1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include <utility>
#include "Compiler/GenTTI.h"
#include "GenISAIntrinsics/GenIntrinsics.h"
#include "GenISAIntrinsics/GenIntrinsicInst.h"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "common/LLVMWarningsPush.hpp"
#include "llvm/Config/llvm-config.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Support/InstructionCost.h"
#include "llvmWrapper/Transforms/Utils/LoopUtils.h"
#include "common/LLVMWarningsPop.hpp"
#include <algorithm>
using namespace llvm;
using namespace IGC;
#define DEBUG_TYPE "GENtti"
namespace llvm {
bool GenIntrinsicsTTIImpl::isLoweredToCall(const Function *F) {
if (GenISAIntrinsic::isIntrinsic(F))
return false;
return BaseT::isLoweredToCall(F);
}
// CFG simplification may produce illegal integer types while simplifying switch
// instructions. Set this to false unless IGC legalization can fix them.
bool GenIntrinsicsTTIImpl::shouldBuildLookupTables() { return false; }
void *GenIntrinsicsTTIImpl::getAdjustedAnalysisPointer(const void *ID) {
if (ID == &TargetTransformInfoWrapperPass::ID)
return (TargetTransformInfo *)this;
return this;
}
bool isSendMessage(const llvm::GenIntrinsicInst *inst) {
if (isa<SamplerLoadIntrinsic>(inst) || isa<SampleIntrinsic>(inst) || isa<LdRawIntrinsic>(inst) ||
isa<InfoIntrinsic>(inst) || isa<SamplerGatherIntrinsic>(inst)) {
return true;
}
GenISAIntrinsic::ID ID = inst->getIntrinsicID();
if (/*ID == llvm::GenISAIntrinsic::GenISA_typedwrite ||
ID == llvm::GenISAIntrinsic::GenISA_typedread ||*/
ID == llvm::GenISAIntrinsic::GenISA_URBRead || isURBWriteIntrinsic(inst) ||
ID == llvm::GenISAIntrinsic::GenISA_ldstructured) {
return true;
}
return false;
}
unsigned countTotalInstructions(const Function *F, bool CheckSendMsg = true) {
unsigned EstimatedInstCnt = 0;
for (const auto &BB : *F) {
for (const auto &II : BB) {
if (IGCLLVM::isDebugOrPseudoInst(II))
continue;
if (auto pIntrinsic = llvm::dyn_cast<llvm::GenIntrinsicInst>(&II)) {
if (CheckSendMsg && isSendMessage(pIntrinsic)) {
EstimatedInstCnt += 4;
}
}
EstimatedInstCnt++;
}
}
return EstimatedInstCnt;
}
unsigned GenIntrinsicsTTIImpl::getFlatAddressSpace() { return ADDRESS_SPACE_PRIVATE; }
bool GenIntrinsicsTTIImpl::isGEPLoopConstDerived(GetElementPtrInst *GEP, const Loop *L, ScalarEvolution &SE) {
if (!GEP)
return false;
const SCEV *SGEP = SE.getSCEV(GEP);
if (auto *AR = dyn_cast<SCEVAddRecExpr>(SGEP)) {
if (AR->getLoop() == L)
return true;
}
// Don't let pointer base interfere the traversal. This is due to some frontends
// generate GEP without inbound.
