File: rsqrt.cpp

package info (click to toggle)
intel-graphics-compiler2 2.18.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 107,080 kB
  • sloc: cpp: 807,289; lisp: 287,855; ansic: 16,414; python: 4,004; yacc: 2,588; lex: 1,666; pascal: 313; sh: 186; makefile: 35
file content (271 lines) | stat: -rw-r--r-- 8,800 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*========================== begin_copyright_notice ============================

Copyright (C) 2024 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include <cm-cl/math.h>
#include <cm-cl/vector.h>

#include "f64consts.h"

using namespace cm;

int __cm_cl_TargetSupportsIEEE;

namespace {

template <int N>
CM_NODEBUG CM_INLINE mask<N> check_is_nan_or_inf(vector<double, N> q) {
  vector<uint32_t, 2 * N> q_split = q.template format<uint32_t>();
  vector<uint32_t, N> q_hi = q_split.template select<N, 2>(1);
  return (q_hi >= exp_32bitmask);
}

template <int N>
CM_NODEBUG CM_INLINE vector<uint32_t, N> get_exp(vector<double, N> x) {
  vector<uint32_t, 2 * N> x_split = x.template format<uint32_t>();
  vector<uint32_t, N> x_hi = x_split.template select<N, 2>(1);
  return (x_hi >> exp_shift) & exp_mask;
}

template <int N>
CM_NODEBUG CM_INLINE vector<uint32_t, N> get_sign(vector<double, N> x) {
  vector<uint32_t, 2 * N> x_split = x.template format<uint32_t>();
  vector<uint32_t, N> x_hi = x_split.template select<N, 2>(1);
  return x_hi & sign_32bit;
}

template <int N> CM_NODEBUG CM_INLINE mask<N> is_denormal(vector<double, N> x) {
  vector<uint32_t, 2 * N> x_int = x.template format<uint32_t>();
  vector<uint32_t, N> x_hi = x_int.template select<N, 2>(1);
  return x_hi < min_sign_exp;
}

template <int N>
CM_NODEBUG CM_INLINE vector<uint32_t, N> sep_exp(vector<double, N> x) {
  vector<uint32_t, 2 * N> x_int = x.template format<uint32_t>();
  vector<uint32_t, N> x_hi = x_int.template select<N, 2>(1);
  vector<uint32_t, N> res = (x_hi >> exp_shift) - exp_bias;
  return res >> 1;
}

template <int N>
CM_NODEBUG CM_INLINE vector<double, N> fill_hi_part(vector<uint32_t, N> in) {
  vector<double, N> res = 0;
  vector<uint32_t, 2 * N> res_int = res.template format<uint32_t>();
  res_int.template select<N, 2>(1) = in;
  res = res_int.template format<double>();
  return res;
}

template <int N>
CM_NODEBUG CM_INLINE vector<double, N> call_cl_sqrt(vector<double, N> x) {
  vector<float, N> res = x;
  res = detail::__cm_cl_sqrt(res.cl_vector(), false);
  x = res;
  return x;
}

template <int N>
CM_NODEBUG CM_INLINE vector<double, N> invert_float(vector<double, N> x) {
  vector<float, N> res = x;
  res = math::reciprocal(res);
  x = res;
  return x;
}

template <int N>
CM_NODEBUG CM_INLINE vector<double, N> rsqrt_float(vector<double, N> x) {
  vector<float, N> res = x;
  res = detail::__cm_cl_rsqrt(res.cl_vector());
  x = res;
  return x;
}

template <int N>
CM_NODEBUG CM_INLINE vector<double, N> uint64_sub_hi(vector<double, N> x,
                                                     vector<uint32_t, N> hi) {
  vector<uint32_t, 2 * N> ex_mx_int = 0;
  ex_mx_int.template select<N, 2>(1) = hi;
  vector<uint64_t, N> ex_u64 = ex_mx_int.template format<uint64_t>();
  vector<uint64_t, N> mx_u64 = x.template format<uint64_t>();
  mx_u64 -= ex_u64;
  x = mx_u64.template format<double>();
  return x;
}

template <int N>
CM_NODEBUG CM_INLINE vector<double, N> math_rsqt_dp(vector<double, N> x) {
  // special inputs are treated outside this call
  vector<double, N> mx = math::absolute(x);
  // eliminate sign bit (x<0 is not supposed to be an input to this call,
  // anyway)

