (dstNumManBits - srcNumManBits);
}
// Overflow
if (exp > dstSem.maxExponent) {
if (roundingMode == ROUND_TO_NEGATIVE && isPositive) {
return maxVal;
} else if (roundingMode == ROUND_TO_POSITIVE && isNegative) {
return maxVal;
} else if (saturate) {
return maxVal;
}
return infVal;
}
expBits = (exp + dstExpBias) << dstNumManBits;
if (saturate && dstSem.hasNoInf && (expBits | man) > maxVal) {
return maxVal;
}
return signVal | expBits | man;
}
llvm::Constant *IGCConstantFolder::CreateHFToBF8Trunc(llvm::Constant *C0, llvm::Type *dstType, uint32_t roundingMode,
bool saturate) const {
IGC_ASSERT(dstType->isIntegerTy());
if (llvm::isa<llvm::UndefValue>(C0)) {
return llvm::UndefValue::get(dstType);
}
llvm::APFloat APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
uint32_t intVal = int_cast<uint32_t>(APF.bitcastToAPInt().getZExtValue());
intVal = ConvertFloat(intVal, semHF, semBF8, roundingMode, saturate);
return llvm::ConstantInt::get(dstType, intVal);
}
llvm::Constant *IGCConstantFolder::CreateHFToHF8Trunc(llvm::Constant *C0, llvm::Type *dstType, uint32_t roundingMode,
bool saturate) const {
IGC_ASSERT(dstType->isIntegerTy());
if (llvm::isa<llvm::UndefValue>(C0)) {
return llvm::UndefValue::get(dstType);
}
llvm::APFloat APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
uint32_t intVal = int_cast<uint32_t>(APF.bitcastToAPInt().getZExtValue());
intVal = ConvertFloat(intVal, semHF, semHF8, roundingMode, saturate);
return llvm::ConstantInt::get(dstType, intVal);
}
llvm::Constant *IGCConstantFolder::CreateBF8ToHF(llvm::Constant *C0) const {
llvm::Type *halfTy = llvm::Type::getHalfTy(C0->getContext());
if (llvm::isa<llvm::UndefValue>(C0)) {
return llvm::UndefValue::get(halfTy);
}
uint32_t intVal = int_cast<uint32_t>(llvm::cast<llvm::ConstantInt>(C0)->getZExtValue());
intVal = ConvertFloat(intVal, semBF8, semHF);
llvm::APFloat halfVal(halfTy->getFltSemantics(), llvm::APInt(16, intVal));
return llvm::ConstantFP::get(halfTy, halfVal);
}
llvm::Constant *IGCConstantFolder::CreateHF8ToHF(llvm::Constant *C0) const {
llvm::Type *halfTy = llvm::Type::getHalfTy(C0->getContext());
if (llvm::isa<llvm::UndefValue>(C0)) {
return llvm::UndefValue::get(halfTy);
}
uint32_t intVal = int_cast<uint32_t>(llvm::cast<llvm::ConstantInt>(C0)->getZExtValue());
intVal = ConvertFloat(intVal, semHF8, semHF);
llvm::APFloat halfVal(halfTy->getFltSemantics(), llvm::APInt(16, intVal));
return llvm::ConstantFP::get(halfTy, halfVal);
}
llvm::Constant *IGCConstantFolder::CreateUbfe(llvm::Constant *C0, llvm::Constant *C1, llvm::Constant *C2) const {
if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1) || llvm::isa<llvm::UndefValue>(C2)) {
return nullptr;
}
llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0); // width
llvm::ConstantInt *CI1 = llvm::cast<llvm::ConstantInt>(C1); // offset
llvm::ConstantInt *CI2 = llvm::cast<llvm::ConstantInt>(C2); // the number to shift
uint32_t width = int_cast<uint32_t>(CI0->getZExtValue());
uint32_t offset = int_cast<uint32_t>(CI1->getZExtValue());
uint32_t bitwidth = CI2->getType()->getBitWidth();
llvm::APInt result = CI2->getValue();
if ((width + offset) < bitwidth) {
result = result.shl(bitwidth - (width + offset));
result = result.lshr(bitwidth - width);
} else {
// For HW only bits 0..4 in offset value are relevant
result = result.lshr(offset & BITMASK_RANGE(0, 4));
}
return llvm::ConstantInt::get(C0->getContext(), result);
}
llvm::Constant *IGCConstantFolder::CreateIbfe(llvm::Constant *C0, llvm::Constant *C1, llvm::Constant *C2) const {
if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1) || llvm::isa<llvm::UndefValue>(C2) ||
C2->getType()->getIntegerBitWidth() != 32) {
return nullptr;
}
llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0); // width
llvm::ConstantInt *CI1 = llvm::cast<llvm::ConstantInt>(C1); // offset
llvm::ConstantInt *CI2 = llvm::cast<llvm::ConstantInt>(C2); // the number to shift
uint32_t width = int_cast<uint32_t>(CI0->getZExtValue());
uint32_t offset = int_cast<uint32_t>(CI1->getZExtValue());