const SCEV *SGEPMinusPointerBase = SE.removePointerBase(SGEP);
struct CheckConstDerived {
bool TraversalDone = false;
bool AddRecFound = false;
bool isConstDerived = true;
const Loop *L = nullptr;
const SCEV *S = nullptr;
CheckConstDerived(const Loop *L) : L(L) {}
bool setNotConstDerived() {
TraversalDone = true;
isConstDerived = false;
return false;
}
bool follow(const SCEV *S) {
switch (S->getSCEVType()) {
case scConstant:
case scPtrToInt:
case scTruncate:
case scZeroExtend:
case scSignExtend:
case scAddExpr:
case scMulExpr:
case scUMaxExpr:
case scSMaxExpr:
case scUMinExpr:
case scSMinExpr:
case scSequentialUMinExpr:
case scUDivExpr:
return true;
case scAddRecExpr: {
const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
if (L && (ARLoop == L || ARLoop->contains(L))) {
AddRecFound = true;
return false; // Don't traverse into it
}
return setNotConstDerived();
}
case scUnknown:
case scCouldNotCompute:
return setNotConstDerived();
}
llvm_unreachable("Unknown SCEV kind!");
}
bool isDone() { return TraversalDone; }
};
CheckConstDerived CCD(L);
SCEVTraversal<CheckConstDerived> ST(CCD);
ST.visitAll(SGEPMinusPointerBase);
return (CCD.isConstDerived && CCD.AddRecFound);
}
void GenIntrinsicsTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
bool IsJointMatrixApplyLoop = false;
for (auto BB : L->blocks()) {
for (auto &I : *BB) {
if (auto *MD = I.getMetadata("joint_matrix_apply")) {
IsJointMatrixApplyLoop = true;
break;
}
}
if (IsJointMatrixApplyLoop) {
break;
}
}
unsigned LoopUnrollThreshold = ctx->m_DriverInfo.GetLoopUnrollThreshold();
bool UnrollLoopForCodeSizeOnly =
IGC_IS_FLAG_ENABLED(UnrollLoopForCodeSizeOnly) || (!ctx->m_retryManager.IsFirstTry());
// override the LoopUnrollThreshold if the registry key is set
if (IGC_GET_FLAG_VALUE(SetLoopUnrollThreshold) != 0) {
LoopUnrollThreshold = IGC_GET_FLAG_VALUE(SetLoopUnrollThreshold);
} else {
if (ctx->type == ShaderType::COMPUTE_SHADER && ctx->getModuleMetaData()->csInfo.SetLoopUnrollThreshold > 0) {
LoopUnrollThreshold = ctx->getModuleMetaData()->csInfo.SetLoopUnrollThreshold;
} else if ((ctx->type == ShaderType::PIXEL_SHADER || ctx->type == ShaderType::RAYTRACING_SHADER) &&
ctx->getModuleMetaData()->compOpt.SetLoopUnrollThreshold > 0) {
LoopUnrollThreshold = ctx->getModuleMetaData()->compOpt.SetLoopUnrollThreshold;
} else if (IsJointMatrixApplyLoop) {
// For joint_matrix_apply loops, we want to unroll them as much as possible so setting high threshold.
// From the other hand, unrolling huge loops can lead to unreasonable compile-time
// so we can not just use UINT_MAX.
// One case, where we hit the limit is when we print accumulator 32x64 elements
// using joint_matrix_apply with sycl::stream.
// If you increase this limit, please test that printing with sycl::stream still works.
LoopUnrollThreshold = 20000;
}
}
// Special case when DP emulation is needed.
if (ctx->m_hasDPEmu && IGC_IS_FLAG_ENABLED(SelectiveLoopUnrollForDPEmu)) {
bool hasDPInst = false;
for (auto BB : L->blocks()) {
for (auto &I : *BB) {
switch (I.getOpcode()) {
case Instruction::FMul:
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FDiv:
hasDPInst = I.getType()->isDoubleTy();
break;
case Instruction::FCmp:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPTrunc:
hasDPInst = I.getOperand(0)->getType()->isDoubleTy();
break;
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPExt:
hasDPInst = I.getType()->isDoubleTy();
break;
case Instruction::Call: {
if (isa<GenIntrinsicInst>(&I) || isa<IntrinsicInst>(&I)) {
CallInst *callI = cast<CallInst>(&I);
hasDPInst =
(callI->getType()->isDoubleTy() || std::any_of(callI->arg_begin(), callI->arg_end(),
[](Value *v) { return v->getType()->isDoubleTy(); }));
}
break;
}
default:
break;
}
if (hasDPInst)
break;
}
if (hasDPInst)
break;
}
if (hasDPInst) {
// Disable unroll
UP.Threshold = 0;
UP.OptSizeThreshold = 0;
UP.Count = 1;
UP.MaxCount = 1;
UP.Partial = false;
UP.Runtime = false;
return;
}
}
unsigned totalInstCountInShader = countTotalInstructions(L->getBlocks()[0]->getParent());
uint32_t registerPressureEst =
(uint32_t)(IGC_GET_FLAG_VALUE(SetRegisterPressureThresholdForLoopUnroll) * (ctx->getNumGRFPerThread() / 128.0));
bool lowPressure = (this->ctx->m_tempCount < registerPressureEst) && (totalInstCountInShader < LoopUnrollThreshold);
// For OCL shaders, do a two-step loop unrolling. The first
// unrolling is simple and full, and the second runs after
// LICM, which allows partial unrolling. Same for other APIs?
