File: zebin_builder.cpp

package info (click to toggle)
intel-graphics-compiler2 2.18.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 107,080 kB
  • sloc: cpp: 807,289; lisp: 287,855; ansic: 16,414; python: 4,004; yacc: 2,588; lex: 1,666; pascal: 313; sh: 186; makefile: 35
file content (921 lines) | stat: -rw-r--r-- 42,903 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
/*========================== begin_copyright_notice ============================

Copyright (C) 2020-2022 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "zebin_builder.hpp"

#include "Compiler/CodeGenPublic.h"

#include "common/LLVMWarningsPush.hpp"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"

#include <string>

using namespace IGC;
using namespace iOpenCL;
using namespace zebin;
using namespace CLElfLib; // ElfReader related typedefs
using namespace llvm;

ZEBinaryBuilder::ZEBinaryBuilder(const PLATFORM plat, bool is64BitPointer, const IGC::SOpenCLProgramInfo &programInfo,
                                 const uint8_t *spvData, uint32_t spvSize, const uint8_t *metricsData,
                                 uint32_t metricsSize, const uint8_t *buildOptions, uint32_t buildOptionsSize)
    : mPlatform(plat), mBuilder(is64BitPointer) {
  G6HWC::InitializeCapsGen8(&mHWCaps);

  // FIXME: Most fields leaves as 0
  TargetMetadata metadata;
  metadata.generatorSpecificFlags = TargetMetadata::GeneratorSpecificFlags::NONE;
  metadata.minHwRevisionId = plat.usRevId;
  metadata.maxHwRevisionId = plat.usRevId;
  metadata.generatorId = TargetMetadata::GeneratorId::IGC;
  mBuilder.setTargetMetadata(metadata);

  addProgramScopeInfo(programInfo);

  if (spvData != nullptr)
    addSPIRV(spvData, spvSize);

  if (buildOptions != nullptr && buildOptionsSize)
    addMiscInfoSection("buildOptions", buildOptions, buildOptionsSize);

  // Add metrics section to zeBinary regardless of metrics presence,
  // i.e. if there is no metrics data then an empty section will be added.
  addMetrics(metricsData, metricsSize);
}

void ZEBinaryBuilder::setProductFamily(PRODUCT_FAMILY value) { mBuilder.setProductFamily(value); }

void ZEBinaryBuilder::setGfxCoreFamily(GFXCORE_FAMILY value) { mBuilder.setGfxCoreFamily(value); }

void ZEBinaryBuilder::setVISAABIVersion(unsigned int ver) { mBuilder.setVISAABIVersion(ver); }

void ZEBinaryBuilder::setGmdID(GFX_GMD_ID value) { mBuilder.setGmdID(value); }

void ZEBinaryBuilder::createKernel(const char *rawIsaBinary, unsigned int rawIsaBinarySize,
                                   const SOpenCLKernelInfo &annotations,
                                   const IGC::SOpenCLKernelCostExpInfo &costExpAnnotation, const uint32_t grfSize,
                                   const std::vector<NamedVISAAsm> &visaasm) {
  ZEELFObjectBuilder::SectionID textID = addKernelBinary(annotations.m_kernelName, rawIsaBinary, rawIsaBinarySize);
  addKernelSymbols(textID, annotations);
  addKernelRelocations(textID, annotations);

  // zeinfo kernels
  zeInfoKernel &zeKernel = mZEInfoBuilder.createKernel(annotations.m_kernelName);
  addKernelExecEnv(annotations, zeKernel);
  addUserAttributes(annotations, zeKernel);
  addKernelExperimentalProperties(annotations, zeKernel);
  if (annotations.m_threadPayload.HasLocalIDx || annotations.m_threadPayload.HasLocalIDy ||
      annotations.m_threadPayload.HasLocalIDz) {
    addLocalIds(annotations.m_executionEnvironment.CompiledSIMDSize, grfSize, annotations.m_threadPayload.HasLocalIDx,
                annotations.m_threadPayload.HasLocalIDy, annotations.m_threadPayload.HasLocalIDz, zeKernel);
  }
  addPayloadArgsAndBTI(annotations, zeKernel);
  addInlineSamplers(annotations, zeKernel);
  addMemoryBuffer(annotations, zeKernel);

  // zeinfo kernels_misc_info
  if (hasKernelMiscInfo(annotations)) {
    zeInfoKernelMiscInfo &kernelMisc = mZEInfoBuilder.createKernelMiscInfo(annotations.m_kernelName);
    addKernelArgInfo(annotations, kernelMisc);
  }

  if (hasKernelCostInfo(costExpAnnotation)) {
    zeInfoKernelCostInfo &kernelCost = mZEInfoBuilder.createKernelCostInfo(annotations.m_kernelName);
    addKernelCostInfo(costExpAnnotation, kernelCost);
  }

  addGTPinInfo(annotations);
  addFunctionAttrs(annotations);
  for (auto &&[name, visa] : visaasm)
    addKernelVISAAsm(name, visa);
}

void ZEBinaryBuilder::addGlobalHostAccessInfo(const SOpenCLProgramInfo &annotations) {
  for (auto &info : annotations.m_zebinGlobalHostAccessTable) {
    mZEInfoBuilder.addGlobalHostAccessSymbol(info.device_name, info.host_name);
  }
}

void ZEBinaryBuilder::addGTPinInfo(const IGC::SOpenCLKernelInfo &annotations) {
  const IGC::SKernelProgram *program = &(annotations.m_kernelProgram);
  const SProgramOutput *output = nullptr;
  switch (annotations.m_executionEnvironment.CompiledSIMDSize) {
  case 1:
    output = &(program->simd1);
    break;
  case 8:
    output = &(program->simd8);
    break;
  case 16:
    output = &(program->simd16);
    break;
  case 32:
    output = &(program->simd32);
    break;
  default:
    IGC_ASSERT(output != nullptr);
    break;
  }