uint32_t bitwidth = CI2->getType()->getBitWidth();
llvm::APInt result = CI2->getValue();
if ((width + offset) < bitwidth) {
result = result.shl(bitwidth - (width + offset));
result = result.ashr(bitwidth - width);
} else {
// For HW only bits 0..4 in offset value are relevant
result = result.ashr(offset & BITMASK_RANGE(0, 4));
}
return llvm::ConstantInt::get(C0->getContext(), result);
}
llvm::Constant *IGCConstantFolder::CreateCanonicalize(llvm::Constant *C0, bool flushDenorms /*= true*/) const {
if (llvm::isa<llvm::UndefValue>(C0)) {
return C0;
}
auto APF = llvm::cast<llvm::ConstantFP>(C0)->getValueAPF();
if (flushDenorms && APF.isDenormal()) {
APF = llvm::APFloat::getZero(APF.getSemantics(), APF.isNegative());
}
return llvm::ConstantFP::get(C0->getContext(), APF);
}
llvm::Constant *IGCConstantFolder::CreateGradient(llvm::Constant *C0) const {
IGC_ASSERT(nullptr != C0);
if (llvm::isa<llvm::UndefValue>(C0)) {
return nullptr;
}
IGC_ASSERT(llvm::isa<llvm::ConstantFP>(C0));
IGC_ASSERT(nullptr != llvm::cast<llvm::ConstantFP>(C0));
if (llvm::cast<llvm::ConstantFP>(C0)->getValueAPF().isFinite()) {
IGC_ASSERT(nullptr != C0->getType());
return llvm::ConstantFP::get(C0->getType(), 0.0f);
} else {
// Preserve nan or infinite value
return C0;
}
}
llvm::Constant *IGCConstantFolder::CreateFirstBitHi(llvm::Constant *C0) const {
if (llvm::isa<llvm::UndefValue>(C0)) {
return nullptr;
}
llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0);
const unsigned fbh = CI0->getValue().countLeadingZeros();
if (fbh == CI0->getType()->getBitWidth()) {
return llvm::ConstantInt::get(C0->getType(), -1);
}
return llvm::ConstantInt::get(C0->getType(), fbh);
}
llvm::Constant *IGCConstantFolder::CreateFirstBitShi(llvm::Constant *C0) const {
if (llvm::isa<llvm::UndefValue>(C0)) {
return nullptr;
}
IGC_ASSERT(llvm::isa<llvm::ConstantInt>(C0));
llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0);
const uint32_t fbs = CI0->isNegative() ? CI0->getValue().countLeadingOnes() : CI0->getValue().countLeadingZeros();
if (fbs == CI0->getType()->getBitWidth()) {
return llvm::ConstantInt::get(C0->getType(), -1);
}
return llvm::ConstantInt::get(C0->getType(), fbs);
}
llvm::Constant *IGCConstantFolder::CreateFirstBitLo(llvm::Constant *C0) const {
if (llvm::isa<llvm::UndefValue>(C0)) {
return nullptr;
}
IGC_ASSERT(llvm::isa<llvm::ConstantInt>(C0));
llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0);
const unsigned fbl = CI0->getValue().countTrailingZeros();
if (fbl == CI0->getType()->getBitWidth()) {
return llvm::ConstantInt::get(C0->getType(), -1);
}
return llvm::ConstantInt::get(C0->getType(), fbl);
}
llvm::Constant *IGCConstantFolder::CreateBfi(llvm::Constant *C0, llvm::Constant *C1, llvm::Constant *C2,
llvm::Constant *C3) const {
if (llvm::isa<llvm::UndefValue>(C0) || llvm::isa<llvm::UndefValue>(C1) || llvm::isa<llvm::UndefValue>(C2)) {
return nullptr;
}
llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0); // width
llvm::ConstantInt *CI1 = llvm::cast<llvm::ConstantInt>(C1); // offset
llvm::ConstantInt *CI2 = llvm::cast<llvm::ConstantInt>(C2); // the number the bits are taken from.
llvm::ConstantInt *CI3 = llvm::cast<llvm::ConstantInt>(C3); // the number with bits to be replaced.
uint32_t width = int_cast<uint32_t>(CI0->getZExtValue());
uint32_t offset = int_cast<uint32_t>(CI1->getZExtValue());
uint32_t bitwidth = CI2->getType()->getBitWidth();
llvm::APInt bitmask = llvm::APInt::getBitsSet(bitwidth, offset, offset + width);
llvm::APInt result = CI2->getValue();
result = result.shl(offset);
result = (result & bitmask) | (CI3->getValue() & ~bitmask);
return llvm::ConstantInt::get(C0->getContext(), result);
}
llvm::Constant *IGCConstantFolder::CreateBfrev(llvm::Constant *C0) const {
if (llvm::isa<llvm::UndefValue>(C0)) {
return nullptr;
}
llvm::ConstantInt *CI0 = llvm::cast<llvm::ConstantInt>(C0);
llvm::APInt result = CI0->getValue();
result = result.reverseBits();
return llvm::ConstantInt::get(C0->getContext(), result);
}
} // namespace IGC
|