1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2020-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Assertions.h"
#include "InstSplit.h"
using namespace vISA;
InstSplitPass::InstSplitPass(IR_Builder *builder) : m_builder(builder) {}
static bool DoNotSplit(G4_INST* inst) {
if (inst->isDpas() || inst->isSend() || inst->opcode() == G4_label ||
inst->opcode() == G4_pln || inst->opcode() == G4_return ||
inst->isFlowControl() || inst->isPseudoLogic() ||
inst->opcode() == G4_madw)
return true;
return false;
}
// This pass verifies instructions sizes with respect to SIMD width and
// operands' data type. Instructions that touch more than 2 GRFs are split
// evenly until they are within 2 GRFs. Instructions not considered for
// splitting:
// - SIMD1, SIMD2, SIMD4 and SIMD8
// - Send messages
// - Plane
// - Control flow, labels and return
// - Dpas
// - Instructions with indirect addressing other than 1x1 indirect region
// - SIMD32 instructions with operands which have Q/DF datatypes and
// direct addressing mode
void InstSplitPass::run() {
for (INST_LIST_ITER it = m_builder->instList.begin(),
instlistEnd = m_builder->instList.end();
it != instlistEnd; ++it) {
G4_INST *inst = *it;
if (inst->getExecSize() == g4::SIMD1) {
continue;
}
if (DoNotSplit(inst)) {
continue;
}
it = splitInstruction(it, m_builder->instList);
}
}
void InstSplitPass::runOnBB(G4_BB *bb) {
for (INST_LIST_ITER it = bb->begin(), instlistEnd = bb->end();
it != instlistEnd; ++it) {
G4_INST *inst = *it;
if (inst->getExecSize() == g4::SIMD1) {
continue;
}
if (DoNotSplit(inst)) {
continue;
}
it = splitInstruction(it, bb->getInstList());
}
}
// Recursive function to split instructions that touch more than 2 GRF
// For example, with 32-byte GRF:
// 1 SIMD32 inst with 64-bit operand(s)
// split into:
// -> 2 SIMD16 insts with 64-bit operand(s)
// split again into:
// -> 4 SIMD8 insts with 64-bit operand(s)
INST_LIST_ITER InstSplitPass::splitInstruction(INST_LIST_ITER it,
INST_LIST &instList) {
G4_INST *inst = *it;
bool doSplit = false;
G4_ExecSize execSize = inst->getExecSize();
auto cross2GRF = [inst, this](G4_Operand *opnd) {
G4_SrcRegRegion *src = opnd->asSrcRegRegion();
// A source cannot span more than 2 adjacent GRF registers, if the source
// is in indirect 1x1 mode. vISA assumes that the subreg of indirect operand
// is GRF-aligned.
bool indirect1x1 = opnd->isIndirect() && !src->getRegion()->isRegionWH();
if (indirect1x1) {
uint16_t srcStride = 0;
uint32_t execSize = inst->getExecSize();
src->getRegion()->isSingleStride(execSize, srcStride);
return (execSize * src->getTypeSize() * srcStride) >
(m_builder->getGRFSize() * 2u);
}
uint32_t leftBound = 0, rightBound = 0;
computeSrcBounds(src, leftBound, rightBound);
return (rightBound - leftBound) > (m_builder->getGRFSize() * 2u);
};
auto cross2GRFDst = [inst, this](G4_DstRegRegion *dst) {
// In Indirect Addressing mode, a destination cannot span more than 2
// adjacent GRF registers. vISA assumes that the subreg of indirect
// operand is GRF-aligned.