if (lowPressure || (ctx->type == ShaderType::OPENCL_SHADER))
{
UP.Threshold = LoopUnrollThreshold;
UP.PartialThreshold = LoopUnrollThreshold;
UP.Partial = true;
} else // for high registry pressure shaders, limit the unrolling to small loops and only fully unroll
{
UP.Threshold = IGC_GET_FLAG_VALUE(SetLoopUnrollThresholdForHighRegPressure);
// This is similiar to LLVM OptForSize scenario in LoopUnrollPass
UP.MaxPercentThresholdBoost = IGC_GET_FLAG_VALUE(SetLoopUnrollMaxPercentThresholdBoostForHighRegPressure);
}
unsigned MaxTripCount = SE.getSmallConstantMaxTripCount(L);
const unsigned MaxTripCountToUseUpperBound = 4;
if (MaxTripCount && MaxTripCount <= MaxTripCountToUseUpperBound) {
UP.UpperBound = true;
UP.Force = true;
}
if (UnrollLoopForCodeSizeOnly) {
UP.Threshold = getLoopSize(L, *this) + 1;
UP.MaxPercentThresholdBoost = 100;
UP.Partial = false;
}
// For all the load/store who (having a GEP to),
// 1. Accessing a fixed size Alloca
// 2. Having an loop-iteration-inducted-only index
// For exmaple,
//
// bb:
// %ALLOC = alloca [32 x float], align 4
// Loop1:
// %i8 = phi i32 [ 0, %bb ], [ %i23, %Loop1 ]
// %i19 = getelementptr [32 x float], ptr %ALLOC, i64 0, i64 %i8
// %i23 = add i32 %i8, 1
// %i14 = fmul ...
// store float %i14, ptr %i19, align 4
// %i24 = icmp eq i32 %i23, 32
// br i1 %i24, label %..., label %Loop1
// ...
// Loop5:
// %i93 = phi i32 [ %i115, %Loop5 ], [ 0, %... ]
// %i99 = getelementptr [32 x float], ptr %ALLOC, i64 0, i64 %i93
// %i103 = load float, ptr %i99, align 4
// %i107 = fmul float %i103, 0x3F699999A0000000
// %i115 = add i32 %i93, 1
// %i116 = icmp eq i32 %i115, 32
// br i1 %i116, label %bb117, label %Loop5
//
// Fully unrolling both loops leads SROA pass eliminate the entire access chain of the alloca. This is one of most
// impacted yet super common pattern across all application types. In many cases, especially when the only values that
// stored into alloca are compiler-detectable constant, these loops need to be unroll regardless how high the register
// pressure is.
//
// TODO: Having an analysis pass to link alloca with loops globally so that they are either unrolled together or not.
// It can potentially do some global cost estimations.
const unsigned UnrollMaxCountForAlloca = IGC_GET_FLAG_VALUE(PromoteLoopUnrollwithAllocaCountThreshold);
bool AllocaFound = false;
if (MaxTripCount && MaxTripCount <= UnrollMaxCountForAlloca ) {
unsigned int ThresholdBoost = 0;
for (auto BB : L->blocks()) {
for (auto &I : *BB) {
AllocaInst *AI = nullptr;
GetElementPtrInst *GEP = nullptr;
if (auto *LI = dyn_cast<LoadInst>(&I))
AI = dyn_cast<AllocaInst>(LI->getPointerOperand());
else if ((GEP = dyn_cast<GetElementPtrInst>(&I))) {
// Test if the GEP index is a function of the loop induction variable.
if (!isGEPLoopConstDerived(GEP, L, SE))
continue;
auto *SBase = dyn_cast<SCEVUnknown>(SE.getPointerBase(SE.getSCEV(GEP)));
AI = dyn_cast<AllocaInst>(SBase->getValue());
} else
continue;
if (!AI)
continue;
// Not fixed size or not in entry block
// TODO: Can a alloca with a fixed size not reside in the entry block?
if (!AI->isStaticAlloca())
continue;
// Using alloca size in bytes as the threshold boost seems a bit tricky.
unsigned AllocaSize = *(AI->getAllocationSizeInBits(DL)) / 8;
// Assume every iteration consumes 1 DW (64 bytes).
