1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2023-2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "VLD_SPIRVSplitter.hpp"
#include "Probe/Assertion.h"
#include "spirv/unified1/spirv.hpp"
namespace IGC {
namespace VLD {
llvm::Expected<SPVMetadata> GetVLDMetadata(const char *spv_buffer, uint32_t spv_buffer_size_in_bytes) {
return SpvSplitter().Parse(spv_buffer, spv_buffer_size_in_bytes);
}
llvm::Expected<std::pair<ProgramStreamType, ProgramStreamType>> SplitSPMDAndESIMD(const char *spv_buffer,
uint32_t spv_buffer_size_in_bytes) {
SpvSplitter splitter;
return splitter.Split(spv_buffer, spv_buffer_size_in_bytes);
}
llvm::Error SpvSplitter::ParseSPIRV(const char *spv_buffer, uint32_t spv_buffer_size_in_bytes) {
const uint32_t *const binary = reinterpret_cast<const uint32_t *>(spv_buffer);
const size_t word_count = (spv_buffer_size_in_bytes / sizeof(uint32_t));
if (word_count < 5) {
return llvm::createStringError(llvm::inconvertibleErrorCode(), "SPIR-V binary is too short!");
}
// Skip the header (magic, version, generator, bound, schema)
size_t offset = 5;
llvm::Error err = HandleHeader(llvm::ArrayRef<uint32_t>(&binary[0], 5));
if (err)
return std::move(err);
// Now read the instructions
while (offset < word_count) {
uint32_t word = binary[offset];
uint16_t wordCount = word >> 16;
if (wordCount == 0) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Invalid SPIR-V instruction with word count 0 at offset " +
std::to_string(offset));
}
if (offset + wordCount > word_count) {
return llvm::createStringError(llvm::inconvertibleErrorCode(), "SPIR-V instruction at offset " +
std::to_string(offset) +
" extends beyond the end of the binary");
}
llvm::ArrayRef<uint32_t> instWords(&binary[offset], wordCount);
// Handle the instruction
err = HandleInstruction(instWords);
if (err)
return std::move(err);
offset += wordCount;
}
if (!has_spmd_functions_ && !has_esimd_functions_) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"SPIR-V file did not contain any SPMD or ESIMD functions!");
}
return llvm::Error::success();
}
SPIRVTypeEnum SpvSplitter::GetCurrentSPIRVType() const {
if (has_spmd_functions_ && has_esimd_functions_) {
return SPIRVTypeEnum::SPIRV_SPMD_AND_ESIMD;
} else if (has_spmd_functions_) {
return SPIRVTypeEnum::SPIRV_SPMD;
}
return SPIRVTypeEnum::SPIRV_ESIMD;
}
llvm::Expected<std::pair<ProgramStreamType, ProgramStreamType>> SpvSplitter::Split(const char *spv_buffer,
uint32_t spv_buffer_size_in_bytes) {
this->Reset();
this->only_detect_ = false;
auto parseError = ParseSPIRV(spv_buffer, spv_buffer_size_in_bytes);
if (parseError) {
return std::move(parseError);
}
// Add declarations of ESIMD functions that are called from SPMD module,
// otherwise SPIR-V reader might fail.
for (auto esimd_func_id : esimd_functions_to_declare_) {
if (esimd_function_declarations_.find(esimd_func_id) == esimd_function_declarations_.end()) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"SPIR-V Splitter error: ESIMD function declaration not found!");
}
spmd_program_.insert(spmd_program_.end(), esimd_function_declarations_[esimd_func_id].begin(),
esimd_function_declarations_[esimd_func_id].end());
}
switch (GetCurrentSPIRVType()) {
case SPIRVTypeEnum::SPIRV_ESIMD:
spmd_program_.clear();
break;
case SPIRVTypeEnum::SPIRV_SPMD:
esimd_program_.clear();
break;
case SPIRVTypeEnum::SPIRV_SPMD_AND_ESIMD:
default:
break;
}
return std::make_pair(spmd_program_, esimd_program_);
}
llvm::Expected<SPVMetadata> SpvSplitter::Parse(const char *spv_buffer, uint32_t spv_buffer_size_in_bytes) {
this->Reset();
this->only_detect_ = true;
auto parseError = ParseSPIRV(spv_buffer, spv_buffer_size_in_bytes);
if (parseError) {
return std::move(parseError);
}
return GetVLDMetadata();
}
bool SpvSplitter::HasEntryPoints() const {
auto CurSPIRVType = GetCurrentSPIRVType();
if (entry_points_.size() == 0)
return false;
bool AllEntryPointsAreSPMD = std::all_of(entry_points_.begin(), entry_points_.end(), [&](auto el) {
return esimd_decorated_ids_.find(el) == esimd_decorated_ids_.end();
});
bool AllEntryPointsAreESIMD = std::all_of(entry_points_.begin(), entry_points_.end(), [&](auto el) {
return esimd_decorated_ids_.find(el) != esimd_decorated_ids_.end();
});
if (CurSPIRVType == SPIRVTypeEnum::SPIRV_ESIMD && AllEntryPointsAreSPMD) {
return false;
}
if (CurSPIRVType == SPIRVTypeEnum::SPIRV_SPMD && AllEntryPointsAreESIMD) {
return false;
}
// We currently do not support entry points in both parts.
