File: VLD_SPIRVSplitter.cpp

package info (click to toggle)
intel-graphics-compiler2 2.20.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 107,552 kB
  • sloc: cpp: 807,012; lisp: 287,936; ansic: 16,397; python: 4,010; yacc: 2,588; lex: 1,666; pascal: 313; sh: 186; makefile: 37
file content (439 lines) | stat: -rw-r--r-- 14,151 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/*========================== begin_copyright_notice ============================

Copyright (C) 2023-2024 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "VLD_SPIRVSplitter.hpp"

#include "Probe/Assertion.h"
#include "spirv/unified1/spirv.hpp"

namespace IGC {
namespace VLD {

llvm::Expected<SPVMetadata> GetVLDMetadata(const char *spv_buffer, uint32_t spv_buffer_size_in_bytes) {
  return SpvSplitter().Parse(spv_buffer, spv_buffer_size_in_bytes);
}

llvm::Expected<std::pair<ProgramStreamType, ProgramStreamType>> SplitSPMDAndESIMD(const char *spv_buffer,
                                                                                  uint32_t spv_buffer_size_in_bytes) {

  SpvSplitter splitter;
  return splitter.Split(spv_buffer, spv_buffer_size_in_bytes);
}

llvm::Error SpvSplitter::ParseSPIRV(const char *spv_buffer, uint32_t spv_buffer_size_in_bytes) {
  const uint32_t *const binary = reinterpret_cast<const uint32_t *>(spv_buffer);
  const size_t word_count = (spv_buffer_size_in_bytes / sizeof(uint32_t));

  if (word_count < 5) {
    return llvm::createStringError(llvm::inconvertibleErrorCode(), "SPIR-V binary is too short!");
  }

  // Skip the header (magic, version, generator, bound, schema)
  size_t offset = 5;

  llvm::Error err = HandleHeader(llvm::ArrayRef<uint32_t>(&binary[0], 5));
  if (err)
    return std::move(err);

  // Now read the instructions
  while (offset < word_count) {
    uint32_t word = binary[offset];
    uint16_t wordCount = word >> 16;

    if (wordCount == 0) {
      return llvm::createStringError(llvm::inconvertibleErrorCode(),
                                     "Invalid SPIR-V instruction with word count 0 at offset " +
                                         std::to_string(offset));
    }

    if (offset + wordCount > word_count) {
      return llvm::createStringError(llvm::inconvertibleErrorCode(), "SPIR-V instruction at offset " +
                                                                         std::to_string(offset) +
                                                                         " extends beyond the end of the binary");
    }

    llvm::ArrayRef<uint32_t> instWords(&binary[offset], wordCount);

    // Handle the instruction
    err = HandleInstruction(instWords);
    if (err)
      return std::move(err);

    offset += wordCount;
  }

  if (!has_spmd_functions_ && !has_esimd_functions_) {
    return llvm::createStringError(llvm::inconvertibleErrorCode(),
                                   "SPIR-V file did not contain any SPMD or ESIMD functions!");
  }

  return llvm::Error::success();
}

SPIRVTypeEnum SpvSplitter::GetCurrentSPIRVType() const {
  if (has_spmd_functions_ && has_esimd_functions_) {
    return SPIRVTypeEnum::SPIRV_SPMD_AND_ESIMD;
  } else if (has_spmd_functions_) {
    return SPIRVTypeEnum::SPIRV_SPMD;
  }

  return SPIRVTypeEnum::SPIRV_ESIMD;
}
llvm::Expected<std::pair<ProgramStreamType, ProgramStreamType>> SpvSplitter::Split(const char *spv_buffer,
                                                                                   uint32_t spv_buffer_size_in_bytes) {
  this->Reset();
  this->only_detect_ = false;
  auto parseError = ParseSPIRV(spv_buffer, spv_buffer_size_in_bytes);

  if (parseError) {
    return std::move(parseError);
  }

  // Add declarations of ESIMD functions that are called from SPMD module,
  // otherwise SPIR-V reader might fail.
  for (auto esimd_func_id : esimd_functions_to_declare_) {
    if (esimd_function_declarations_.find(esimd_func_id) == esimd_function_declarations_.end()) {
      return llvm::createStringError(llvm::inconvertibleErrorCode(),
                                     "SPIR-V Splitter error: ESIMD function declaration not found!");
    }