  uint8_t *buffer = (uint8_t *)output->m_gtpinBuffer;
  uint32_t size = output->m_gtpinBufferSize;
  if (buffer != nullptr && size)
    mBuilder.addSectionGTPinInfo(annotations.m_kernelName, buffer, size);
  for (auto &funcGTPin : output->m_FuncGTPinInfoList) {
    buffer = (uint8_t *)funcGTPin.buffer;
    size = funcGTPin.bufferSize;
    if (buffer != nullptr && size)
      mBuilder.addSectionGTPinInfo(funcGTPin.name, buffer, size);
  }
}

void ZEBinaryBuilder::addFunctionAttrs(const IGC::SOpenCLKernelInfo &annotations) {
  // get function attribute list from the current process SKernelProgram
  auto funcAttrs = [](int simdSize, const IGC::SKernelProgram &program) {
    if (simdSize == 8)
      return program.simd8.m_funcAttrs;
    else if (simdSize == 16)
      return program.simd16.m_funcAttrs;
    else if (simdSize == 32)
      return program.simd32.m_funcAttrs;
    else
      return program.simd1.m_funcAttrs;
  }(annotations.m_executionEnvironment.CompiledSIMDSize, annotations.m_kernelProgram);

  for (auto &funcAttr : funcAttrs) {
    if (!funcAttr.f_isKernel && funcAttr.f_isExternal) {
      zeInfoFunction &zeFunction = mZEInfoBuilder.createFunction(funcAttr.f_name);
      addFunctionExecEnv(annotations, funcAttr, zeFunction);
    }
  }
}

void ZEBinaryBuilder::addProgramScopeInfo(const IGC::SOpenCLProgramInfo &programInfo) {
  addGlobalConstants(programInfo);
  addGlobals(programInfo);
  addRuntimeSymbols(programInfo);
  addProgramSymbols(programInfo);
  addProgramRelocations(programInfo);
  addGlobalHostAccessInfo(programInfo);
}

void ZEBinaryBuilder::addGlobalConstants(const IGC::SOpenCLProgramInfo &annotations) {
  // General constants: .data.const and .bss.const
  // create a data section for global constant variables
  if (annotations.m_initConstantAnnotation && annotations.m_initConstantAnnotation->AllocSize) {
    auto &ca = annotations.m_initConstantAnnotation;
    // the normal .data.const size
    uint64_t dataSize = ca->InlineData.size();
    // the zero-initialize variables size, the .bss.const size
    uint64_t bssSize = ca->AllocSize - dataSize;
    uint32_t alignment = ca->Alignment;

    if (IGC_IS_FLAG_ENABLED(AllocateZeroInitializedVarsInBss)) {
      zebin::ZEELFObjectBuilder::SectionID normal_id = -1, bss_id = -1;
      if (dataSize) {
        // if the bss section existed, we leave the alignment in bss section.
        // that in our design the entire global buffer is the size of normal section (.const) plus bss section
        // we do not want to add the alignment twice on the both sections
        // Alos set the padding size to 0 that we always put the padding into bss section
        uint32_t normal_alignment = bssSize ? 0 : alignment;
        normal_id = mBuilder.addSectionData("const", (const uint8_t *)ca->InlineData.data(), dataSize, 0,
                                            normal_alignment, /*rodata*/ true);
      }
      if (bssSize) {
        bss_id = mBuilder.addSectionBss("const", bssSize, alignment);
      }

      // set mGlobalConstSectID to normal_id if existed, and bss_id if not.
      // mGlobalConstSectID will be used for symbol section reference. We always refer to normal_id section
      // even if the the symbol is defeind in bss section when normal_id section exists
      mGlobalConstSectID = dataSize ? normal_id : bss_id;
    } else {
      // before runtime can support bss section, we create all 0s in .const.data section by adding
      // bssSize of padding
      IGC_ASSERT_MESSAGE(bssSize == static_cast<uint32_t>(bssSize), ".const.data padding size overflows 32 bits");
      mGlobalConstSectID = mBuilder.addSectionData("const", (const uint8_t *)ca->InlineData.data(), dataSize,
                                                   static_cast<uint32_t>(bssSize), alignment, /*rodata*/ true);
    }
  }

  // String literals for printf: .data.const.string
  if (annotations.m_initConstantStringAnnotation && annotations.m_initConstantStringAnnotation->AllocSize) {
    auto &caString = annotations.m_initConstantStringAnnotation;
    uint32_t dataSize = caString->InlineData.size();
    uint32_t paddingSize = caString->AllocSize - dataSize;
    uint32_t alignment = caString->Alignment;
    mConstStringSectID = mBuilder.addSectionData("const.string", (const uint8_t *)caString->InlineData.data(), dataSize,
                                                 paddingSize, alignment, /*rodata*/ true, /*alloc*/ false);
  }
}

void ZEBinaryBuilder::addGlobals(const IGC::SOpenCLProgramInfo &annotations) {
  if (annotations.m_initGlobalAnnotation == nullptr)
    return;

  // create a data section for global variables
  auto &ca = annotations.m_initGlobalAnnotation;

  if (!ca->AllocSize)
    return;

  uint64_t dataSize = ca->InlineData.size();
  uint64_t bssSize = ca->AllocSize - dataSize;
  uint32_t alignment = ca->Alignment;

  if (IGC_IS_FLAG_ENABLED(AllocateZeroInitializedVarsInBss)) {
    // The .bss.global section size is the bssSize (ca->AllocSize - ca->InlineData.size()),
    // and the normal .data.global size is dataSize (ca->InlineData.size())
    zebin::ZEELFObjectBuilder::SectionID normal_id = -1, bss_id = -1;
    if (dataSize) {
      uint32_t normal_alignment = bssSize ? 0 : alignment;
      normal_id = mBuilder.addSectionData("global", (const uint8_t *)ca->InlineData.data(), dataSize, 0,
                                          normal_alignment, /*rodata*/ false);
    }
    if (bssSize) {
      bss_id = mBuilder.addSectionBss("global", bssSize, alignment);
    }
    // mGlobalSectID is the section id that will be referenced by global symbols.
    // It should be .data.global if existed. If there's only .bss.global section, then all global
    // symbols reference to .bss.global section, so set the mGlobalConstSectID to it
    mGlobalSectID = dataSize ? normal_id : bss_id;
  } else {
    // before runtime can support bss section, we create all 0s in .global.data section by adding
    // bssSize of padding
    IGC_ASSERT_MESSAGE(bssSize == static_cast<uint32_t>(bssSize), ".global.data padding size overflows 32 bits");
    mGlobalSectID = mBuilder.addSectionData("global", (const uint8_t *)ca->InlineData.data(), dataSize,
                                            static_cast<uint32_t>(bssSize), alignment, /*rodata*/ false);
  }
}

void ZEBinaryBuilder::addSPIRV(const uint8_t *data, uint32_t size) { mBuilder.addSectionSpirv("", data, size); }

void ZEBinaryBuilder::addMiscInfoSection(std::string sectName, const uint8_t *data, uint32_t size) {
  mBuilder.addSectionMisc(std::move(sectName), data, size);
}

void ZEBinaryBuilder::addMetrics(const uint8_t *data, uint32_t size) { mBuilder.addSectionMetrics("", data, size); }

