1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
// This file contains the implementation of frequency info pass.
#include "KernelCost.hpp"
#include "G4_IR.hpp"
#include "G4_Kernel.hpp"
#include "FlowGraph.h"
#include <list>
#include <unordered_map>
#include <iostream>
#include <algorithm>
using namespace vISA;
KernelCost::KernelCost(G4_Kernel* pK, std::vector<VISA_BB_INFO> &BBInfo)
: m_kernel(pK), m_loops(pK->fg.getLoops()) {
vISA_ASSERT(BBInfo.size() == pK->fg.getNumBB(),
"KernelCost(): invliad the number of BBs");
// Set up cost info for each BB
for (auto BB : pK->fg.getBBList()) {
uint32_t id = BB->getId();
BBCostInfo BCI;
BCI.m_cycles = BBInfo[id].staticCycle;
BCI.m_prob = 0;
m_BBCostInfo.insert(std::make_pair(BB, BCI));
}
}
void KernelCost::run() {
m_loops.setStale();
m_loops.recomputeIfStale();
init();
calculateProb();
collectPerfMetrics();
// save data into G4_Kernel for IGC to access
m_kernel->createKernelCostInfo(this);
}
// DFS_PO: Post-order traversal and record each BB in RPOT vector
void KernelCost::DFS_PO(G4_BB *BB) {
if (visited[BB] == 1)
return;
visited[BB] = 1;
if (BB->getBBType() & G4_BB_CALL_TYPE) {
G4_BB *N = BB->getPhysicalSucc();
DFS_PO(N);
} else if (!(BB->getBBType() & G4_BB_EXIT_TYPE)) {
for (G4_BB *S : BB->Succs)
DFS_PO(S);
}
// BB in the increasing PO order, and thus its reverse is in RPOT order.
RPOT.push_back(BB);
}
void KernelCost::doRPOT(G4_BB *EntryBB) {
RPOT.clear();
visited.clear();
DFS_PO(EntryBB);
std::reverse(RPOT.begin(), RPOT.end());
assert(EntryBB == RPOT.front());
}
// Propagate prob into BB's succ.
// If L is not nullptr, it means this BB is inside a loop and BB's succ
// to L's header is ignored and to any block outside L is also ignored.
void KernelCost::propagateBBProb(G4_BB* BB, Loop *L) {
visited[BB] = 1;
// Special case
if (BB->getBBType() & G4_BB_CALL_TYPE) {
G4_BB* S = BB->getPhysicalSucc();
updateBBProb(S, getBBProb(BB));
return;
} else if (BB->getBBType() & G4_BB_EXIT_TYPE) {
return;
}
std::vector<ProbType> SuccProb;
getSuccEdgeProb(BB, SuccProb);
if (SuccProb.size() == 0) {
// No succ that needs propagation
return;
}
vISA_ASSERT(SuccProb.size() == BB->Succs.size(),
"Succ's prob has wrong vector size");
int i = -1;
for (G4_BB *S : BB->Succs) {
++i;
// Skip back-edge as it does not affect header's prob
if (L) {
if (S == L->getHeader())
continue;
// Skip BBs that are outside the loop
if (!L->contains(S))
continue;
}
updateBBProb(S, SuccProb[i]);
}
}
// Redo exit bb's prob
// 1. loop's immediate exit is dependent upon the loop header's prob
// 2. where the exit target is does not matter
void KernelCost::propagateLoopProb(Loop *L, int RPOT_pos) {
auto getLoopExitProb = [this](Loop *L, G4_BB *ExitBB) {
ProbType retProb = 0;
for (G4_BB *B : ExitBB->Preds) {
Loop *iL = m_loops.getInnerMostLoop(B);
if (iL && iL == L) {
std::vector<ProbType> tProb;
getSuccEdgeProb(B, tProb);
if (tProb.size() == 0)
continue;
int i = 0;
for (G4_BB *S : B->Succs) {
if (S == ExitBB) {
retProb += tProb[i];
break;
}
++i;
}
}
}
return retProb;
};
G4_BB *H = L->getHeader();
for (int i = RPOT_pos; i < (int)RPOT.size(); ++i) {
G4_BB *BB = RPOT[i];
// visited BBs inside this loop
if (visited[BB] || !L->contains(BB))
continue;
// Recusively handle immediate child loop
Loop *CL = L->getOuterMostChildLoop(BB);
if (CL && CL->getHeader() == BB)
propagateLoopProb(CL, i);
else if (!CL)
propagateBBProb(BB, L);
}
// Calculate exits' probability. Only loop's exit BBs that are 1 level up
// is considered. For any exit that is more than 1 level up, it will be
// handled when the outer loop exits are handled.