    spmd_program_.insert(spmd_program_.end(), esimd_function_declarations_[esimd_func_id].begin(),
                         esimd_function_declarations_[esimd_func_id].end());
  }

  switch (GetCurrentSPIRVType()) {
  case SPIRVTypeEnum::SPIRV_ESIMD:
    spmd_program_.clear();
    break;
  case SPIRVTypeEnum::SPIRV_SPMD:
    esimd_program_.clear();
    break;
  case SPIRVTypeEnum::SPIRV_SPMD_AND_ESIMD:
  default:
    break;
  }

  return std::make_pair(spmd_program_, esimd_program_);
}

llvm::Expected<SPVMetadata> SpvSplitter::Parse(const char *spv_buffer, uint32_t spv_buffer_size_in_bytes) {
  this->Reset();
  this->only_detect_ = true;
  auto parseError = ParseSPIRV(spv_buffer, spv_buffer_size_in_bytes);

  if (parseError) {
    return std::move(parseError);
  }

  return GetVLDMetadata();
}

bool SpvSplitter::HasEntryPoints() const {
  auto CurSPIRVType = GetCurrentSPIRVType();
  if (entry_points_.size() == 0)
    return false;

  bool AllEntryPointsAreSPMD = std::all_of(entry_points_.begin(), entry_points_.end(), [&](auto el) {
    return esimd_decorated_ids_.find(el) == esimd_decorated_ids_.end();
  });

  bool AllEntryPointsAreESIMD = std::all_of(entry_points_.begin(), entry_points_.end(), [&](auto el) {
    return esimd_decorated_ids_.find(el) != esimd_decorated_ids_.end();
  });

  if (CurSPIRVType == SPIRVTypeEnum::SPIRV_ESIMD && AllEntryPointsAreSPMD) {
    return false;
  }

  if (CurSPIRVType == SPIRVTypeEnum::SPIRV_SPMD && AllEntryPointsAreESIMD) {
    return false;
  }

  // We currently do not support entry points in both parts.
  IGC_ASSERT(AllEntryPointsAreESIMD || AllEntryPointsAreSPMD);

  return true;
}

SPVMetadata SpvSplitter::GetVLDMetadata() const {
  SPVMetadata Metadata;
  Metadata.SpirvType = GetCurrentSPIRVType();
  Metadata.HasEntryPoints = HasEntryPoints();
  Metadata.ForcedSubgroupSize = GetForcedSubgroupSize();
  Metadata.ExportedFunctions = GetExportedFunctions();
  Metadata.ImportedFunctions = GetImportedFunctions();
  return Metadata;
}

const uint32_t SpvSplitter::GetForcedSubgroupSize() const {
  if (entry_point_to_subgroup_size_map_.size() == 0)
    return 0;
  IGC_ASSERT(std::all_of(entry_point_to_subgroup_size_map_.begin(), entry_point_to_subgroup_size_map_.end(),
                         [&](auto &el) { return el.second == entry_point_to_subgroup_size_map_.begin()->second; }));

  return entry_point_to_subgroup_size_map_.begin()->second;
}

const std::vector<std::string> &SpvSplitter::GetExportedFunctions() const { return exported_functions_; }

const std::vector<std::string> &SpvSplitter::GetImportedFunctions() const { return imported_functions_; }

void SpvSplitter::Reset() {
  spmd_program_.clear();
  esimd_program_.clear();
  esimd_decorated_ids_.clear();
  entry_points_.clear();
  esimd_function_declarations_.clear();
  esimd_functions_to_declare_.clear();
  entry_point_to_subgroup_size_map_.clear();
  exported_functions_.clear();
  imported_functions_.clear();

  is_inside_spmd_function_ = false;
  is_inside_esimd_function_ = false;
  has_spmd_functions_ = false;
  has_esimd_functions_ = false;
  cur_esimd_function_id_ = -1;
}