if (dst->isNullReg() || dst->isIndirect()) {
return ((unsigned)inst->getExecSize() * dst->getTypeSize() *
dst->getHorzStride()) > (m_builder->getGRFSize() * 2u);
}
uint32_t leftBound = 0, rightBound = 0;
computeDstBounds(dst, leftBound, rightBound);
return (rightBound - leftBound) > (m_builder->getGRFSize() * 2u);
};
auto useTmpForSrc = [&](G4_SrcRegRegion *src) -> G4_SrcRegRegion * {
// insert mov before current instruction
G4_Declare *dcl = m_builder->createTempVar(execSize, src->getType(), Any);
G4_SrcModifier modifier = src->getModifier();
src->setModifier(Mod_src_undef);
G4_INST *movInst =
m_builder->createMov(execSize, m_builder->createDstRegRegion(dcl, 1),
src, inst->getOption(), false);
movInst->inheritDIFrom(inst);
INST_LIST_ITER newMovIter = instList.insert(it, movInst);
// split new mov if needed
splitInstruction(newMovIter, instList);
G4_SrcRegRegion *tmpSrc = m_builder->createSrcRegRegion(
modifier, Direct, dcl->getRegVar(), 0, 0, m_builder->getRegionStride1(),
dcl->getElemType());
return tmpSrc;
};
// Exception to allow to span 2 GRFs:
// When ExecSize = 32 and Dtatype = DF or *Q, then dst/src operands cannot
// span more than 4 ajacent GRF registers. This requires that the operand must
// be GRF-aligned and have contiguous regions.
auto AllowCross2GRF = [&](G4_Operand *opnd) {
if (!m_builder->supportNativeSIMD32())
return false;
// Must be SIMD32 with 64b datatypes
if (inst->getExecSize() != g4::SIMD32 || opnd->getTypeSize() != 8)
return false;
// Must be GRF-aligned
if (!opnd->isScalarSrc() && !m_builder->tryToAlignOperand(
opnd, m_builder->getGRFSize()))
return false;
// Must be scalar or contiguous regions
if (opnd->isDstRegRegion()) {
return (opnd->asDstRegRegion()->getHorzStride() == 1);
} else {
return (opnd->isScalarSrc() ||
opnd->asSrcRegRegion()->getRegion()->isContiguous(
inst->getExecSize()));
}
return false;
};
// Check destination
bool isDstCross2GRF = cross2GRFDst(inst->getDst());
if (inst->getDst() && isDstCross2GRF && !AllowCross2GRF(inst->getDst())) {
doSplit = true;
}
// Check sources
for (int i = 0, numSrc = inst->getNumSrc(); i < numSrc; ++i) {
if (!inst->getSrc(i)->isSrcRegRegion())
continue;
G4_SrcRegRegion *src = inst->getSrc(i)->asSrcRegRegion();
// If dst spans 4 GRFs(dst must be 64b datatype and execSize == 32), src
// operand must be broadcast regioning or flat regioning (dst/src is
// aligned). In other words if src is not 64b datatype, we must fix src
// with >1 stride. In this way src also spans 4 GRFs after fixing.
// Although this is allowed by HW but it's not allowed by vISA as vISA
// requires contiguous regioning for 4 GRFs operand. So, we have to split
// for such case. For example:
// mov (32|M0) r48.0<1>:q r12.0<1;1,0>:d
// =>
// mov (16|M0) r48.0<1>:q r12.0<1;1,0>:d
// mov (16|M16) r50.0<1>:q r13.0<1;1,0>:d
// If dst is :df datatype, wouldn't split here as it's in long pipeline and
// will be fixed in HWConformity.
if ((isDstCross2GRF && !IS_DFTYPE(inst->getDst()->getType()) &&
src->getTypeSize() != 8 &&
!src->isScalarSrc()) ||
(cross2GRF(src) && !AllowCross2GRF(src))) {
doSplit = true;
break;
}
if (m_builder->getPlatform() >= Xe_XeHPSDV) {
// Instructions whose operands are 64b and have 2D regioning need to be
// split up front to help fixUnalignedRegions(..) covering 2D cases.
if ((src->getType() == Type_DF || IS_QTYPE(src->getType())) &&
!src->getRegion()->isSingleStride(execSize)) {
// Try splitting the inst if it's a mov. Otherwise, legalize
// the inst by inserting a mov for the src, and split the new
// mov if needed.