std::vector<G4_BB *> &lpExits = L->getLoopExits();
std::vector<ProbType> immExitProbs;
std::vector<G4_BB *> immExitBBs;
uint32_t L_level = L->getNestingLevel();
ProbType totalP = 0;
for (G4_BB *B : lpExits) {
Loop *tL = m_loops.getInnerMostLoop(B);
if ((!tL && !L->parent) ||
(tL && tL->getNestingLevel() == (L_level + 1))) {
immExitBBs.push_back(B);
ProbType tProb = getLoopExitProb(L, B);
immExitProbs.push_back(tProb);
totalP += tProb;
}
}
// Normalize exit BB's probability so that sum of all prob(immediateExitBB)
// is the same as prob(H).
// L0 : P=1
// L1 : P=0.5
// goto E0
// goto E1
// E1:
// E0
// The following code will have Prob(E1) = 0.5 and Prob(E0) = 1 by handling
// E1 for loop L1 and E0 for loop L0 (L1 does not handle E0!).
//
if (immExitProbs.size() > 0) {
ProbType P = getBBProb(H);
// totalP should not be larger than P. Here make sure it is the case.
totalP = std::min(totalP, P);
float factor = (float)P / totalP;
ProbType P0 = P;
for (int i = 1; i < (int)immExitProbs.size(); ++i) {
G4_BB *B = immExitBBs[i];
ProbType tP = (ProbType)(factor * immExitProbs[i]);
updateBBProb(B, tP);
// make sure no overflow
P0 = (P0 >= tP ? P0 - tP : 0);
}
G4_BB *B0 = immExitBBs[0];
updateBBProb(B0, P0);
}
}
void KernelCost::calculateProb() {
// Each function's probability is calculated independently,
// assuming their entry prob is 1.
// Leaf subroutine is calculated first, and kernel is cacluated last.
for (int f = 0; f < (int)m_metrics.size(); ++f) {
G4_BB *StartBB = m_metrics[f].m_funcInfo->getInitBB();
doRPOT(StartBB);
// Entry has prob 1 always.
updateBBProb(StartBB, MAX_PROB_POINTS);
// Start propagation in Rerverse Post-order traveral.
visited.clear();
for (int i = 0; i < (int)RPOT.size(); ++i) {
G4_BB *BB = RPOT[i];
if (visited[BB])
continue;
Loop *L = m_loops.getOuterMostLoop(BB);
if (L && L->getHeader() == BB)
propagateLoopProb(L, i);
else if (!L)
propagateBBProb(BB);
}
}
}
void KernelCost::getSuccEdgeProb(G4_BB *BB,
std::vector<ProbType>& SuccEdgeProb) {
ProbType P = getBBProb(BB);
uint32_t nsuccs = (uint32_t)BB->Succs.size();
if (nsuccs == 1 || (BB->getBBType() & G4_BB_CALL_TYPE)) {
SuccEdgeProb.push_back(P);
return;
}
if (nsuccs == 0 || (BB->getBBType() & G4_BB_EXIT_TYPE))
return;
G4_InstCF *br = BB->getLastCFInst();
if (br && nsuccs == 2) {
// common case
if (!br->isUniform()) {
SuccEdgeProb.insert(SuccEdgeProb.end(), nsuccs, P);
return;
}
float takenP = 0.5;
bool defByDst;
G4_INST *predDefI = getBranchFlagLocalDef(BB, defByDst);
if (predDefI && !defByDst) {
G4_Predicate *Pred = br->getPredicate();
bool isNegPred = (Pred->getState() == G4_PredState::PredState_Minus);
G4_CondMod *cMod = predDefI->getCondMod();
vISA_ASSERT(cMod, "ICE: condMod should be preset\n");
switch (cMod->getMod()) {
case G4_CondModifier::Mod_z:
case G4_CondModifier::Mod_e:
case G4_CondModifier::Mod_o:
case G4_CondModifier::Mod_u:
// ==, overflow, unordered : unlikely
takenP = isNegPred ? 0.90f : 0.1f;
break;
case G4_CondModifier::Mod_nz:
case G4_CondModifier::Mod_ne:
// != : likely
takenP = isNegPred ? 0.1f : 0.9f;
break;
default:
break;
}
}
ProbType target_P = (ProbType)(takenP * P);
ProbType fallthru_P = (P >= target_P ? P - target_P : 0);
SuccEdgeProb.push_back(fallthru_P);
SuccEdgeProb.push_back(target_P);
return;
}
// Shouldn't reach this place, but do it in case.