if (AllocaSize/8 > UnrollMaxCountForAlloca)
continue;
ThresholdBoost += AllocaSize;
if (GEP)
isGEPLoopInduction[GEP] = true;
AllocaFound = true;
}
}
if (AllocaFound) {
// LLVM default only to 10, boost to UnrollMaxCountForAlloca
UP.MaxIterationsCountToAnalyze = UnrollMaxCountForAlloca;
UP.UpperBound = true;
UP.Force = UnrollLoopForCodeSizeOnly ? false : true;
if (IGC_IS_FLAG_ENABLED(EnablePromoteLoopUnrollwithAlloca) &&
ctx->type != ShaderType::OPENCL_SHADER) {
UP.Threshold += ThresholdBoost;
LLVM_DEBUG(dbgs() << "Increasing L:" << L->getName() << " threshold to " << UP.Threshold
<< " due to Alloca accessed by:");
for (const auto &pair : isGEPLoopInduction)
LLVM_DEBUG(dbgs() << " " << pair.first->getName());
LLVM_DEBUG(dbgs() << " \n");
}
}
}
if (IGC_IS_FLAG_ENABLED(UnrollLoopForCodeSizeOnly))
return;
unsigned sendMessage = 0;
unsigned TripCount = 0;
BasicBlock *ExitingBlock = L->getLoopLatch();
if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
ExitingBlock = L->getExitingBlock();
if (ExitingBlock)
TripCount = SE.getSmallConstantTripCount(L, ExitingBlock);
// Do not enable partial unrolling if the loop counter is float. It can cause precision issue.
if (ExitingBlock) {
if (UP.Partial) {
IGCLLVM::TerminatorInst *Term = ExitingBlock->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
if (dyn_cast<FCmpInst>(BI->getCondition())) {
UP.Partial = false;
return;
}
}
}
// Add heuristic to disable loop unroll for single short BB loop with
// barrier. Unrolling such a loop won't remove dependency due to that
// barrier but only add register pressure potentially.
if (L->getNumBlocks() == 1) {
BasicBlock *BB = *L->block_begin();
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics Metrics;
Metrics.analyzeBasicBlock(BB, *this, EphValues);
if (Metrics.NumInsts < 50) {
for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
CallInst *Call = dyn_cast<CallInst>(I);
if (!Call)
continue;
Function *F = Call->getCalledFunction();
if (!F)
continue;
// FIXME: Shall we already inline barrier even in two-phase
// inlining?
if (F->getName() == "_Z7barrierj") {
// Disable loop unrolling for short loop with
// barrier, where we prefer wider SIMD to mitigate
// the barrier overhead.
UP.Count = 1;
UP.MaxCount = UP.Count;
UP.Partial = false;
UP.Runtime = false;
return;
}
}
}
}
}
// Skip non-simple loop.
if (L->getNumBlocks() != 1) {
if (IGC_IS_FLAG_ENABLED(EnableAdvRuntimeUnroll) && IGCLLVM::isInnermost(L)) {
auto countNonPHI = [](BasicBlock *BB) {
// Count the number of instructions in the basic block without dbg instructions
unsigned InstCountInBB = BB->sizeWithoutDebug();
unsigned PHIs = 0;
for (auto BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
if (!isa<PHINode>(&*BI))
break;
++PHIs;
}
return InstCountInBB - PHIs;
};
auto hasLoad = [](BasicBlock *BB) {
for (auto BI = BB->begin(), BE = BB->end(); BI != BE; ++BI)
if (isa<LoadInst>(&*BI))
return true;
return false;
};
auto hasStore = [](BasicBlock *BB) {
for (auto BI = BB->begin(), BE = BB->end(); BI != BE; ++BI)
if (isa<StoreInst>(&*BI))
return true;
return false;
};
auto hasCall = [](BasicBlock *BB) {
for (auto BI = BB->begin(), BE = BB->end(); BI != BE; ++BI)
if (isa<CallInst>(&*BI) && !isa<IntrinsicInst>(&*BI) && !isa<GenIntrinsicInst>(&*BI))
return true;
return false;
};
// For innermost loop, allow certain patterns.
unsigned Count = 0;
bool HasCall = false;
bool HasStore = false;
bool MayHasLoadInHeaderOnly = true;
for (auto BI = L->block_begin(), BE = L->block_end(); BI != BE; ++BI) {
Count += countNonPHI(*BI);
HasCall |= hasCall(*BI);
HasStore |= hasStore(*BI);
if (L->getHeader() != *BI)
MayHasLoadInHeaderOnly &= !hasLoad(*BI);
}
// Runtime unroll it.
if (!HasCall && !HasStore && MayHasLoadInHeaderOnly && Count < 100) {
unsigned C = IGC_GET_FLAG_VALUE(AdvRuntimeUnrollCount);
if (C == 0)
C = 4;
UP.Runtime = true;
UP.Count = C;
UP.MaxCount = UP.Count;
// The following is only available and required from LLVM 3.7+.