if (inst->opcode() == G4_mov) {
doSplit = true;
break;
}
auto tmpSrc = useTmpForSrc(src);
vASSERT(tmpSrc->getRegion()->isSingleStride(execSize));
inst->setSrc(tmpSrc, i);
}
}
}
// Handle split exceptions
if (!doSplit) {
if (inst->opcode() == G4_cmp && !m_builder->supportNativeSIMD32()) {
// Due to a simulator quirk, we need to split cmp instruction even if the
// dst operand of the compare is null, if it "looks" too large,
// that is, if the execution size is 16 and the comparison type
// is QW.
if (needSplitByExecSize(execSize) && inst->getDst()->isNullReg() &&
(inst->getSrc(0)->getTypeSize() > 4 ||
inst->getSrc(1)->getTypeSize() > 4)) {
doSplit = true;
}
}
}
if (!doSplit) {
return it;
}
G4_opcode op = inst->opcode();
G4_ExecSize newExecSize{execSize / 2};
G4_DstRegRegion *dst = inst->getDst();
bool nullDst = dst && inst->hasNULLDst();
// Check src/dst dependency
if (dst && !nullDst) {
for (int i = 0, numSrc = inst->getNumSrc(); i < numSrc; i++) {
bool useTmp = false;
G4_Operand *src = inst->getSrc(i);
G4_CmpRelation rel = compareSrcDstRegRegion(dst, src);
if (rel != Rel_disjoint) {
useTmp = (rel != Rel_eq) ||
src->asSrcRegRegion()->getRegion()->isRepeatRegion(
inst->getExecSize());
}
if (useTmp) {
vISA_ASSERT(src != nullptr && src->isSrcRegRegion(),
"source must be a SrcRegRegion");
auto tmpSrc = useTmpForSrc(src->asSrcRegRegion());
inst->setSrc(tmpSrc, i);
}
}
}
// Special handling for vISA ADDC (SUBB) instruction,
// which is translated to addc (subb)/mov acc pair
// and should be splitted together.
G4_INST *carryMovInst = nullptr;
G4_Predicate* newCarryMovPred = NULL;
G4_CondMod* newCarryMovCondMod = NULL;
INST_LIST_ITER nextIter = std::next(it);
if (inst->opcode() == G4_addc || inst->opcode() == G4_subb) {
G4_INST *nextInst = *nextIter;
if (nextInst->opcode() == G4_mov && nextInst->isAccSrcInst() &&
nextInst->getExecSize() == inst->getExecSize()) {
carryMovInst = nextInst;
if (carryMovInst->getPredicate()) {
newCarryMovPred = carryMovInst->getPredicate();
newCarryMovPred->splitPred();
}
if (carryMovInst->getCondMod()) {
newCarryMovCondMod = carryMovInst->getCondMod();
newCarryMovCondMod->splitCondMod();
}
}
}
G4_SrcRegRegion* accSrcRegion = NULL;
if (inst->getImplAccSrc()) {
accSrcRegion = inst->getImplAccSrc()->asSrcRegRegion();
}
G4_DstRegRegion* accDstRegion = NULL;
if (inst->getImplAccDst()) {
accDstRegion = inst->getImplAccDst();
}
// Create new predicate
G4_Predicate *newPred = NULL;
if (inst->getPredicate()) {
newPred = inst->getPredicate();
newPred->splitPred();
}
// Create new condition modifier
G4_CondMod *newCondMod = NULL;
if (inst->getCondMod()) {
newCondMod = inst->getCondMod();
newCondMod->splitCondMod();
}
INST_LIST_ITER newInstIterator = it;
for (int i = 0; i < execSize; i += newExecSize) {
G4_INST *newInst = nullptr;
// Create new destination
G4_DstRegRegion *newDst;
if (dst && !nullDst) {
newDst = m_builder->createSubDstOperand(dst, (uint16_t)i, newExecSize);
} else {
newDst = dst;
}
// Create new split instruction
newInst = m_builder->makeSplittingInst(inst, newExecSize);
newInst->setDest(newDst);
newInst->setPredicate(m_builder->duplicateOperand(newPred));
newInst->setCondMod(m_builder->duplicateOperand(newCondMod));
newInstIterator = instList.insert(it, newInst);
// Set new sources
for (int j = 0, numSrc = inst->getNumSrc(); j < numSrc; j++) {
G4_Operand *src = inst->getSrc(j);
if (!src)
continue;
// Src1 for single source math should be arc reg null.