ZEELFObjectBuilder::SectionID ZEBinaryBuilder::addKernelBinary(const std::string &kernelName, const char *kernelBinary,
                                                               unsigned int kernelBinarySize) {
  return mBuilder.addSectionText(kernelName, (const uint8_t *)kernelBinary, kernelBinarySize,
                                 mHWCaps.InstructionCachePrefetchSize, sizeof(DWORD));
}

void ZEBinaryBuilder::addPayloadArgsAndBTI(const SOpenCLKernelInfo &annotations, zeInfoKernel &zeinfoKernel) {
  // copy the payload arguments into zeinfoKernel
  zeinfoKernel.payload_arguments.insert(zeinfoKernel.payload_arguments.end(), annotations.m_zePayloadArgs.begin(),
                                        annotations.m_zePayloadArgs.end());

  // copy the bit table into zeinfoKernel
  zeinfoKernel.binding_table_indices.insert(zeinfoKernel.binding_table_indices.end(), annotations.m_zeBTIArgs.begin(),
                                            annotations.m_zeBTIArgs.end());
}

void ZEBinaryBuilder::addInlineSamplers(const SOpenCLKernelInfo &annotations, zeInfoKernel &zeinfoKernel) {
  // copy the inline samplers into zeinfoKernel
  zeinfoKernel.inline_samplers.insert(zeinfoKernel.inline_samplers.end(), annotations.m_zeInlineSamplers.begin(),
                                      annotations.m_zeInlineSamplers.end());
}

void ZEBinaryBuilder::addMemoryBuffer(const IGC::SOpenCLKernelInfo &annotations, zebin::zeInfoKernel &zeinfoKernel) {
  // scracth0 is either
  //  - contains privates and both igc and vISA stack, or
  //  - contains only vISA stack
  uint32_t scratch0 = annotations.m_executionEnvironment.PerThreadScratchSpace;
  // scratch1 is privates on stack
  uint32_t scratch1 = annotations.m_executionEnvironment.PerThreadScratchSpaceSlot1;
  // private_on_global: privates and IGC stack on stateless
  uint32_t private_on_global = annotations.m_executionEnvironment.PerThreadPrivateOnStatelessSize;

  //  single scratch space have everything
  if (scratch0 && !scratch1 && !private_on_global) {
    ZEInfoBuilder::addScratchPerThreadMemoryBuffer(zeinfoKernel.per_thread_memory_buffers,
                                                   PreDefinedAttrGetter::MemBufferUsage::single_space, 0, scratch0);
    return;
  }

  if (scratch0)
    ZEInfoBuilder::addScratchPerThreadMemoryBuffer(zeinfoKernel.per_thread_memory_buffers,
                                                   PreDefinedAttrGetter::MemBufferUsage::spill_fill_space, 0, scratch0);
  if (scratch1)
    ZEInfoBuilder::addScratchPerThreadMemoryBuffer(zeinfoKernel.per_thread_memory_buffers,
                                                   PreDefinedAttrGetter::MemBufferUsage::private_space, 1, scratch1);
  if (private_on_global) {
    ZEInfoBuilder::addPerSIMTThreadGlobalMemoryBuffer(
        zeinfoKernel.per_thread_memory_buffers, PreDefinedAttrGetter::MemBufferUsage::private_space, private_on_global);
    // FIXME: IGC currently generate global buffer with size assume to be per-simt-thread
    // ZEInfoBuilder::addPerThreadMemoryBuffer(zeinfoKernel.per_thread_memory_buffers,
    //    PreDefinedAttrGetter::MemBufferType::global,
    //    PreDefinedAttrGetter::MemBufferUsage::private_space,
    //    private_on_global);
  }
}

uint8_t ZEBinaryBuilder::getSymbolElfType(const vISA::ZESymEntry &sym) {
  switch (sym.s_type) {
  case vISA::GenSymType::S_NOTYPE:
    return llvm::ELF::STT_NOTYPE;

  case vISA::GenSymType::S_UNDEF:
    return llvm::ELF::STT_NOTYPE;

  case vISA::GenSymType::S_FUNC:
  case vISA::GenSymType::S_KERNEL:
    return llvm::ELF::STT_FUNC;

  case vISA::GenSymType::S_GLOBAL_VAR:
  case vISA::GenSymType::S_GLOBAL_VAR_CONST:
  case vISA::GenSymType::S_CONST_SAMPLER:
    return llvm::ELF::STT_OBJECT;
  default:
    break;
  }
  return llvm::ELF::STT_NOTYPE;
}

void ZEBinaryBuilder::addSymbol(const vISA::ZESymEntry &sym, uint8_t binding,
                                ZEELFObjectBuilder::SectionID targetSect) {
  if (sym.s_type == vISA::GenSymType::S_UNDEF)
    targetSect = -1;
  mBuilder.addSymbol(sym.s_name, sym.s_offset, sym.s_size, binding, getSymbolElfType(sym), targetSect);
}

void ZEBinaryBuilder::addRuntimeSymbols(const IGC::SOpenCLProgramInfo &annotations) {
  if (annotations.m_hasCrossThreadOffsetRelocations)
    mBuilder.addSymbol(vISA::CROSS_THREAD_OFF_R0_RELOCATION_NAME, /*addr*/ 0, /*size*/ 0, llvm::ELF::STB_GLOBAL,
                       llvm::ELF::STT_NOTYPE, /*sectionId*/ -1);
  if (annotations.m_hasPerThreadOffsetRelocations)
    mBuilder.addSymbol(vISA::PER_THREAD_OFF_RELOCATION_NAME, /*addr*/ 0, /*size*/ 0, llvm::ELF::STB_GLOBAL,
                       llvm::ELF::STT_NOTYPE, /*sectionId*/ -1);
}

void ZEBinaryBuilder::addProgramSymbols(const IGC::SOpenCLProgramInfo &annotations) {
  const IGC::SOpenCLProgramInfo::ZEBinProgramSymbolTable &symbols = annotations.m_zebinSymbolTable;