UP.AllowExpensiveTripCount = true;
}
}
return;
}
llvm::BasicBlock::InstListType::iterator I;
llvm::BasicBlock *loopBlock = L->getBlocks()[0];
int instCount =
std::distance(loopBlock->instructionsWithoutDebug().begin(), loopBlock->instructionsWithoutDebug().end());
// Check if the specific basic block has block read or write.
auto hasBlockReadWrite = [](BasicBlock *BB) {
for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
if (auto GII = dyn_cast<GenIntrinsicInst>(I))
switch (GII->getIntrinsicID()) {
case GenISAIntrinsic::GenISA_simdBlockRead:
case GenISAIntrinsic::GenISA_simdBlockWrite:
return true;
default:
break;
}
return false;
};
// Skip the following logic for OCL. Apparently, it's designed to prevent
// loops in 3D shaders being aggressively unrolled to increase shader
// binary size dramatically. So far, OCL doesn't have such concern and, if
// we need to consider that, more factors need consideration. Just skip
// that for OCL.
if (ctx->type == ShaderType::OPENCL_SHADER &&
// Only try to fully unroll small loop with known but small trip count.
// This's PURELY heuristics.
((TripCount != 0 && TripCount <= 40 && instCount < 40) || hasBlockReadWrite(L->getHeader())) &&
// FIXME: WA for cases where the compiler is running with a smaller stack size
// we run into stack overflow in
!ctx->m_DriverInfo.HasSmallStack()) {
return;
}
for (I = loopBlock->begin(); I != loopBlock->end(); I++) {
if (const auto pIntrinsic = llvm::dyn_cast<llvm::GenIntrinsicInst>(I)) {
if (isSendMessage(pIntrinsic)) {
sendMessage++;
}
}
}
unsigned int estimateUnrolledInstCount = (instCount + sendMessage * 4) * TripCount;
unsigned int unrollLimitInstCount =
LoopUnrollThreshold > totalInstCountInShader ? LoopUnrollThreshold - totalInstCountInShader : 0;
bool limitUnrolling = (estimateUnrolledInstCount > unrollLimitInstCount) || (TripCount > unrollLimitInstCount) ||
(instCount + sendMessage * 4 > unrollLimitInstCount);
// if the loop doesn't have sample, skip the unrolling parameter change
if (!sendMessage) {
// if the estimated unrolled instruction count is larger than the unrolling threshold, limit unrolling.
if (limitUnrolling) {
UP.Count = MIN(unrollLimitInstCount / (instCount + sendMessage * 4), 4);
if (TripCount != 0)
while (UP.Count != 0 && TripCount % UP.Count != 0)
UP.Count--;
UP.MaxCount = UP.Count;
}
return;
}
// if the TripCount is known, and the estimated unrolled count exceed LoopUnrollThreshold, set the unrolling count to
// 4
if (limitUnrolling) {
UP.Count = MIN(TripCount, 4);
UP.MaxCount = UP.Count;
}
unsigned int runtimeUnroll = IGC_GET_FLAG_VALUE(RuntimeLoopUnrolling); // 0: default, 1: on, 2: off
if (runtimeUnroll == 2) {
return;
} else if (runtimeUnroll == 0) {
// do not enable runtime unrolling if the loop is long or trip count is already known.
// skip this check if RuntimeLoopUnrolling is set to force on.
if (instCount > 35 || TripCount) {
return;
}
}
if (!limitUnrolling) {
UP.Runtime = true;
UP.Count = 4;
UP.MaxCount = UP.Count;
// The following is only available and required from LLVM 3.7+.