IGC_ASSERT(AllEntryPointsAreESIMD || AllEntryPointsAreSPMD);
return true;
}
SPVMetadata SpvSplitter::GetVLDMetadata() const {
SPVMetadata Metadata;
Metadata.SpirvType = GetCurrentSPIRVType();
Metadata.HasEntryPoints = HasEntryPoints();
Metadata.ForcedSubgroupSize = GetForcedSubgroupSize();
Metadata.ExportedFunctions = GetExportedFunctions();
Metadata.ImportedFunctions = GetImportedFunctions();
return Metadata;
}
const uint32_t SpvSplitter::GetForcedSubgroupSize() const {
if (entry_point_to_subgroup_size_map_.size() == 0)
return 0;
IGC_ASSERT(std::all_of(entry_point_to_subgroup_size_map_.begin(), entry_point_to_subgroup_size_map_.end(),
[&](auto &el) { return el.second == entry_point_to_subgroup_size_map_.begin()->second; }));
return entry_point_to_subgroup_size_map_.begin()->second;
}
const std::vector<std::string> &SpvSplitter::GetExportedFunctions() const { return exported_functions_; }
const std::vector<std::string> &SpvSplitter::GetImportedFunctions() const { return imported_functions_; }
void SpvSplitter::Reset() {
spmd_program_.clear();
esimd_program_.clear();
esimd_decorated_ids_.clear();
entry_points_.clear();
esimd_function_declarations_.clear();
esimd_functions_to_declare_.clear();
entry_point_to_subgroup_size_map_.clear();
exported_functions_.clear();
imported_functions_.clear();
is_inside_spmd_function_ = false;
is_inside_esimd_function_ = false;
has_spmd_functions_ = false;
has_esimd_functions_ = false;
cur_esimd_function_id_ = -1;
}
llvm::Error SpvSplitter::HandleHeader(llvm::ArrayRef<uint32_t> words) {
// insert the same header to both spmd and esimd programs.
if (!only_detect_) {
spmd_program_.insert(spmd_program_.end(), words.begin(), words.end());
esimd_program_.insert(esimd_program_.end(), words.begin(), words.end());
}
return llvm::Error::success();
}
llvm::Error SpvSplitter::HandleInstruction(llvm::ArrayRef<uint32_t> words) {
uint16_t opcode = words[0] & 0xFFFF;
switch (opcode) {
case spv::OpDecorate:
return HandleDecorate(words);
case spv::OpGroupDecorate:
return HandleGroupDecorate(words);
case spv::OpFunction:
return HandleFunctionStart(words);
case spv::OpFunctionParameter:
return HandleFunctionParameter(words);
case spv::OpFunctionEnd:
return HandleFunctionEnd(words);
case spv::OpEntryPoint:
return HandleEntryPoint(words);
case spv::OpExecutionMode:
return HandleExecutionMode(words);
default:
if (!is_inside_spmd_function_) {
AddInstToProgram(words, esimd_program_);
}
if (!is_inside_esimd_function_) {
AddInstToProgram(words, spmd_program_);
}
break;
}
return llvm::Error::success();
}
llvm::Error SpvSplitter::HandleDecorate(llvm::ArrayRef<uint32_t> words) {
// OpDecorate instruction format:
// Word 0: WordCount and Opcode
// Word 1: Target ID
// Word 2: Decoration (enum)
// Word 3..N: Extra operands depending on decoration
IGC_ASSERT(words.size() >= 3);
uint32_t targetId = words[1];
uint32_t decoration = words[2];
// Check if it's DecorationVectorComputeFunctionINTEL
if (decoration == spv::DecorationVectorComputeFunctionINTEL) {
esimd_decorated_ids_.insert(targetId);
} else if (decoration == spv::DecorationStackCallINTEL) {
// StackCallINTEL is a decoration specific to ESIMD
esimd_functions_to_declare_.insert(targetId);
} else if (decoration == spv::DecorationLinkageAttributes) {
// DecorationLinkageAttributes has the following operands:
// Target (ID), Decoration, Name (string), LinkageType (enum)
if (words.size() >= 5) {
// Extract the name from words[3..N-2]
std::string funcName = DecodeStringLiteral(words, 3);
uint32_t linkageType = words[words.size() - 1];
if (linkageType == spv::LinkageTypeExport) {
exported_functions_.push_back(funcName);
} else if (linkageType == spv::LinkageTypeImport) {
imported_functions_.push_back(funcName);
}
}
AddInstToProgram(words, spmd_program_);
AddInstToProgram(words, esimd_program_);
} else {
AddInstToProgram(words, spmd_program_);
}
AddInstToProgram(words, esimd_program_);
return llvm::Error::success();
}
llvm::Error SpvSplitter::HandleGroupDecorate(llvm::ArrayRef<uint32_t> words) {