  // add symbols defined in global constant section
  IGC_ASSERT(symbols.globalConst.empty() || mGlobalConstSectID != -1);
  for (const auto &sym : symbols.globalConst)
    addSymbol(sym, llvm::ELF::STB_GLOBAL, mGlobalConstSectID);

  // add symbols defined in global string constant section
  IGC_ASSERT(symbols.globalStringConst.empty() || mConstStringSectID != -1);
  for (const auto &sym : symbols.globalStringConst)
    addSymbol(sym, llvm::ELF::STB_GLOBAL, mConstStringSectID);

  // add symbols defined in global section, mGlobalSectID may be unallocated
  // at this point if symbols are undef
  for (const auto &sym : symbols.global)
    addSymbol(sym, llvm::ELF::STB_GLOBAL, mGlobalSectID);
}

void ZEBinaryBuilder::addKernelSymbols(ZEELFObjectBuilder::SectionID kernelSectId,
                                       const IGC::SOpenCLKernelInfo &annotations) {
  // get symbol list from the current process SKernelProgram
  auto symbols = [](int simdSize, const IGC::SKernelProgram &program) {
    if (simdSize == 8)
      return program.simd8.m_symbols;
    else if (simdSize == 16)
      return program.simd16.m_symbols;
    else if (simdSize == 32)
      return program.simd32.m_symbols;
    else
      return program.simd1.m_symbols;
  }(annotations.m_executionEnvironment.CompiledSIMDSize, annotations.m_kernelProgram);

  // add local symbols of this kernel binary
  for (const auto &sym : symbols.local) {
    IGC_ASSERT(sym.s_type != vISA::GenSymType::S_UNDEF);
    addSymbol(sym, llvm::ELF::STB_LOCAL, kernelSectId);
  }

  // add function symbols defined in kernel text
  for (const auto &sym : symbols.function)
    addSymbol(sym, llvm::ELF::STB_GLOBAL, kernelSectId);

  // we do not support sampler symbols now
  IGC_ASSERT(symbols.sampler.empty());
}

void ZEBinaryBuilder::addProgramRelocations(const IGC::SOpenCLProgramInfo &annotations) {
  const IGC::SOpenCLProgramInfo::ZEBinRelocTable &relocs = annotations.m_GlobalPointerAddressRelocAnnotation;

  // FIXME: For r_type, zebin::R_TYPE_ZEBIN should have the same enum value as visa::GenRelocType.
  // Take the value directly
  IGC_ASSERT(relocs.globalConstReloc.empty() || mGlobalConstSectID != -1);
  for (const auto &reloc : relocs.globalConstReloc)
    mBuilder.addRelRelocation(reloc.r_offset, reloc.r_symbol, static_cast<zebin::R_TYPE_ZEBIN>(reloc.r_type),
                              mGlobalConstSectID);

  IGC_ASSERT(relocs.globalReloc.empty() || mGlobalSectID != -1);
  for (const auto &reloc : relocs.globalReloc)
    mBuilder.addRelRelocation(reloc.r_offset, reloc.r_symbol, static_cast<zebin::R_TYPE_ZEBIN>(reloc.r_type),
                              mGlobalSectID);
}

void ZEBinaryBuilder::addKernelRelocations(ZEELFObjectBuilder::SectionID targetId,
                                           const IGC::SOpenCLKernelInfo &annotations) {
  // get relocation list from the current process SKernelProgram
  auto relocs = [](int simdSize, const IGC::SKernelProgram &program) {
    if (simdSize == 8)
      return program.simd8.m_relocs;
    else if (simdSize == 16)
      return program.simd16.m_relocs;
    else if (simdSize == 32)
      return program.simd32.m_relocs;
    else
      return program.simd1.m_relocs;
  }(annotations.m_executionEnvironment.CompiledSIMDSize, annotations.m_kernelProgram);

  // FIXME: For r_type, zebin::R_TYPE_ZEBIN should have the same enum value as visa::GenRelocType.
  // Take the value directly
  if (!relocs.empty())
    for (const auto &reloc : relocs)
      mBuilder.addRelRelocation(reloc.r_offset, reloc.r_symbol, (zebin::R_TYPE_ZEBIN)reloc.r_type, targetId);
}

void ZEBinaryBuilder::addKernelExperimentalProperties(const SOpenCLKernelInfo &annotations,
                                                      zeInfoKernel &zeinfoKernel) {
  // Write to zeinfoKernel only when the attribute is enabled
  if (IGC_IS_FLAG_ENABLED(DumpHasNonKernelArgLdSt)) {
    ZEInfoBuilder::addExpPropertiesHasNonKernelArgLdSt(zeinfoKernel, annotations.m_hasNonKernelArgLoad,
                                                       annotations.m_hasNonKernelArgStore,
                                                       annotations.m_hasNonKernelArgAtomic);
  }
}

void ZEBinaryBuilder::addUserAttributes(const IGC::SOpenCLKernelInfo &annotations, zebin::zeInfoKernel &zeinfoKernel) {
  zeinfoKernel.user_attributes = annotations.m_zeUserAttributes;
}

void ZEBinaryBuilder::addKernelExecEnv(const SOpenCLKernelInfo &annotations, zeInfoKernel &zeinfoKernel) {
  zeInfoExecutionEnv &env = zeinfoKernel.execution_env;