SuccEdgeProb.resize(nsuccs);
// Evenly assign probability to each edge
// (Nice to keep the sum of all succs' prob the same as BB's)
ProbType total = 0;
ProbType eachP = (P / nsuccs);
for (int i = 1; i < (int)nsuccs; ++i) {
SuccEdgeProb[i] = eachP;
total += eachP;
}
SuccEdgeProb[0] = (P >= total ? P - total : 0);
return;
}
G4_INST* KernelCost::getBranchFlagLocalDef(G4_BB* BB, bool& DefByDst) {
DefByDst = false;
G4_InstCF *br = BB->getLastCFInst();
if (!br)
return nullptr;
G4_Predicate *P = br->getPredicate();
if (!P)
return nullptr;
// RS: reverse iterator to br
auto RS = BB->rbegin();
for (auto RE = BB->rend(), RI = ++RS; RI != RE; ++RI) {
G4_INST *I = *RI;
G4_Operand *Dst = I->getDst();
G4_Operand *cMod = I->getCondMod();
if (Dst && !I->hasNULLDst() &&
P->compareOperand(Dst, I->getBuilder()) != Rel_disjoint) {
DefByDst = true;
return I;
}
if (cMod && P->compareOperand(cMod, I->getBuilder()) != Rel_disjoint)
return I;
}
return nullptr;
}
void KernelCost::calculateBBMetrics(CostMetricsWrapper& CM, G4_BB* BB)
{
BBCostInfo &BInfo = m_BBCostInfo[BB];
float factor = BInfo.m_prob / (float)MAX_PROB_POINTS;
// make sure no BBs have 0 cycles!
uint32_t cycles = std::max(1u, (uint32_t)(BInfo.m_cycles * factor));
CM.setCycles(cycles);
uint32_t loadBytes = 0;
uint32_t storeBytes = 0;
for (auto Inst : BB->getInstList()) {
if (Inst->isSend()) {
uint32_t rBytes = 0, wBytes = 0;
collectSendMetrics(Inst->asSendInst(), rBytes, wBytes);
loadBytes += rBytes;
storeBytes += wBytes;
}
}
// If loads/stores are not 0, make sure the final result is at least 1.
if (loadBytes > 0)
loadBytes = std::max(1u, (uint32_t)(loadBytes * factor));
if (storeBytes > 0)
storeBytes = std::max(1u, (uint32_t)(storeBytes * factor));
CM.setLoadBytes(loadBytes);
CM.setStoreBytes(storeBytes);;
if (BB->isEndWithCall()) {
FuncInfo *pFI = BB->getCalleeInfo();
int ix = m_funcIndex[pFI];
CostMetricsWrapper &calleeCM = m_metrics[ix].m_estimateCost;
CM.add(calleeCM, BInfo.m_prob);
}
}
void KernelCost::init()
{
// Set up info for all subroutines
int numFuncs = (int)m_kernel->fg.sortedFuncTable.size();
if (numFuncs > 0) {
m_metrics.resize(numFuncs);
for (int i = 0; i < numFuncs; ++i) {
FuncInfo *pFInfo = m_kernel->fg.sortedFuncTable[i];
m_metrics[i].m_funcInfo = pFInfo;
m_funcIndex[pFInfo] = i;
}
} else {
m_metrics.resize(1);
FuncInfo *kernelInfo = m_kernel->fg.kernelInfo;
m_metrics[0].m_funcInfo = kernelInfo;
m_funcIndex[kernelInfo] = 0;
numFuncs = 1;
}
// set up loops for kernel/subroutine in program order
BB_LIST &BBs = m_kernel->fg.getBBList();
for (int i = 0; i < numFuncs; ++i) {
FuncCost &FC = m_metrics[i];
FuncInfo *pFI = FC.m_funcInfo;
G4_BB *StartBB = pFI->getInitBB();
G4_BB *EndBB = pFI->getExitBB();
auto IS = std::find(BBs.begin(), BBs.end(), StartBB);
auto IE = std::find(BBs.begin(), BBs.end(), EndBB);
IE = std::next(IE);
for (auto II = IS; II != IE; ++II) {
G4_BB *BB = *II;
// all the loops with the same header : BB
std::list<Loop *> lps;