  // scale denormal inputs
  mask<N> isDenormal = is_denormal(mx);
  vector<double, N> scale_x = 1.0;
  scale_x.merge(twoPow64, isDenormal);
  vector<double, N> scale_res = 1.0;
  scale_res.merge(twoPow32, isDenormal);

  mx = mx * scale_x;

  // separate exponent
  vector<uint32_t, N> ex = sep_exp(mx);

  // scaled mantissa
  vector<uint32_t, N> ex_mx_int_hi = ex << (53 - 32);
  mx = uint64_sub_hi(mx, ex_mx_int_hi);
  // rsqrt(mx)
  mx = rsqrt_float(mx);

  ex_mx_int_hi = ex << (52 - 32);
  mx = uint64_sub_hi(mx, ex_mx_int_hi);

  return mx * scale_res;
}

template <int N>
CM_NODEBUG CM_INLINE vector<double, N> sqrt_special(vector<double, N> a) {
  vector<double, N> x = a;
  vector<double, N> result = 0;
  mask<N> filled_out = false;

  // exponent fields
  auto ex = get_exp(x);
  auto sgn_x = get_sign(x);

  mask<N> is_Nan_Or_Inf = (ex == exp_mask);

  if (is_Nan_Or_Inf.any()) {
    mask<N> Minus_Inf = (sgn_x == sign_32bit);
    filled_out |= (Minus_Inf == 0) & is_Nan_Or_Inf;
    // NaN or +Inf?
    result.merge(a + a, filled_out);
  }

  mask<N> isZero = (x == 0.0) & (filled_out == 0);
  if (isZero.any()) {
    auto result_hi = result.template select<N, 2>(1);
    result_hi.merge(sgn_x, isZero);
    filled_out |= isZero;
    result.template select<N, 2>(1) = result_hi;
  }

  // negative input
  vector<uint32_t, N> inf_hi_part = inf_hi;
  vector<double, N> res = fill_hi_part(inf_hi_part);
  vector<double, N> y = fill_hi_part(sgn_x);

  result.merge(res * y, (filled_out == 0));

  return result;
}

template <int N>
CM_NODEBUG CM_INLINE vector<double, N> calc_sqrt(vector<double, N> x,
                                                 mask<N> special) {
  // Now start the SQRT computation
  // Use math.rsqtm (emulated here)
  vector<double, N> y0 = math_rsqt_dp(x);
  // predicate is set for 0, neg a, Inf, NaN inputs
  y0.merge(sqrt_special(x), special);

