1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include <cm-cl/math.h>
#include <cm-cl/vector.h>
#include "f64consts.h"
using namespace cm;
int __cm_cl_TargetSupportsIEEE;
namespace {
template <int N>
CM_NODEBUG CM_INLINE mask<N> check_is_nan_or_inf(vector<double, N> q) {
vector<uint32_t, 2 * N> q_split = q.template format<uint32_t>();
vector<uint32_t, N> q_hi = q_split.template select<N, 2>(1);
return (q_hi >= exp_32bitmask);
}
template <int N>
CM_NODEBUG CM_INLINE vector<uint32_t, N> get_exp(vector<double, N> x) {
vector<uint32_t, 2 * N> x_split = x.template format<uint32_t>();
vector<uint32_t, N> x_hi = x_split.template select<N, 2>(1);
return (x_hi >> exp_shift) & exp_mask;
}
template <int N>
CM_NODEBUG CM_INLINE vector<uint32_t, N> get_sign(vector<double, N> x) {
vector<uint32_t, 2 * N> x_split = x.template format<uint32_t>();
vector<uint32_t, N> x_hi = x_split.template select<N, 2>(1);
return x_hi & sign_32bit;
}
template <int N> CM_NODEBUG CM_INLINE mask<N> is_denormal(vector<double, N> x) {
vector<uint32_t, 2 * N> x_int = x.template format<uint32_t>();
vector<uint32_t, N> x_hi = x_int.template select<N, 2>(1);
return x_hi < min_sign_exp;
}
template <int N>
CM_NODEBUG CM_INLINE vector<uint32_t, N> sep_exp(vector<double, N> x) {
vector<uint32_t, 2 * N> x_int = x.template format<uint32_t>();
vector<uint32_t, N> x_hi = x_int.template select<N, 2>(1);
vector<uint32_t, N> res = (x_hi >> exp_shift) - exp_bias;
return res >> 1;
}
template <int N>
CM_NODEBUG CM_INLINE vector<double, N> fill_hi_part(vector<uint32_t, N> in) {
vector<double, N> res = 0;
vector<uint32_t, 2 * N> res_int = res.template format<uint32_t>();
res_int.template select<N, 2>(1) = in;
res = res_int.template format<double>();
return res;
}
template <int N>
CM_NODEBUG CM_INLINE vector<double, N> call_cl_sqrt(vector<double, N> x) {
vector<float, N> res = x;
res = detail::__cm_cl_sqrt(res.cl_vector(), false);
x = res;
return x;
}
template <int N>
CM_NODEBUG CM_INLINE vector<double, N> invert_float(vector<double, N> x) {
vector<float, N> res = x;
res = math::reciprocal(res);
x = res;
return x;
}
template <int N>
CM_NODEBUG CM_INLINE vector<double, N> rsqrt_float(vector<double, N> x) {
vector<float, N> res = x;
res = detail::__cm_cl_rsqrt(res.cl_vector());
x = res;
return x;
}
template <int N>
CM_NODEBUG CM_INLINE vector<double, N> uint64_sub_hi(vector<double, N> x,
vector<uint32_t, N> hi) {
vector<uint32_t, 2 * N> ex_mx_int = 0;
ex_mx_int.template select<N, 2>(1) = hi;
vector<uint64_t, N> ex_u64 = ex_mx_int.template format<uint64_t>();
vector<uint64_t, N> mx_u64 = x.template format<uint64_t>();
mx_u64 -= ex_u64;
x = mx_u64.template format<double>();
return x;
}
template <int N>
CM_NODEBUG CM_INLINE vector<double, N> math_rsqt_dp(vector<double, N> x) {
// special inputs are treated outside this call
vector<double, N> mx = math::absolute(x);
// eliminate sign bit (x<0 is not supposed to be an input to this call,
// anyway)
// scale denormal inputs
mask<N> isDenormal = is_denormal(mx);
vector<double, N> scale_x = 1.0;
scale_x.merge(twoPow64, isDenormal);
vector<double, N> scale_res = 1.0;
scale_res.merge(twoPow32, isDenormal);
mx = mx * scale_x;
// separate exponent
vector<uint32_t, N> ex = sep_exp(mx);
// scaled mantissa
vector<uint32_t, N> ex_mx_int_hi = ex << (53 - 32);
mx = uint64_sub_hi(mx, ex_mx_int_hi);
// rsqrt(mx)
mx = rsqrt_float(mx);
ex_mx_int_hi = ex << (52 - 32);
mx = uint64_sub_hi(mx, ex_mx_int_hi);
return mx * scale_res;
}
template <int N>
CM_NODEBUG CM_INLINE vector<double, N> sqrt_special(vector<double, N> a) {
vector<double, N> x = a;
vector<double, N> result = 0;
mask<N> filled_out = false;
// exponent fields
auto ex = get_exp(x);
auto sgn_x = get_sign(x);
mask<N> is_Nan_Or_Inf = (ex == exp_mask);
if (is_Nan_Or_Inf.any()) {
mask<N> Minus_Inf = (sgn_x == sign_32bit);
filled_out |= (Minus_Inf == 0) & is_Nan_Or_Inf;
// NaN or +Inf?