if (src->isImm() ||
(inst->opcode() == G4_math && j == 1 && src->isNullReg())) {
newInst->setSrc(src, j);
} else if (src->asSrcRegRegion()->isScalar() ||
(j == 0 && op == G4_line)) {
newInst->setSrc(m_builder->duplicateOperand(src), j);
} else {
newInst->setSrc(
m_builder->createSubSrcOperand(
src->asSrcRegRegion(), (uint16_t)i, newExecSize,
(uint8_t)(src->asSrcRegRegion()->getRegion()->vertStride),
(uint8_t)(src->asSrcRegRegion()->getRegion()->width)),
j);
}
}
// Set new mask
// FIXME: To update the mask in a CM kernel, the inst's BB should be
// divergent.
// However, at this stage BBs are not constructed yet.
bool isCMKernel = m_builder->kernel.getInt32KernelAttr(
Attributes::ATTR_Target) == VISA_CM;
bool needsMaskOffset =
newCondMod || newPred || (!isCMKernel && !inst->isWriteEnableInst());
if (needsMaskOffset) {
int newMaskOffset = inst->getMaskOffset() + (i == 0 ? 0 : newExecSize);
bool nibOk =
m_builder->hasNibCtrl() && (inst->getDst()->getTypeSize() == 8 ||
TypeSize(inst->getExecType()) == 8);
G4_InstOption newMask =
G4_INST::offsetToMask(newExecSize, newMaskOffset, nibOk);
newInst->setMaskOption(newMask);
}
if (accDstRegion)
newInst->setImplAccDst(m_builder->duplicateOperand(accDstRegion));
if (accSrcRegion)
newInst->setImplAccSrc(m_builder->duplicateOperand(accSrcRegion));
if (carryMovInst) {
G4_INST* newCarryMovInst = m_builder->makeSplittingInst(carryMovInst, newExecSize);
G4_DstRegRegion* carryMovDst = carryMovInst->getDst();
G4_DstRegRegion* newCarryMovDst;
if (carryMovDst && !carryMovInst->hasNULLDst()) {
newCarryMovDst = m_builder->createSubDstOperand(carryMovDst, (uint16_t)i, newExecSize);
}
else {
newCarryMovDst = newCarryMovDst;
}
newCarryMovInst->setDest(newCarryMovDst);
newCarryMovInst->setPredicate(m_builder->duplicateOperand(newCarryMovPred));
newCarryMovInst->setCondMod(m_builder->duplicateOperand(newCarryMovCondMod));
newCarryMovInst->setSrc(m_builder->duplicateOperand(carryMovInst->getSrc(0)), 0);
auto prevInstIterator = newInstIterator;
newInstIterator = instList.insert(it, newCarryMovInst);
// Call recursive splitting function
newInstIterator = splitInstruction(prevInstIterator, instList);
}
else {
// Call recursive splitting function
newInstIterator = splitInstruction(newInstIterator, instList);
}
}
// remove original instruction
instList.erase(it);
if (carryMovInst) {
instList.erase(nextIter);
}
return newInstIterator;
}
bool InstSplitPass::needSplitByExecSize(G4_ExecSize execSize) const {
if (m_builder->getGRFSize() == 64) {
return execSize == g4::SIMD32;
}
return execSize == g4::SIMD16;
}
// Compare regRegion of source operand and destination.