  env.barrier_count = annotations.m_executionEnvironment.HasBarriers;
  env.disable_mid_thread_preemption = annotations.m_executionEnvironment.DisableMidThreadPreemption;
  env.grf_count = annotations.m_executionEnvironment.NumGRFRequired;
  env.has_4gb_buffers = annotations.m_executionEnvironment.CompiledForGreaterThan4GBBuffers;
  env.has_device_enqueue = annotations.m_executionEnvironment.HasDeviceEnqueue;
  env.has_dpas = annotations.m_executionEnvironment.HasDPAS;
  env.has_fence_for_image_access = annotations.m_executionEnvironment.HasReadWriteImages;
  env.has_global_atomics = annotations.m_executionEnvironment.HasGlobalAtomics;
  env.has_multi_scratch_spaces =
      CPlatform(mPlatform).hasScratchSurface() && IGC_IS_FLAG_ENABLED(SeparateSpillPvtScratchSpace);
  env.has_no_stateless_write = (annotations.m_executionEnvironment.StatelessWritesCount == 0);
  env.has_stack_calls = annotations.m_executionEnvironment.HasStackCalls;
  env.require_disable_eufusion = annotations.m_executionEnvironment.RequireDisableEUFusion;
  env.indirect_stateless_count = annotations.m_executionEnvironment.IndirectStatelessCount;
  env.inline_data_payload_size = annotations.m_threadPayload.PassInlineDataSize;
  env.offset_to_skip_per_thread_data_load = annotations.m_threadPayload.OffsetToSkipPerThreadDataLoad;
  ;
  env.offset_to_skip_set_ffid_gp = annotations.m_threadPayload.OffsetToSkipSetFFIDGP;
  env.generate_local_id = annotations.m_threadPayload.generateLocalID;
  env.has_lsc_stores_with_non_default_l1_cache_controls =
      annotations.m_executionEnvironment.HasLscStoresWithNonDefaultL1CacheControls;

  if (annotations.m_executionEnvironment.HasFixedWorkGroupSize) {
    env.required_work_group_size.push_back(annotations.m_executionEnvironment.FixedWorkgroupSize[0]);
    env.required_work_group_size.push_back(annotations.m_executionEnvironment.FixedWorkgroupSize[1]);
    env.required_work_group_size.push_back(annotations.m_executionEnvironment.FixedWorkgroupSize[2]);
  }
  env.simd_size = annotations.m_executionEnvironment.CompiledSIMDSize;
  // set slm size to inline local size
  env.slm_size = annotations.m_executionEnvironment.SumFixedTGSMSizes;
  env.private_size = annotations.m_executionEnvironment.PerThreadPrivateMemoryUsage;
  env.spill_size = annotations.m_executionEnvironment.PerThreadSpillMemoryUsage;
  env.subgroup_independent_forward_progress =
      annotations.m_executionEnvironment.SubgroupIndependentForwardProgressRequired;
  // skip setting the value if it is default [0,1,2]
  if (annotations.m_executionEnvironment.WorkgroupWalkOrder[0] != 0 ||
      annotations.m_executionEnvironment.WorkgroupWalkOrder[1] != 1 ||
      annotations.m_executionEnvironment.WorkgroupWalkOrder[2] != 2) {
    env.work_group_walk_order_dimensions.push_back(annotations.m_executionEnvironment.WorkgroupWalkOrder[0]);
    env.work_group_walk_order_dimensions.push_back(annotations.m_executionEnvironment.WorkgroupWalkOrder[1]);
    env.work_group_walk_order_dimensions.push_back(annotations.m_executionEnvironment.WorkgroupWalkOrder[2]);
  }
  env.eu_thread_count = annotations.m_executionEnvironment.numThreads;
  env.has_sample = annotations.m_executionEnvironment.HasSample;
  env.has_rtcalls = annotations.m_executionEnvironment.HasRTCalls;
}

void ZEBinaryBuilder::addFunctionExecEnv(const SOpenCLKernelInfo &annotations,
                                         const vISA::ZEFuncAttribEntry &zeFuncAttr, zeInfoFunction &zeFunction) {
  // TODO: Currently we only set barrier count and other required information
  // such as GRF count and SIMD size in per-function execution environment.
  zeInfoExecutionEnv &env = zeFunction.execution_env;
  env.grf_count = annotations.m_executionEnvironment.NumGRFRequired;
  env.simd_size = annotations.m_executionEnvironment.CompiledSIMDSize;
  env.barrier_count = zeFuncAttr.f_BarrierCount;
  env.has_rtcalls = zeFuncAttr.f_hasRTCalls;
}

void ZEBinaryBuilder::addLocalIds(uint32_t simdSize, uint32_t grfSize, bool has_local_id_x, bool has_local_id_y,
                                  bool has_local_id_z, zebin::zeInfoKernel &zeinfoKernel) {
  // simdSize 1 is CM kernel, using arg_type::packed_local_ids format
  if (simdSize == 1) {
    // Currently there's only one kind of per-thread argument, hard-coded the
    // offset to 0 and for packed_local_ids, its size is 6 bytes (int16*3) always
    mZEInfoBuilder.addPerThreadPayloadArgument(zeinfoKernel.per_thread_payload_arguments,
                                               PreDefinedAttrGetter::ArgType::packed_local_ids, 0, 6);
    return;
  }
  // otherwise, using arg_type::local_id format
  IGC_ASSERT(simdSize);
  IGC_ASSERT(grfSize);
  // each id takes 2 bytes
  int32_t per_id_size = 2 * simdSize;
  // byte size for one id have to be grf align
  per_id_size = (per_id_size % grfSize) == 0 ? per_id_size : ((per_id_size / grfSize) + 1) * grfSize;
  // total_size = num_of_ids * per_id_size
  int32_t total_size = per_id_size * ((has_local_id_x ? 1 : 0) + (has_local_id_y ? 1 : 0) + (has_local_id_z ? 1 : 0));
  mZEInfoBuilder.addPerThreadPayloadArgument(zeinfoKernel.per_thread_payload_arguments,
                                             PreDefinedAttrGetter::ArgType::local_id, 0, total_size);
}

bool ZEBinaryBuilder::hasKernelMiscInfo(const IGC::SOpenCLKernelInfo &annotations) const {
  // the only kernel misc info we have now is kernel arg info
  return !annotations.m_zeKernelArgsInfo.empty();
}