result.merge(a + a, filled_out);
}
mask<N> isZero = (x == 0.0) & (filled_out == 0);
if (isZero.any()) {
auto result_hi = result.template select<N, 2>(1);
result_hi.merge(sgn_x, isZero);
filled_out |= isZero;
result.template select<N, 2>(1) = result_hi;
}
// negative input
vector<uint32_t, N> inf_hi_part = inf_hi;
vector<double, N> res = fill_hi_part(inf_hi_part);
vector<double, N> y = fill_hi_part(sgn_x);
result.merge(res * y, (filled_out == 0));
return result;
}
template <int N>
CM_NODEBUG CM_INLINE vector<double, N> calc_sqrt(vector<double, N> x,
mask<N> special) {
// Now start the SQRT computation
// Use math.rsqtm (emulated here)
vector<double, N> y0 = math_rsqt_dp(x);
// predicate is set for 0, neg a, Inf, NaN inputs
y0.merge(sqrt_special(x), special);
return y0;
}
template <int N>
CM_NODEBUG CM_INLINE vector<double, N> sqrt_late_steps(vector<double, N> a,
vector<double, N> y0) {
// IEEE SQRT computes H0 = 0.5*y0 (can be skipped)
// Step 3: S0 = a*y0
vector<double, N> S0 = a * y0;
// IEEE SQRT, step 4: d = 0.5 - S0*H0 = 0.5*(1 - S0*y0)
// Here we compute dx2 = 2*d = 1 - S0*y0 instead
// Proof comments: y0 = math.rsqtm(a) = 1/sqrt(a)*(1+e0), |e0|<2^(-23)
// S0 = a*y0 = sqrt(a)*(1+e0)*(1+e1), |e1| < 2^(-53)
// dx2 = 1 - (1+e0)*(1+e0)*(1+e1) = -2*e0 - e0*e0 - e1*(1+e0)*(1+e0) =
// -2*e0 - e0*e0 - eps, |eps|<2^(-52.999)
vector<double, N> one = 1.0f;
vector<double, N> dx2 = math::mad(S0, -y0, one);
// IEEE SQRT, step 5: e = 1 + 1.5*d = 1 + 0.75*dx2
// We compute ehalf = e*0.5 = 0.5 + 0.375*dx2 (so that ehalf*dx2 == e*d)
vector<double, N> three_eighths = 0.375f;
vector<double, N> one_half = 0.5f;
vector<double, N> ehalf = math::mad(dx2, three_eighths, one_half);
// IEEE SQRT, step 6: e = e*d
// We compute ehalf*dx2 = (e*0.5)*(2*d) = e*d (end up with the same value
// at this step) Proof comments: ehalf*dx2 =
// (0.5-0.75*(e0+e0*e0/2+eps/2))*(-2*e0 - e0*e0 - eps) =
// = (1.5*(e0+e0*e0/2+eps/2)-1)*(e0+e0*e0/2+eps/2)
vector<double, N> ed = ehalf * dx2;
// IEEE SQRT, step 7: H1 = H0 + ed*H0= (0.5*y0) + ed*(0.5*y0) produces
// 0.5*INVSQRT(a) accurate to 1 ulp We compute result = y0 + ed*y0 Proof
// comments: result = rsqrt(a)*(1+e0)*(1 - (e0+e0*e0/2+eps/2)
// + 1.5*(e0+e0*e0/2+eps/2)^2) =
// =
// rsqrt(a)*(1+e0-(e0+e0*e0/2+eps/2)-(e0^2+e0^3/2+e0*eps/2)+1.5*(e0^2+e0^3+O(2^(-74))+1.5*(e0^3+e0^4+O(2^(-97)))
// = = rsqrt(a)*(1-eps/2 + O(e0^3) + O(2^(-73)) =
// rsqrt(a)*(1+O(2^(-53.99)) before final rounding
vector<double, N> res = math::mad(y0, ed, y0);
return res;
}
template <int N>
CM_NODEBUG CM_INLINE vector<double, N> __impl_rsqrt_f64(vector<double, N> x) {
vector<double, N> a = x;
vector<double, N> result = 0;
if (__cm_cl_TargetSupportsIEEE) {
// Fast path for targets with rsqtm/invm instructions
auto mrsqrt_res = detail::mrsqrt(a.cl_vector());
mask<N> special_case = mrsqrt_res.second;
vector<double, N> y0 = mrsqrt_res.first;
result.merge(sqrt_late_steps(a, y0), (special_case == 0));
vector<double, N> one = 1.0f;
auto invm = detail::invm(one.cl_vector(), y0.cl_vector());
result.merge(invm.first, special_case);
return result;
}
mask<N> special_case = (x <= 0.0f) | check_is_nan_or_inf(x);
// Save user rounding mode here, set new rounding mode to RN (RTE in CM)
vector<double, N> y0 = calc_sqrt(a, special_case);
result.merge(sqrt_late_steps(a, y0), (special_case == 0));
// This is the path for special inputs (INVM can be used to cover DP inputs)
result.merge(invert_float(y0), special_case);
return result;
}
} // namespace
CM_NODEBUG CM_NOINLINE extern "C" double
__vc_builtin_rsqrt_f64__rte_(double a) {
vector<double, 1> va = a;
return __impl_rsqrt_f64(va)[0];
}
#define RSQRT(WIDTH) \
CM_NODEBUG CM_NOINLINE extern "C" cl_vector<double, WIDTH> \
__vc_builtin_rsqrt_v##WIDTH##f64__rte_(cl_vector<double, WIDTH> a) { \
vector<double, WIDTH> va{a}; \
auto r = __impl_rsqrt_f64(va); \
return r.cl_vector(); \
}
RSQRT(1)
RSQRT(2)
RSQRT(4)
RSQRT(8)
RSQRT(16)
RSQRT(32)
|