llvm::Error SpvSplitter::HandleHeader(llvm::ArrayRef<uint32_t> words) {
  // insert the same header to both spmd and esimd programs.
  if (!only_detect_) {
    spmd_program_.insert(spmd_program_.end(), words.begin(), words.end());
    esimd_program_.insert(esimd_program_.end(), words.begin(), words.end());
  }
  return llvm::Error::success();
}

llvm::Error SpvSplitter::HandleInstruction(llvm::ArrayRef<uint32_t> words) {
  uint16_t opcode = words[0] & 0xFFFF;

  switch (opcode) {
  case spv::OpDecorate:
    return HandleDecorate(words);
  case spv::OpGroupDecorate:
    return HandleGroupDecorate(words);
  case spv::OpFunction:
    return HandleFunctionStart(words);
  case spv::OpFunctionParameter:
    return HandleFunctionParameter(words);
  case spv::OpFunctionEnd:
    return HandleFunctionEnd(words);
  case spv::OpEntryPoint:
    return HandleEntryPoint(words);
  case spv::OpExecutionMode:
    return HandleExecutionMode(words);
  default:
    if (!is_inside_spmd_function_) {
      AddInstToProgram(words, esimd_program_);
    }
    if (!is_inside_esimd_function_) {
      AddInstToProgram(words, spmd_program_);
    }
    break;
  }

  return llvm::Error::success();
}

llvm::Error SpvSplitter::HandleDecorate(llvm::ArrayRef<uint32_t> words) {
  // OpDecorate instruction format:
  // Word 0: WordCount and Opcode
  // Word 1: Target ID
  // Word 2: Decoration (enum)
  // Word 3..N: Extra operands depending on decoration

  IGC_ASSERT(words.size() >= 3);

  uint32_t targetId = words[1];
  uint32_t decoration = words[2];

  // Check if it's DecorationVectorComputeFunctionINTEL
  if (decoration == spv::DecorationVectorComputeFunctionINTEL) {
    esimd_decorated_ids_.insert(targetId);
  } else if (decoration == spv::DecorationStackCallINTEL) {
    // StackCallINTEL is a decoration specific to ESIMD
    esimd_functions_to_declare_.insert(targetId);
  } else if (decoration == spv::DecorationLinkageAttributes) {
    // DecorationLinkageAttributes has the following operands:
    // Target (ID), Decoration, Name (string), LinkageType (enum)
    if (words.size() >= 5) {
      // Extract the name from words[3..N-2]
      std::string funcName = DecodeStringLiteral(words, 3);
      uint32_t linkageType = words[words.size() - 1];
      if (linkageType == spv::LinkageTypeExport) {
        exported_functions_.push_back(funcName);
      } else if (linkageType == spv::LinkageTypeImport) {
        imported_functions_.push_back(funcName);
      }
    }

    AddInstToProgram(words, spmd_program_);
    AddInstToProgram(words, esimd_program_);
  } else {
    AddInstToProgram(words, spmd_program_);
  }
  AddInstToProgram(words, esimd_program_);

  return llvm::Error::success();
}

llvm::Error SpvSplitter::HandleGroupDecorate(llvm::ArrayRef<uint32_t> words) {
  // OpGroupDecorate instruction format:
  // Word 0: WordCount and Opcode
  // Word 1: Decoration Group ID
  // Words 2..N: Target IDs to be decorated with the group

  IGC_ASSERT(words.size() >= 2);

  uint32_t groupId = words[1];

  if (esimd_decorated_ids_.find(groupId) != esimd_decorated_ids_.end()) {
    // Apply the group decoration to the target IDs
    for (size_t i = 2; i < words.size(); ++i) {
      uint32_t targetId = words[i];
      esimd_decorated_ids_.insert(targetId);
    }
  } else {
    AddInstToProgram(words, spmd_program_);
  }
  AddInstToProgram(words, esimd_program_);

  return llvm::Error::success();
}

llvm::Error SpvSplitter::HandleFunctionStart(llvm::ArrayRef<uint32_t> words) {
  // OpFunction instruction format:
  // Word 0: WordCount and Opcode
  // Word 1: Result Type ID
  // Word 2: Result ID
  // Word 3: Function Control
  // Word 4: Function Type ID