  return y0;
}

template <int N>
CM_NODEBUG CM_INLINE vector<double, N> sqrt_late_steps(vector<double, N> a,
                                                       vector<double, N> y0) {
  // IEEE SQRT computes H0 = 0.5*y0 (can be skipped)
  // Step 3: S0 = a*y0
  vector<double, N> S0 = a * y0;
  // IEEE SQRT, step 4:  d = 0.5 - S0*H0 = 0.5*(1 - S0*y0)
  // Here we compute dx2 = 2*d = 1 - S0*y0 instead
  // Proof comments: y0 = math.rsqtm(a) = 1/sqrt(a)*(1+e0), |e0|<2^(-23)
  //                 S0 = a*y0 = sqrt(a)*(1+e0)*(1+e1),      |e1| < 2^(-53)
  //   dx2 = 1 - (1+e0)*(1+e0)*(1+e1) = -2*e0 - e0*e0 - e1*(1+e0)*(1+e0) =
  //   -2*e0 - e0*e0 - eps, |eps|<2^(-52.999)
  vector<double, N> one = 1.0f;
  vector<double, N> dx2 = math::mad(S0, -y0, one);
  // IEEE SQRT, step 5:  e = 1 + 1.5*d = 1 + 0.75*dx2
  // We compute ehalf = e*0.5 = 0.5 + 0.375*dx2 (so that ehalf*dx2 == e*d)
  vector<double, N> three_eighths = 0.375f;
  vector<double, N> one_half = 0.5f;
  vector<double, N> ehalf = math::mad(dx2, three_eighths, one_half);
  // IEEE SQRT, step 6:  e = e*d
  // We compute  ehalf*dx2 = (e*0.5)*(2*d) = e*d (end up with the same value
  // at this step) Proof comments:  ehalf*dx2 =
  // (0.5-0.75*(e0+e0*e0/2+eps/2))*(-2*e0 - e0*e0 - eps) =
  //   = (1.5*(e0+e0*e0/2+eps/2)-1)*(e0+e0*e0/2+eps/2)
  vector<double, N> ed = ehalf * dx2;
  // IEEE SQRT, step 7:  H1 = H0 + ed*H0= (0.5*y0) + ed*(0.5*y0) produces
  // 0.5*INVSQRT(a) accurate to 1 ulp We compute result = y0 + ed*y0 Proof
  // comments:  result = rsqrt(a)*(1+e0)*(1 - (e0+e0*e0/2+eps/2)
  // + 1.5*(e0+e0*e0/2+eps/2)^2) =
  //  =
  //  rsqrt(a)*(1+e0-(e0+e0*e0/2+eps/2)-(e0^2+e0^3/2+e0*eps/2)+1.5*(e0^2+e0^3+O(2^(-74))+1.5*(e0^3+e0^4+O(2^(-97)))
  //  = = rsqrt(a)*(1-eps/2 + O(e0^3) + O(2^(-73)) =
  //  rsqrt(a)*(1+O(2^(-53.99)) before final rounding
  vector<double, N> res = math::mad(y0, ed, y0);
  return res;
}

template <int N>
CM_NODEBUG CM_INLINE vector<double, N> __impl_rsqrt_f64(vector<double, N> x) {

  vector<double, N> a = x;
  vector<double, N> result = 0;

  if (__cm_cl_TargetSupportsIEEE) {
    // Fast path for targets with rsqtm/invm instructions
    auto mrsqrt_res = detail::mrsqrt(a.cl_vector());
    mask<N> special_case = mrsqrt_res.second;
    vector<double, N> y0 = mrsqrt_res.first;

    result.merge(sqrt_late_steps(a, y0), (special_case == 0));

    vector<double, N> one = 1.0f;
    auto invm = detail::invm(one.cl_vector(), y0.cl_vector());
    result.merge(invm.first, special_case);
    return result;
  }

  mask<N> special_case = (x <= 0.0f) | check_is_nan_or_inf(x);

  // Save user rounding mode here, set new rounding mode to RN  (RTE in CM)
  vector<double, N> y0 = calc_sqrt(a, special_case);

  result.merge(sqrt_late_steps(a, y0), (special_case == 0));

  // This is the path for special inputs (INVM can be used to cover DP inputs)
  result.merge(invert_float(y0), special_case);

  return result;
}

} // namespace

CM_NODEBUG CM_NOINLINE extern "C" double
__vc_builtin_rsqrt_f64__rte_(double a) {
  vector<double, 1> va = a;
  return __impl_rsqrt_f64(va)[0];
}

#define RSQRT(WIDTH)                                                           \
  CM_NODEBUG CM_NOINLINE extern "C" cl_vector<double, WIDTH>                   \
      __vc_builtin_rsqrt_v##WIDTH##f64__rte_(cl_vector<double, WIDTH> a) {     \
    vector<double, WIDTH> va{a};                                               \
    auto r = __impl_rsqrt_f64(va);                                             \
    return r.cl_vector();                                                      \
  }

RSQRT(1)
RSQRT(2)
RSQRT(4)
RSQRT(8)
RSQRT(16)
RSQRT(32)