// We put this in a separate function since compareOperand from G4_DstRegRegion
// and G4_SrcRegRegion don't handle regions that cross 2 GRFs.
G4_CmpRelation InstSplitPass::compareSrcDstRegRegion(G4_DstRegRegion *dstRegion,
G4_Operand *opnd) {
G4_VarBase *dstBase = dstRegion->getBase();
G4_VarBase *srcBase = opnd->getBase();
bool dstIndirect = dstRegion->isIndirect();
bool srcIndirect = opnd->isIndirect();
G4_Declare *dstDcl = dstRegion->getTopDcl();
G4_Declare *srcDcl = opnd->getTopDcl();
if (!opnd->isSrcRegRegion() || dstBase == nullptr || srcBase == nullptr) {
// a null base operand can never interfere with anything
return Rel_disjoint;
}
if (dstDcl == srcDcl && srcDcl != nullptr) {
// special checks for pseudo kills
G4_INST *dstInst = dstRegion->getInst();
G4_INST *srcInst = opnd->getInst();
if (dstInst && (dstInst->isPseudoKill() || dstInst->isLifeTimeEnd())) {
return Rel_interfere;
}
if (srcInst && (srcInst->isPseudoKill() || srcInst->isLifeTimeEnd())) {
return Rel_interfere;
}
}
if (srcIndirect && dstIndirect)
// two indirect are assumed to interfere in the absence of pointer analysis
return Rel_interfere;
if (srcIndirect != dstIndirect) {
// direct v. indirect
auto mayInterfereWithIndirect = [](G4_Operand *direct,
G4_Operand *indirect) {
vISA_ASSERT((!direct->isIndirect() && indirect->isIndirect()),
"first opereand should be direct and second indirect");
return (direct->getTopDcl() && direct->getTopDcl()->getAddressed()) ||
(direct->getBase()->isAddress() &&
direct->getTopDcl() == indirect->getTopDcl());
};
if ((srcIndirect && mayInterfereWithIndirect(dstRegion, opnd)) ||
(dstIndirect && mayInterfereWithIndirect(opnd, dstRegion))) {
return Rel_interfere;
}
return Rel_disjoint;
}
// Check if both are physically assigned
G4_VarBase *dstPhyReg =
dstBase->isRegVar() ? dstBase->asRegVar()->getPhyReg() : dstBase;
G4_VarBase *srcPhyReg =
srcBase->isRegVar() ? srcBase->asRegVar()->getPhyReg() : srcBase;
if (dstPhyReg && srcPhyReg) {
vASSERT(dstPhyReg->isPhyReg() && srcPhyReg->isPhyReg());
if (dstPhyReg->getKind() != srcPhyReg->getKind())
return Rel_disjoint;
if (dstPhyReg->isPhyAreg()) {
if (dstPhyReg->asAreg()->getArchRegType() == AREG_NULL) {
// like NaN, a null ARF is disjoint to everyone including itself
return Rel_disjoint;
}
return (dstPhyReg->asAreg()->getArchRegType() ==
srcPhyReg->asAreg()->getArchRegType())
? Rel_eq
: Rel_disjoint;
}
}
if (dstBase->getKind() != srcBase->getKind()) {
return Rel_disjoint;
}
if (dstDcl != srcDcl) {
return Rel_disjoint;
}
// Lastly, check byte footprint for exact relation
uint32_t srcLeftBound = 0, srcRightBound = 0;
int maskSize = 8 * m_builder->getGRFSize();
BitSet srcBitSet(maskSize, false);
computeSrcBounds(opnd->asSrcRegRegion(), srcLeftBound, srcRightBound);
generateBitMask(opnd, srcBitSet);
uint32_t dstLeftBound = 0, dstRightBound = 0;
BitSet dstBitSet(maskSize, false);
computeDstBounds(dstRegion, dstLeftBound, dstRightBound);
generateBitMask(dstRegion, dstBitSet);
if (dstRightBound < srcLeftBound || srcRightBound < dstLeftBound) {
return Rel_disjoint;
} else if (dstLeftBound == srcLeftBound && dstRightBound == srcRightBound &&
dstBitSet == srcBitSet) {
return Rel_eq;
} else {
BitSet tmp = dstBitSet;
dstBitSet &= srcBitSet;
if (dstBitSet.isEmpty()) {
return Rel_disjoint;
}
dstBitSet = tmp;
dstBitSet -= srcBitSet;
if (dstBitSet.isEmpty()) {
return Rel_lt;
}
srcBitSet -= tmp;
return srcBitSet.isEmpty() ? Rel_gt : Rel_interfere;
}
}
// Simplified function to calculate left/right bounds.