Loop *L = m_loops.getInnerMostLoop(BB);
while (L && L->getHeader() == BB) {
lps.push_front(L);
L = L->parent;
}
if (!lps.empty()) {
int nextIdx = (int)FC.m_allLoopsInProgramOrder.size();
for (auto al : lps) {
FC.m_allLoopsInProgramOrder.push_back(al);
LoopCost &LC = m_loopCosts[al];
G4_BB *backedgeSrc = al->backEdgeSrc();
int visaid = -1;
if (!al->backEdgeSrc()->empty()) {
G4_INST *br = backedgeSrc->back();
visaid = br->getVISAId();
}
LC.m_backedge_visaId = visaid;
LC.m_loopId = nextIdx;
++nextIdx;
}
}
}
}
}
void KernelCost::collectLoopMetrics(Loop *L) {
LoopCost &LC = m_loopCosts[L];
for (G4_BB *bb : L->getBBs()) {
Loop *lp = L->getOuterMostChildLoop(bb);
if (lp && lp->getHeader() == bb) {
collectLoopMetrics(lp);
LoopCost &aLC = m_loopCosts[lp];
LC.m_estimateCost.add(aLC.m_estimateCost);
} else if (!lp) {
CostMetricsWrapper BCM;
calculateBBMetrics(BCM, bb);
LC.m_loopBodyCost.C.add(BCM);
}
}
LC.m_estimateCost.add(LC.m_loopBodyCost.C);
// Estimate loop cost assuming loop count = 16
LC.m_estimateCost.mul(16);
}
void KernelCost::collectPerfMetrics()
{
BB_LIST& BBs = m_kernel->fg.getBBList();
const int numFuncs = (int)m_metrics.size();
for (int i = 0; i < numFuncs; ++i) {
FuncCost &FC = m_metrics[i];
FuncInfo *pFI = FC.m_funcInfo;
G4_BB *StartBB = pFI->getInitBB();
G4_BB *EndBB = pFI->getExitBB();
auto IS = std::find(BBs.begin(), BBs.end(), StartBB);
auto IE = std::find(BBs.begin(), BBs.end(), EndBB);
IE = std::next(IE);
for (auto II = IS; II != IE; ++II) {
G4_BB *BB = *II;
Loop *L = m_loops.getOuterMostLoop(BB);
if (L && L->getHeader() == BB) {
collectLoopMetrics(L);
LoopCost &LC = m_loopCosts[L];
FC.m_estimateCost.add(LC.m_estimateCost);
} else if (!L) {
CostMetricsWrapper BCM;
calculateBBMetrics(BCM, BB);
FC.m_funcCost.C.add(BCM);
}
}
FC.m_estimateCost.add(FC.m_funcCost.C);
// Loop part of cost expr, set up in program order.
for (auto L : FC.m_allLoopsInProgramOrder) {
if (L->getNumImmChildLoops() == 0)
continue;
LoopCost &LC = m_loopCosts[L];
CostExprInternal &lce = LC.m_loopBodyCost;
// make sure to iterate loops in program order
std::list<Loop *> immLoops(L->begin(), L->end());
immLoops.sort([this](Loop *a, Loop *b) {
LoopCost *aLC = &m_loopCosts[a];
LoopCost *bLC = &m_loopCosts[b];
return aLC->m_loopId < bLC->m_loopId;
});
for (auto LI : immLoops) {
Loop *nested = LI;
LoopCost &nestedLC = m_loopCosts[nested];
lce.LoopCosts.push_back(&nestedLC);
}
}
}
if (m_kernel->getOption(vISA_dumpKCI) ||
m_kernel->getOption(vISA_dumpDetailKCI))
print(std::cout);
if (m_kernel->getOption(vISA_dumpKCIForLit)) {
printForLit(std::cout);
}
}
void KernelCost::collectSendMetrics(G4_InstSend* SendI, uint32_t& ldBytes, uint32_t& stBytes)
{
// Todo: make sure the bytes are calculated correctly!
ldBytes = 0;
stBytes = 0;
G4_SendDesc *mDesc = SendI->getMsgDesc();
if (mDesc->isRead() || mDesc->isReadWrite()) {
ldBytes = mDesc->getDstLenBytes();
}
if (mDesc->isWrite() || mDesc->isReadWrite()) {
// Make sure this is correct.