UP.AllowExpensiveTripCount = true;
}
if (MDNode *LoopID = L->getLoopID()) {
const llvm::StringRef maxIterMetadataNames = "spv.loop.iterations.max";
for (unsigned i = 0; i < LoopID->getNumOperands(); ++i) {
if (MDNode *MD = llvm::dyn_cast<MDNode>(LoopID->getOperand(i))) {
if (MDString *S = llvm::dyn_cast<MDString>(MD->getOperand(0))) {
if (maxIterMetadataNames.equals(S->getString())) {
UP.MaxCount = static_cast<unsigned>(mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue());
}
}
}
}
}
}
// [LLVM-UPGRADE] Peeling information was separated
// https://github.com/llvm/llvm-project/commit/e541e1b757237172c247904b670c9894d6b3759d
void GenIntrinsicsTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
llvm::TargetTransformInfo::PeelingPreferences &PP) {
if (MDNode *LoopID = L->getLoopID()) {
const llvm::StringRef peelCountMetadataNames = "spv.loop.peel.count";
for (unsigned i = 0; i < LoopID->getNumOperands(); ++i) {
if (MDNode *MD = llvm::dyn_cast<MDNode>(LoopID->getOperand(i))) {
if (MDString *S = llvm::dyn_cast<MDString>(MD->getOperand(0))) {
if (peelCountMetadataNames.equals(S->getString())) {
PP.AllowPeeling = true;
PP.PeelCount = static_cast<unsigned>(mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue());
}
}
}
}
}
}
bool GenIntrinsicsTTIImpl::isProfitableToHoist(Instruction *I) {
if (auto *CI = dyn_cast<CallInst>(I)) {
if (CI->isConvergent() && CI->onlyAccessesInaccessibleMemory()) {
return false;
}
}
return BaseT::isProfitableToHoist(I);
}
// TODO: Upon the complete removal of pre-LLVM 14 conditions, move to 'getInstructionCost' per LLVM 16 API
llvm::InstructionCost GenIntrinsicsTTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind) {
return GenIntrinsicsTTIImpl::internalCalculateCost(U, Operands, CostKind);
}
#if LLVM_VERSION_MAJOR >= 16
llvm::InstructionCost GenIntrinsicsTTIImpl::getInstructionCost(const User *U, ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind) {
return GenIntrinsicsTTIImpl::internalCalculateCost(U, Operands, CostKind);
}
#endif
llvm::InstructionCost GenIntrinsicsTTIImpl::internalCalculateCost(const User *U, ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind) {
// The extra cost of speculative execution for math intrinsics
if (auto *II = dyn_cast_or_null<IntrinsicInst>(U)) {
if (Intrinsic::ID IID = II->getIntrinsicID()) {
switch (IID) {
case Intrinsic::cos:
case Intrinsic::sin:
case Intrinsic::sqrt:
return TTI::TCC_Expensive;
default:
break;
}
}
}
if (IGC_IS_FLAG_ENABLED(EnablePromoteLoopUnrollwithAlloca)) {
const GetElementPtrInst *GEP = nullptr;
if (Operator::getOpcode(U) == Instruction::Load)
GEP = dyn_cast<GetElementPtrInst>(cast<LoadInst>(U)->getPointerOperand());
if (Operator::getOpcode(U) == Instruction::Store)
GEP = dyn_cast<GetElementPtrInst>(cast<StoreInst>(U)->getPointerOperand());
if (GEP) {
if (isGEPLoopInduction.find(GEP) != isGEPLoopInduction.end())
return TTI::TCC_Free;
}
}
const Function *F = dyn_cast<Function>(U);
if (F != nullptr) {
IGC::CodeGenContext *CGC = this->ctx;
if (!CGC->enableFunctionCall() && !GenISAIntrinsic::isIntrinsic(F) && !F->isIntrinsic()) {
// If subroutine call is not enabled but we have function call. They
// are not inlined. e.g. due to two-phase inlining. Return function
// size instead of to avoid under-estimating the cost of function call.
//
// FIXME: We need to collect the cost following calling graph. However,
// as LLVM's ininer only support bottom-up inlining currently. That's
// not a big issue so far.
//
// FIXME: We also need to consider the case where sub-routine call is
// enabled.
unsigned FuncSize = countTotalInstructions(F, false);
return TargetTransformInfo::TCC_Basic * FuncSize;
}
}
return BaseT::getInstructionCost(U, Operands, CostKind);
}
// Strip from LLVM::LoopUnrollPass::ApproximateLoopSize
unsigned getLoopSize(const Loop *L, const TargetTransformInfo &TTI) {
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics Metrics;
for (BasicBlock *BB : L->blocks())
Metrics.analyzeBasicBlock(BB, TTI, EphValues);
InstructionCost LoopSize;
LoopSize = Metrics.NumInsts;
LoopSize = (LoopSize > 3/*BEInsns + 1*/) ? LoopSize : 3;
return *LoopSize.getValue();
}
} // namespace llvm
|