// InstSplitPass calls this function since the operand's internal computeBound
// function carries several aditional calculations and asserts restricted to 2
// GRFs.
void InstSplitPass::computeDstBounds(G4_DstRegRegion *dstRegion,
uint32_t &leftBound,
uint32_t &rightBound) {
unsigned short typeSize = dstRegion->getTypeSize();
// Calculate left bound
{
G4_VarBase *base = dstRegion->getBase();
G4_Declare *topDcl = NULL;
uint32_t subRegOff = dstRegion->getSubRegOff();
uint32_t regOff = dstRegion->getRegOff();
uint32_t newregoff = regOff, offset = 0;
if (base && base->isRegVar()) {
topDcl = base->asRegVar()->getDeclare();
if (!topDcl && base->asRegVar()->isGreg()) {
newregoff = base->asRegVar()->asGreg()->getRegNum();
}
}
if (topDcl) {
while (topDcl->getAliasDeclare()) {
offset += topDcl->getAliasOffset();
topDcl = topDcl->getAliasDeclare();
}
}
if (base != NULL && base->isAccReg()) {
leftBound = subRegOff * typeSize;
if (base->asAreg()->getArchRegType() == AREG_ACC1 || regOff == 1) {
leftBound += m_builder->getGRFSize();
}
} else if (topDcl) {
if (dstRegion->getRegAccess() == Direct) {
leftBound = offset + newregoff * m_builder->numEltPerGRF<Type_UB>() +
subRegOff * typeSize;
} else {
leftBound = subRegOff * TypeSize(ADDR_REG_TYPE);
}
}
}
// Calculate right bound
{
if (dstRegion->getRegAccess() == Direct) {
unsigned short s_size = dstRegion->getHorzStride() * typeSize;
unsigned totalBytes =
(dstRegion->getInst()->getExecSize() - 1) * s_size + typeSize;
rightBound = leftBound + totalBytes - 1;
} else {
rightBound = leftBound + TypeSize(ADDR_REG_TYPE) - 1;
}
}
}
// Simplified function to calculate left/right bounds.
// InstSplitPass calls this function since the operand's internal computeBound
// function carries several aditional calculations and asserts restricted to 2
// GRFs.