bool ZEBinaryBuilder::hasKernelCostInfo(const IGC::SOpenCLKernelCostExpInfo &costExpAnnotation) const {
  return !costExpAnnotation.kernelCost.empty();
}

void ZEBinaryBuilder::addKernelArgInfo(const IGC::SOpenCLKernelInfo &annotations,
                                       zeInfoKernelMiscInfo &zeinfoKernelMisc) {
  // copy kernel args info into zeinfoKernelMisc
  zeinfoKernelMisc.args_info = annotations.m_zeKernelArgsInfo;
}

void ZEBinaryBuilder::addKernelCostInfo(const IGC::SOpenCLKernelCostExpInfo &costExpAnnotation,
                                        zeInfoKernelCostInfo &zeinfoKernelCost) {
  // copy kernel args info into zeinfoKernelCost
  zeinfoKernelCost.kcm_args_sym = costExpAnnotation.argsSym;
  zeinfoKernelCost.kcm_loop_count_exps = costExpAnnotation.loopLCE;
  zeinfoKernelCost.Kcm_loop_costs = costExpAnnotation.kernelCost;
}

// Calculate correct (pure) size of ELF binary, because debugDataSize taken from pOutput->m_debugDataVISASize
// contains something else.
// If ELF is validated successfully then return a calculated size. Othwerwise, return 0.
size_t ZEBinaryBuilder::calcElfSize(void *elfBin, size_t elfSize) {
  SElfHeader *elfHeader = (SElfHeader *)elfBin;
  size_t elfBinSize = 0; // Correct (pure) size of ELF binary to be calculated

  if (elfSize == 0) {
    IGC_ASSERT_MESSAGE(false, "Empty ELF file - nothing to be transfered to zeBinary");
    return 0; // ELF binary incorrect
  }

  if ((elfSize < ID_IDX_NUM_BYTES) || (elfHeader->Identity[ID_IDX_MAGIC0] != ELF_MAG0) ||
      (elfHeader->Identity[ID_IDX_MAGIC1] != ELF_MAG1) || (elfHeader->Identity[ID_IDX_MAGIC2] != ELF_MAG2) ||
      (elfHeader->Identity[ID_IDX_MAGIC3] != ELF_MAG3) ||
      (elfHeader->Identity[ID_IDX_CLASS] != EH_CLASS_64) && (elfHeader->Identity[ID_IDX_CLASS] != EH_CLASS_32)) {
    IGC_ASSERT_MESSAGE(false, "ELF file header incorrect - nothing to be transfered to zeBinary");
    return 0; // ELF binary incorrect
  }

  size_t idxSectionHdrOffset = 0; // Indexed section header offset
  SElfSectionHeader *sectionHeader = NULL;

  // Calculate correct (pure) size of ELF binary, because debugDataSize i.e. pOutput->m_debugDataVISASize
  // contains something else.
  elfBinSize += elfHeader->ElfHeaderSize;

  // ELF binary scanning to calculate a size of elf binary w/o alignment and additional data overhead.
  for (unsigned int i = 0; i < elfHeader->NumSectionHeaderEntries; i++) {
    idxSectionHdrOffset = (size_t)elfHeader->SectionHeadersOffset + (i * elfHeader->SectionHeaderEntrySize);
    sectionHeader = (SElfSectionHeader *)((char *)elfHeader + idxSectionHdrOffset);

    // Tally up the sizes
    elfBinSize += (size_t)sectionHeader->DataSize;
    elfBinSize += (size_t)elfHeader->SectionHeaderEntrySize;
  }

  return elfBinSize;
}

// Finds a symbol name in ELF binary and returns a symbol entry
// that will later be transformed to ZE binary format
void ZEBinaryBuilder::getElfSymbol(CElfReader *elfReader, const unsigned int symtabIdx, ELF::Elf64_Sym &symtabEntry,
                                   char *&symName) {
  IGC_ASSERT_MESSAGE(elfReader->GetElfHeader()->SectionHeaderEntrySize == 64, "ELF entry size 64 supported only");

  // To find a symbol name for example for relocation first we have to do
  // a lookup into .symtab (to find an index of the string in the .strtab)
  // then we have to find this name in .strtab.

  // Get data of .symtab and .strtab sections in ELF binary.
  char *symtabData = NULL;
  size_t symtabDataSize = 0;
  elfReader->GetSectionData(".symtab", symtabData, symtabDataSize);
  char *strtabData = NULL;
  size_t strtabDataSize = 0;
  elfReader->GetSectionData(".strtab", strtabData, strtabDataSize);
  if (strtabDataSize <= 1)
    elfReader->GetSectionData(".shstrtab", strtabData, strtabDataSize);

  if (!symtabData || !strtabData) {
    return;
  }

  // Perform lookup into .symtab.
  unsigned int symtabEntrySize = sizeof(llvm::ELF::Elf64_Sym);
  symtabEntry = *(llvm::ELF::Elf64_Sym *)(symtabData + symtabIdx * symtabEntrySize);

  // Then find the name in .strtab (String Table), where data may look as showed below:
  //  .debug_abbrev .text.stackcall .debug_ranges .debug_str .debug_info
  // ^NULL         ^NULL           ^NULL         ^NULL      ^NULL       ^NULL
  //
  // Each symtab entry contains 'st_shndx' filed, which is an index of a name (not a byte offset)
  // located in the String Table. To find for example a symbol name indexed as 3, the 3rd NULL
  // character must be found in the String Table, which is followed by the name of this symbol
  // ('.debug_ranges' in the example above).

  unsigned int ndx = symtabEntry.st_shndx; // No. of NULL characters to be skipped in .strtab
  while (ndx--)                            // Iterate thru names/strings from the beginning of .strtab data
  {
    while (*strtabData++)
      ;           // Find \0 terminator at the end of a given name
    strtabData++; // Move a pointer to the first character of the next name
  }
  strtabData--; // When a symbol name found, location of the \0 terminator is returned
                // (not location of a name following this)
  symName = strtabData;
}