  IGC_ASSERT(words.size() >= 5);

  uint32_t resultId = words[2];

  if (esimd_decorated_ids_.find(resultId) != esimd_decorated_ids_.end()) {
    is_inside_esimd_function_ = true;
    has_esimd_functions_ = true;
    cur_esimd_function_id_ = resultId;

    AddInstToProgram(words, esimd_program_);
    AddInstToProgram(words, esimd_function_declarations_[cur_esimd_function_id_]);
  } else {
    is_inside_spmd_function_ = true;
    has_spmd_functions_ = true;
    AddInstToProgram(words, spmd_program_);
  }

  return llvm::Error::success();
}

llvm::Error SpvSplitter::HandleFunctionParameter(llvm::ArrayRef<uint32_t> words) {
  // OpFunctionParameter instruction format:
  // Word 0: WordCount and Opcode
  // Word 1: Result Type ID
  // Word 2: Result ID

  if (is_inside_esimd_function_) {
    AddInstToProgram(words, esimd_program_);
    AddInstToProgram(words, esimd_function_declarations_[cur_esimd_function_id_]);
  } else {
    AddInstToProgram(words, spmd_program_);
  }
  return llvm::Error::success();
}

llvm::Error SpvSplitter::HandleFunctionEnd(llvm::ArrayRef<uint32_t> words) {
  // OpFunctionEnd instruction has no operands other than the opcode and word
  // count

  if (is_inside_esimd_function_) {
    AddInstToProgram(words, esimd_program_);
    AddInstToProgram(words, esimd_function_declarations_[cur_esimd_function_id_]);
    cur_esimd_function_id_ = -1;
  }
  if (is_inside_spmd_function_) {
    AddInstToProgram(words, spmd_program_);
  }

  is_inside_esimd_function_ = false;
  is_inside_spmd_function_ = false;
  return llvm::Error::success();
}

llvm::Error SpvSplitter::HandleEntryPoint(llvm::ArrayRef<uint32_t> words) {
  // OpEntryPoint instruction format:
  // Word 0: WordCount and Opcode
  // Word 1: Execution Model
  // Word 2: Entry Point ID
  // Words 3..N: Name (string), Interface IDs

  IGC_ASSERT(words.size() >= 3);

  uint32_t entryPointId = words[2];
  entry_points_.insert(entryPointId);

  AddInstToProgram(words, spmd_program_);
  AddInstToProgram(words, esimd_program_);

  return llvm::Error::success();
}

llvm::Error SpvSplitter::HandleExecutionMode(llvm::ArrayRef<uint32_t> words) {
  // OpExecutionMode instruction format:
  // Word 0: WordCount and Opcode
  // Word 1: Entry Point ID
  // Word 2: Execution Mode
  // Words 3..N: Optional operands

  IGC_ASSERT(words.size() >= 3);

  uint32_t entryPointId = words[1];
  uint32_t execMode = words[2];

  if (execMode == spv::ExecutionModeSubgroupSize) {
    if (words.size() >= 4) {
      uint32_t sgSize = words[3];
      entry_point_to_subgroup_size_map_.insert({entryPointId, sgSize});
    } else {
      return llvm::createStringError(llvm::inconvertibleErrorCode(),
                                     "OpExecutionMode SubgroupSize requires an additional operand");
    }
  }

  AddInstToProgram(words, spmd_program_);
  AddInstToProgram(words, esimd_program_);

  return llvm::Error::success();
}

void SpvSplitter::AddInstToProgram(llvm::ArrayRef<uint32_t> words, ProgramStreamType &program) {
  if (!only_detect_) {
    program.insert(program.end(), words.begin(), words.end());
  }
}

std::string SpvSplitter::DecodeStringLiteral(llvm::ArrayRef<uint32_t> words, size_t startIndex) {
  std::string result;
  for (size_t i = startIndex; i < words.size(); ++i) {
    uint32_t word = words[i];
    for (int j = 0; j < 4; ++j) {
      char c = (char)((word >> (j * 8)) & 0xFF);
      if (c == '\0') {
        return result;
      }
      result += c;
    }
  }
  return result;
}

} // namespace VLD
} // namespace IGC