void InstSplitPass::computeSrcBounds(G4_SrcRegRegion *srcRegion,
uint32_t &leftBound,
uint32_t &rightBound) {
unsigned short typeSize = srcRegion->getTypeSize();
// Calculate left bound
{
G4_VarBase *base = srcRegion->getBase();
G4_Declare *topDcl = NULL;
uint32_t subRegOff = srcRegion->getSubRegOff();
uint32_t regOff = srcRegion->getRegOff();
unsigned newregoff = regOff, offset = 0;
if (base) {
if (base->isRegVar()) {
topDcl = base->asRegVar()->getDeclare();
if (!topDcl && base->asRegVar()->isGreg()) {
newregoff = base->asRegVar()->asGreg()->getRegNum();
}
}
}
if (topDcl) {
while (topDcl->getAliasDeclare()) {
offset += topDcl->getAliasOffset();
topDcl = topDcl->getAliasDeclare();
}
}
if (base != NULL && base->isAccReg()) {
leftBound = subRegOff * typeSize;
if (base->asAreg()->getArchRegType() == AREG_ACC1) {
leftBound += m_builder->getGRFSize();
}
} else if (topDcl) {
if (srcRegion->getRegAccess() == Direct) {
leftBound = offset + newregoff * m_builder->numEltPerGRF<Type_UB>() +
subRegOff * typeSize;
} else {
leftBound = subRegOff * TypeSize(ADDR_REG_TYPE);
}
}
}
// Calculate right bound
{
if (srcRegion->getRegAccess() == Direct) {
unsigned short hs = srcRegion->getRegion()->isScalar()
? 1
: srcRegion->getRegion()->horzStride;
unsigned short vs = srcRegion->getRegion()->isScalar()
? 0
: srcRegion->getRegion()->vertStride;
if (srcRegion->getRegion()->isScalar()) {
rightBound = leftBound + typeSize - 1;
} else {
int numRows =
srcRegion->getInst()->getExecSize() / srcRegion->getRegion()->width;
if (numRows > 0) {
rightBound = leftBound + (numRows - 1) * vs * typeSize +
hs * (srcRegion->getRegion()->width - 1) * typeSize +
typeSize - 1;
} else {
rightBound =
leftBound +
hs * (srcRegion->getInst()->getExecSize() - 1) * typeSize +
typeSize - 1;
}
}
} else {
unsigned short numAddrSubReg = 1;
if (srcRegion->getRegion()->isRegionWH()) {
numAddrSubReg =
srcRegion->getInst()->getExecSize() / srcRegion->getRegion()->width;
}
rightBound = leftBound + TypeSize(ADDR_REG_TYPE) * numAddrSubReg - 1;
}
}
}
// Generates the byte footprint of an instruction's operand
void InstSplitPass::generateBitMask(G4_Operand *opnd, BitSet &footprint) {
uint64_t bitSeq = TypeFootprint(opnd->getType());
unsigned short typeSize = opnd->getTypeSize();
if (opnd->isDstRegRegion()) {
if (!opnd->isIndirect()) {
G4_DstRegRegion *dst = opnd->asDstRegRegion();
unsigned short horzStride = dst->getHorzStride();
unsigned short s_size = horzStride * typeSize;
for (uint8_t i = 0; i < opnd->getInst()->getExecSize(); ++i) {
int eltOffset = i * s_size;
for (uint8_t j = 0; j < typeSize; j++) {
footprint.set(eltOffset + j, true);
}
}
} else {
footprint.set(0, true);
footprint.set(1, true);
}
} else if (opnd->isSrcRegRegion()) {
G4_SrcRegRegion *src = opnd->asSrcRegRegion();
const RegionDesc *srcReg = src->getRegion();
if (!opnd->isIndirect()) {
if (srcReg->isScalar()) {
uint64_t mask = bitSeq;
for (unsigned i = 0; i < typeSize; ++i) {
if (mask & (1ULL << i)) {
footprint.set(i, true);
}
}
} else {
for (int i = 0,
numRows = opnd->getInst()->getExecSize() / srcReg->width;
i < numRows; ++i) {
for (int j = 0; j < srcReg->width; ++j) {
int eltOffset = i * srcReg->vertStride * typeSize +
j * srcReg->horzStride * typeSize;
for (uint8_t k = 0; k < typeSize; k++) {
footprint.set(eltOffset + k, true);
}
}
}
}
} else {
unsigned short numAddrSubReg = 1;
if (srcReg->isRegionWH()) {
numAddrSubReg = opnd->getInst()->getExecSize() / srcReg->width;
}
uint64_t mask = 0;
for (unsigned i = 0; i < numAddrSubReg; i++) {
mask |= ((uint64_t)0x3) << (i * 2);
}
for (unsigned i = 0; i < 64; ++i) {
if (mask & (1ULL << i)) {
footprint.set(i, true);
}
}
}
}
}
|