// Copy every section of ELF file (a buffer in memory) to zeBinary
void ZEBinaryBuilder::addElfSections(void *elfBin, size_t elfSize) {
  // Correct (pure) size of ELF binary to be calculated
  size_t pureElfBinSize = calcElfSize(elfBin, elfSize);
  if (!pureElfBinSize) {
    return; // ELF file incorrect
  }

  SElfHeader *elfHeader = (SElfHeader *)elfBin;
  size_t entrySize = elfHeader->SectionHeaderEntrySize; // Get the section header entry size

  CElfReader *elfReader = CElfReader::Create((char *)elfBin, pureElfBinSize);
  RAIIElf ElfObj(elfReader);

  if (!elfReader || !elfReader->IsValidElf(elfBin, pureElfBinSize)) {
    IGC_ASSERT_MESSAGE(false, "ELF file invalid - nothing to be transfered to zeBinary");
    return;
  }

  // Find .symtab and .strtab (or shstrtab) sections in ELF binary.
  const SElfSectionHeader *symtabSectionHeader = elfReader->GetSectionHeader(".symtab");
  const SElfSectionHeader *strtabSectionHeader = elfReader->GetSectionHeader(".strtab");

  if (!strtabSectionHeader || !symtabSectionHeader) {
    IGC_ASSERT_MESSAGE(false, "Some ELF file sections not found - nothing to be transfered to zeBinary");
    return;
  }

  if (strtabSectionHeader->DataSize <= 1) {
    strtabSectionHeader = elfReader->GetSectionHeader(".shstrtab");
  }

  ZEELFObjectBuilder::SectionID zeBinSectionID = 0;

  char *secData = NULL;
  size_t secDataSize = 0;
  std::vector<std::string>
      zeBinSymbols; // ELF symbols added to zeBinary for a given section; to avoid duplicated symbols.

  // ELF binary scanning sections with copying whole sections one by one to zeBinary, except:
  // - empty sections
  // - Text section
  // - relocation sections
  // Also adjusting relocations found in relocation (.rela) sections.
  // Note:
  // - 64-bit ELF supported only
  // - .rel sections not supported

  for (unsigned int elfSectionIdx = 1; elfSectionIdx < elfHeader->NumSectionHeaderEntries; elfSectionIdx++) {
    if (elfReader->GetSectionData(elfSectionIdx, secData, secDataSize) != SUCCESS) {
      IGC_ASSERT_MESSAGE(false, "ELF file section data not found");
      continue;
    }

    if (secDataSize > 0) // pSectionHeader->DataSize > 0)
    {
      // Get section header to filter some section types.
      const SElfSectionHeader *sectionHeader = elfReader->GetSectionHeader(elfSectionIdx);
      if (sectionHeader != nullptr) {
        if (sectionHeader->Type == ELF::SHT_REL) {
          IGC_ASSERT_MESSAGE(false, "ELF file relocation sections w/o addend not supported");
          continue;
        } else if (sectionHeader->Type == ELF::SHT_RELA) {
          int relocEntrySize = (entrySize == 64) ? sizeof(struct ELF::Elf64_Rela) : sizeof(struct ELF::Elf32_Rela);
          IGC_ASSERT_MESSAGE((secDataSize % relocEntrySize) == 0, "Incorrect relocation section size");
          IGC_ASSERT_MESSAGE((entrySize == 64) || (entrySize == 32), "Incorrect relocation entry size");

          // If .rela.foo is being processed then find zeBinary section ID of previously added .foo section
          ZEELFObjectBuilder::SectionID nonRelaSectionID =
              mBuilder.getSectionIDBySectionName(elfReader->GetSectionName(elfSectionIdx) + sizeof(".rela") - 1);
          // Local symbols with the same name are allowed in zebinary if defined in different sections.
          zeBinSymbols.clear();

          if (entrySize == 64) {
            uint64_t relocEntryNum = secDataSize / relocEntrySize;
            struct ELF::Elf64_Rela relocEntry;

            for (uint64_t i = 0; i < relocEntryNum; i++) {
              relocEntry = *(struct ELF::Elf64_Rela *)(secData + i * relocEntrySize);
              const uint32_t symtabEntrySize = sizeof(ELF::Elf64_Sym);
              uint64_t symtabEntryNum = symtabSectionHeader->DataSize / symtabEntrySize;

              if ((relocEntry.r_info >> 32) < symtabEntryNum) // index
              {
                ELF::Elf64_Sym symtabEntry;
                char *symName = NULL;
                // To find a symbol name of relocation for adding to zeBinary, first we have to do
                // a lookup into .symtab then we have to find this name in .strtab.
                getElfSymbol(elfReader, relocEntry.r_info >> 32 /*index*/, symtabEntry, symName);

                vISA::ZESymEntry zeSym((vISA::GenSymType)symtabEntry.st_info, (uint32_t)symtabEntry.st_value,
                                       (uint32_t)symtabEntry.st_size,
                                       symName); // Symbol's name

                // Avoid symbol duplications - check whether a current symbol has been previously added.
                bool isSymbolAdded = false;
                for (const auto &zeBinSym : zeBinSymbols) {
                  if (!zeBinSym.compare(zeSym.s_name)) {
                    isSymbolAdded = true; // A current symbol has been previously added.
                    break;
                  }
                }

                // Add either a non-global symbol, or a global symbol which is not duplicated.
                if (!isSymbolAdded) {
                  // A current symbol has not been previously added so do it now.
                  // Note: All symbols in ELF are local.
                  mBuilder.addSymbol(zeSym.s_name, zeSym.s_offset, zeSym.s_size, ELF::STB_LOCAL,
                                     getSymbolElfType(zeSym), nonRelaSectionID);
                  zeBinSymbols.push_back(zeSym.s_name);
                }

                unsigned int relocType = relocEntry.r_info & 0xF;
                zebin::R_TYPE_ZEBIN zebinType = R_NONE;

                if (relocType == ELF::R_X86_64_64)
                  zebinType = R_SYM_ADDR;
                else if (relocType == ELF::R_X86_64_32)
                  zebinType = R_SYM_ADDR_32;
                else
                  IGC_ASSERT_MESSAGE(false, "Unsupported ELF relocation type");