stBytes = mDesc->getSrc1LenBytes();
}
}
void KernelCost::print(std::ostream &OS)
{
if (m_kernel->getOption(vISA_dumpDetailKCI)) {
// Dump G4
m_kernel->dumpToFile("KernelCost", true);
// dump detail info for each BB
OS << "\n\n---- BB Info ----\n\n";
BB_LIST &BBs = m_kernel->fg.getBBList();
for (auto II = BBs.begin(), IE = BBs.end(); II != IE; ++II) {
G4_BB *bb = *II;
BBCostInfo &BInfo = m_BBCostInfo[bb];
OS << "BB" << bb->getId()
<< ": Prob = " << (float)BInfo.m_prob / MAX_PROB_POINTS << " (0x"
<< std::hex << BInfo.m_prob << "/0x" << MAX_PROB_POINTS << std::dec
<< "); cycles = " << BInfo.m_cycles << "\n";
}
}
// Dump summary of cost metrics for each subroutine and kernel
const int numFuncs = (int)m_metrics.size();
for (int i = 0; i < numFuncs; ++i) {
const FuncCost &FC = m_metrics[i];
const CostMetricsWrapper &FC_ec = FC.m_estimateCost;
const char *name;
const char *nameKind = (((i + 1) == numFuncs) ? "kernel " : "subroutine ");
if ((i + 1) == numFuncs) {
name = m_kernel->getName();
} else {
// subroutine, get its entry label name
FuncInfo *pFI = FC.m_funcInfo;
G4_BB *StartBB = pFI->getInitBB();
name = StartBB->getLabel()->getLabelName();
}
OS << "\nEstimated Kernel Cost Metrics for reference only: "
<< nameKind << name << "\n"
<< " Total Cycles = " << FC_ec.getCycles() << "\n"
<< " Total Bytes Loaded = " << FC_ec.getLoadBytes() << "\n"
<< " Total Bytes Stored = " << FC_ec.getStoreBytes() << "\n\n\n";
// Cost expression (output to be written to zeinfo)
const CostMetricsWrapper &FCM = FC.m_funcCost.C;
OS << "\nKernel Cost Metrics : " << nameKind << name << "\n"
<< " Cycles (excluding loops) = " << FCM.getCycles() << "\n"
<< " Bytes Loaded (excluding loops) = " << FCM.getLoadBytes() << "\n"
<< " Bytes Stored (excluding loops) = " << FCM.getStoreBytes()
<< "\n\n";
for (const Loop *aL : FC.m_allLoopsInProgramOrder) {
LoopCost &LC = m_loopCosts[aL];
CostExprInternal &lce = LC.m_loopBodyCost;
int level = aL->getNestingLevel();
std::string indent(4 * level, ' ');
OS << indent << "L[" << LC.m_loopId << "] "
<< "[Header:BB" << aL->getHeader()->getId() << ", Tail:BB"
<< aL->backEdgeSrc()->getId() << ", visaid: " << LC.m_backedge_visaId
<< "]\n";
CostMetricsWrapper &LCM = lce.C;
OS << indent << " Loop body only, excluding nested loops\n"
<< indent << " Cycles = " << LCM.getCycles() << "\n"
<< indent << " Bytes Loaded = " << LCM.getLoadBytes() << "\n"
<< indent << " Bytes Stored = " << LCM.getStoreBytes() << "\n";
if (aL->getNumImmChildLoops() > 0)
OS << "\n";
}
}
}
void KernelCost::printForLit(std::ostream &OS) {
const FuncCost &FC = m_metrics.back();
int i = 0;
for (const Loop *aL : FC.m_allLoopsInProgramOrder) {
LoopCost &LC = m_loopCosts[aL];
OS << "Loop " << i << ": id " << LC.m_loopId
<< ", level " << aL->getNestingLevel() << "\n";
++i;
}
OS << "#subroutines = " << m_metrics.size() - 1 << "\n";
}
void KernelCost::dump() {
print(std::cout);
}
void KernelCost::dump() const {
const_cast<KernelCost*>(this)->print(std::cout);
}
namespace vISA {
void collectKernelCostInfo(G4_Kernel* pK, std::vector<VISA_BB_INFO> &BBInfo) {
KernelCost KCA(pK, BBInfo);
KCA.run();
}
}
|