// OpGroupDecorate instruction format:
// Word 0: WordCount and Opcode
// Word 1: Decoration Group ID
// Words 2..N: Target IDs to be decorated with the group
IGC_ASSERT(words.size() >= 2);
uint32_t groupId = words[1];
if (esimd_decorated_ids_.find(groupId) != esimd_decorated_ids_.end()) {
// Apply the group decoration to the target IDs
for (size_t i = 2; i < words.size(); ++i) {
uint32_t targetId = words[i];
esimd_decorated_ids_.insert(targetId);
}
} else {
AddInstToProgram(words, spmd_program_);
}
AddInstToProgram(words, esimd_program_);
return llvm::Error::success();
}
llvm::Error SpvSplitter::HandleFunctionStart(llvm::ArrayRef<uint32_t> words) {
// OpFunction instruction format:
// Word 0: WordCount and Opcode
// Word 1: Result Type ID
// Word 2: Result ID
// Word 3: Function Control
// Word 4: Function Type ID
IGC_ASSERT(words.size() >= 5);
uint32_t resultId = words[2];
if (esimd_decorated_ids_.find(resultId) != esimd_decorated_ids_.end()) {
is_inside_esimd_function_ = true;
has_esimd_functions_ = true;
cur_esimd_function_id_ = resultId;
AddInstToProgram(words, esimd_program_);
AddInstToProgram(words, esimd_function_declarations_[cur_esimd_function_id_]);
} else {
is_inside_spmd_function_ = true;
has_spmd_functions_ = true;
AddInstToProgram(words, spmd_program_);
}
return llvm::Error::success();
}
llvm::Error SpvSplitter::HandleFunctionParameter(llvm::ArrayRef<uint32_t> words) {
// OpFunctionParameter instruction format:
// Word 0: WordCount and Opcode
// Word 1: Result Type ID
// Word 2: Result ID
if (is_inside_esimd_function_) {
AddInstToProgram(words, esimd_program_);
AddInstToProgram(words, esimd_function_declarations_[cur_esimd_function_id_]);
} else {
AddInstToProgram(words, spmd_program_);
}
return llvm::Error::success();
}
llvm::Error SpvSplitter::HandleFunctionEnd(llvm::ArrayRef<uint32_t> words) {
// OpFunctionEnd instruction has no operands other than the opcode and word
// count
if (is_inside_esimd_function_) {
AddInstToProgram(words, esimd_program_);
AddInstToProgram(words, esimd_function_declarations_[cur_esimd_function_id_]);
cur_esimd_function_id_ = -1;
}
if (is_inside_spmd_function_) {
AddInstToProgram(words, spmd_program_);
}
is_inside_esimd_function_ = false;
is_inside_spmd_function_ = false;
return llvm::Error::success();
}
llvm::Error SpvSplitter::HandleEntryPoint(llvm::ArrayRef<uint32_t> words) {
// OpEntryPoint instruction format:
// Word 0: WordCount and Opcode
// Word 1: Execution Model
// Word 2: Entry Point ID
// Words 3..N: Name (string), Interface IDs
IGC_ASSERT(words.size() >= 3);
uint32_t entryPointId = words[2];
entry_points_.insert(entryPointId);
AddInstToProgram(words, spmd_program_);
AddInstToProgram(words, esimd_program_);
return llvm::Error::success();
}
llvm::Error SpvSplitter::HandleExecutionMode(llvm::ArrayRef<uint32_t> words) {
// OpExecutionMode instruction format:
// Word 0: WordCount and Opcode
// Word 1: Entry Point ID
// Word 2: Execution Mode
// Words 3..N: Optional operands
IGC_ASSERT(words.size() >= 3);
uint32_t entryPointId = words[1];
uint32_t execMode = words[2];
if (execMode == spv::ExecutionModeSubgroupSize) {
if (words.size() >= 4) {
uint32_t sgSize = words[3];
entry_point_to_subgroup_size_map_.insert({entryPointId, sgSize});
} else {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"OpExecutionMode SubgroupSize requires an additional operand");
}
}
AddInstToProgram(words, spmd_program_);
AddInstToProgram(words, esimd_program_);
return llvm::Error::success();
}
void SpvSplitter::AddInstToProgram(llvm::ArrayRef<uint32_t> words, ProgramStreamType &program) {
if (!only_detect_) {
program.insert(program.end(), words.begin(), words.end());
}
}
std::string SpvSplitter::DecodeStringLiteral(llvm::ArrayRef<uint32_t> words, size_t startIndex) {
std::string result;
for (size_t i = startIndex; i < words.size(); ++i) {
uint32_t word = words[i];
for (int j = 0; j < 4; ++j) {
char c = (char)((word >> (j * 8)) & 0xFF);
if (c == '\0') {
return result;
}
result += c;
}
}
return result;
}
} // namespace VLD
} // namespace IGC
|