                mBuilder.addRelaRelocation(relocEntry.r_offset, zeSym.s_name, zebinType, relocEntry.r_addend,
                                           nonRelaSectionID);
              }
            }
          } else // entrySize == 32
          {
            IGC_ASSERT_MESSAGE(false, "ELF 64-bit entry size supported only");
          }
        } else if (const char *sectionName = elfReader->GetSectionName(elfSectionIdx)) {
          if (!memcmp(sectionName, ".debug", sizeof(".debug") - 1)) {
            // Non-empty, non-relocation and non-text debug section to be copied from ELF to zeBinary.
            zeBinSectionID =
                mBuilder.addSectionDebug(sectionName, (uint8_t *)secData, secDataSize); // no padding, no alignment
          }
        }
      }
    }
  }
}

void ZEBinaryBuilder::getBinaryObject(llvm::raw_pwrite_stream &os) {
  if (!mZEInfoBuilder.empty())
    mBuilder.addSectionZEInfo(mZEInfoBuilder.getZEInfoContainer());
  mBuilder.finalize(os);
}

void ZEBinaryBuilder::getBinaryObject(Util::BinaryStream &outputStream) {
  llvm::SmallVector<char, 64> buf;
  llvm::raw_svector_ostream llvm_os(buf);
  getBinaryObject(llvm_os);
  outputStream.Write(buf.data(), buf.size());
}

void ZEBinaryBuilder::printBinaryObject(const std::string &filename) {
  std::error_code EC;
  llvm::raw_fd_ostream os(filename, EC);
  if (!EC)
    mBuilder.finalize(os);
}

void ZEBinaryBuilder::printZEInfo(raw_ostream &os) { mZEInfoBuilder.printZEInfoInYaml(os); }

void ZEBinaryBuilder::printZEInfo(const std::string &filename) {
  std::error_code EC;
  llvm::raw_fd_ostream os(filename, EC);
  if (!EC)
    printZEInfo(os);
}

void ZEBinaryBuilder::addKernelVISAAsm(const std::string &kernel, const std::string &visaasm) {
  IGC_ASSERT(!visaasm.empty());
  mBuilder.addSectionVISAAsm(kernel, reinterpret_cast<const uint8_t *>(visaasm.data()), visaasm.size());
}

zebin::PreDefinedAttrGetter::ArgImageType iOpenCL::getZEImageType(iOpenCL::IMAGE_MEMORY_OBJECT_TYPE type) {
  switch (type) {
  case iOpenCL::IMAGE_MEMORY_OBJECT_1D:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_1d;

  case iOpenCL::IMAGE_MEMORY_OBJECT_BUFFER:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_buffer;

  case iOpenCL::IMAGE_MEMORY_OBJECT_2D:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_2d;

  case iOpenCL::IMAGE_MEMORY_OBJECT_2D_MEDIA:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_2d_media;

  case iOpenCL::IMAGE_MEMORY_OBJECT_2D_MEDIA_BLOCK:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_2d_media_block;

  case iOpenCL::IMAGE_MEMORY_OBJECT_3D:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_3d;

  case iOpenCL::IMAGE_MEMORY_OBJECT_CUBE:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_cube;

  case iOpenCL::IMAGE_MEMORY_OBJECT_1D_ARRAY:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_1d_array;

  case iOpenCL::IMAGE_MEMORY_OBJECT_2D_ARRAY:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_2d_array;

  case iOpenCL::IMAGE_MEMORY_OBJECT_2D_DEPTH:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_2d_depth;

  case iOpenCL::IMAGE_MEMORY_OBJECT_2D_ARRAY_DEPTH:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_2d_array_depth;

  case iOpenCL::IMAGE_MEMORY_OBJECT_2D_MSAA:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_2d_msaa;

  case iOpenCL::IMAGE_MEMORY_OBJECT_2D_ARRAY_MSAA:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_2d_array_msaa;

  case iOpenCL::IMAGE_MEMORY_OBJECT_2D_MSAA_DEPTH:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_2d_msaa_depth;

  case iOpenCL::IMAGE_MEMORY_OBJECT_2D_ARRAY_MSAA_DEPTH:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_2d_array_msaa_depth;

  case iOpenCL::IMAGE_MEMORY_OBJECT_CUBE_ARRAY:
    return zebin::PreDefinedAttrGetter::ArgImageType::image_cube_array;

  default:
    IGC_ASSERT_MESSAGE(false, "Unhandled image type");
    return zebin::PreDefinedAttrGetter::ArgImageType::image_buffer;
  }
}

zebin::PreDefinedAttrGetter::ArgSamplerType iOpenCL::getZESamplerType(iOpenCL::SAMPLER_OBJECT_TYPE type) {
  switch (type) {
  case iOpenCL::SAMPLER_OBJECT_TEXTURE:
    return zebin::PreDefinedAttrGetter::ArgSamplerType::texture;

  case iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_2DCONVOLVE:
    return zebin::PreDefinedAttrGetter::ArgSamplerType::sample_8x8_2dconvolve;

  case iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_ERODE:
    return zebin::PreDefinedAttrGetter::ArgSamplerType::sample_8x8_erode;

  case iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_DILATE:
    return zebin::PreDefinedAttrGetter::ArgSamplerType::sample_8x8_dilate;

  case iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_MINMAXFILTER:
    return zebin::PreDefinedAttrGetter::ArgSamplerType::sample_8x8_minmaxfilter;

  case iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_MINMAX:
    return zebin::PreDefinedAttrGetter::ArgSamplerType::sample_8x8_minmax;

  case iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_CENTROID:
    return zebin::PreDefinedAttrGetter::ArgSamplerType::sample_8x8_centroid;

  case iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_BOOL_CENTROID:
    return zebin::PreDefinedAttrGetter::ArgSamplerType::sample_8x8_bool_centroid;

  case iOpenCL::SAMPLER_OBJECT_SAMPLE_8X8_BOOL_SUM:
    return zebin::PreDefinedAttrGetter::ArgSamplerType::sample_8x8_bool_sum;

  case iOpenCL::SAMPLER_OBJECT_VME:
  default:
    IGC_ASSERT_MESSAGE(false, "Unhandled sampler type");
    return zebin::PreDefinedAttrGetter::ArgSamplerType::texture;
  }
}