1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "Assertions.h"
#include "BitSet.h"
#include "BuildIR.h"
#include "FlowGraph.h"
#include "LocalDataflow.h"
#include <algorithm>
#include <unordered_map>
#include <vector>
using namespace vISA;
namespace {
void getOpndFootprint(G4_Operand *opnd, BitSet &footprint,
const IR_Builder &builder) {
opnd->updateFootPrint(footprint, true, builder);
}
// Combine footprint.
//
// Use DefOnpd's foot print to kill the footprint being defined.
//
void combineFootprint(G4_Operand *DefOpnd, BitSet &footprint,
const IR_Builder &builder) {
DefOpnd->updateFootPrint(footprint, false, builder);
}
struct LocalLivenessInfo;
// This is the basic unit used to track live operands (not fully defined yet).
struct LiveNode {
LiveNode(G4_INST *Inst, Gen4_Operand_Number OpNum)
: Inst(Inst), OpNum(OpNum), mask(getMaskSize(Inst, OpNum), 0) {
auto opnd = getOperand();
if (opnd)
getOpndFootprint(opnd, mask, Inst->getBuilder());
}
// The instruction being tracked.
G4_INST *Inst;
// This indicates which operand being tracked.
Gen4_Operand_Number OpNum;
// This tracks byte/bits level of opnd being partially defined.
BitSet mask;
// The list of definition nodes seen, sorted in a reversed order.
//
// This data structure models the following du/ud chain, and it proves
// <I3, Src1> is a locally fully-defined operand.
//
// I1 : mov (8, M1) V33(0,0)<1>:d V32(0,0)<1;1,0>:q
// I2 : mov (8, M1) V33(1,0)<1>:d V32(2,0)<1;1,0>:q
// I3 : add (16, M1) V35<1>:d V34<1;1,0>:d V33(0,0)<1;1,0>:d
//
// LiveNode <I3, V33> will be partially defined by I2 or I1, and
// I1 together with I2 fully defines this live node.
//
std::vector<std::pair<G4_INST *, Gen4_Operand_Number>> DefNodes;
G4_Operand *getOperand() const { return Inst->getOperand(OpNum); }
static unsigned getMaskSize(G4_INST *Inst, Gen4_Operand_Number OpNum) {
G4_Operand *Opnd = Inst->getOperand(OpNum);
vISA_ASSERT(Opnd, "null opnd");
if (Opnd) {
G4_Declare *Dcl = Opnd->getTopDcl();
if (Opnd->isAddrExp()) {
Dcl = Opnd->asAddrExp()->getRegVar()->getDeclare();
}
if (Dcl == nullptr) {
// There is no top declaration for this operand, so this is ARF.
return 32;
}
return Dcl->getRegVar()->isFlag() ? Dcl->getNumberFlagElements()
: Dcl->getByteSize();
}
return 0;
}
// Propocess a defintion to this live node. If this definition
// together with existing definitions fully kill this use, return true
// and add def-use links; return false otherwise.
bool addDefinition(G4_INST *Inst, Gen4_Operand_Number opndNum,
LocalLivenessInfo &LLI);
// Check if an operand depends on channel mask.
static bool dependsOnChannelMask(bool IsInSimdFlow, G4_INST *Inst,
Gen4_Operand_Number OpNum);
// Check if def-use is 'aligned' with channel mask.
static bool alignedWithChannelMask(G4_INST *DefInst,
Gen4_Operand_Number DefOpNum,
G4_INST *UseInst,
Gen4_Operand_Number UseOpNum);
friend void swap(LiveNode &a, LiveNode &b) {
a.DefNodes.swap(b.DefNodes);
std::swap(a.Inst, b.Inst);
std::swap(a.OpNum, b.OpNum);
a.mask.swap(b.mask);
}
};
struct LocalLivenessInfo {
// Keep live nodes while scanning the block.
// Each declare is associated with a list of live nodes.
std::unordered_map<const G4_Declare *, std::vector<LiveNode>> LiveNodes;
// This indicates if this block is in simd-cf or not.
bool IsInSimdFlow;
// Default constructor.
explicit LocalLivenessInfo(bool IsInSimdFlow) : IsInSimdFlow(IsInSimdFlow) {}
// Populate global operands.
void populateGlobals(GlobalOpndHashTable &globalOpndHT) {
for (auto &Nodes : LiveNodes) {
for (auto &LN : Nodes.second) {
G4_Operand *Opnd = LN.Inst->getOperand(LN.OpNum);
vISA_ASSERT(Opnd, "null operand");
// This is a temporal solution to allow optimizations
// on partially defined local variables.
//
// TODO: use pseudo-kill to mark such variables.
for (auto I = LN.DefNodes.rbegin(), E = LN.DefNodes.rend(); I != E; ++I)
I->first->addDefUse(LN.Inst, LN.OpNum);
globalOpndHT.addGlobalOpnd(Opnd);
}
Nodes.second.clear();
}
}
};
} // namespace
static G4_CmpRelation compOpnd(G4_Operand *Opnd1, G4_Operand *Opnd2,
const IR_Builder &builder) {
if (Opnd1->isDstRegRegion())
return Opnd1->asDstRegRegion()->compareOperand(Opnd2, builder);
else if (Opnd1->isCondMod())
return Opnd1->asCondMod()->compareOperand(Opnd2, builder);
else if (Opnd1->isSrcRegRegion())
return Opnd1->asSrcRegRegion()->compareOperand(Opnd2, builder);
else if (Opnd1->isPredicate())
return Opnd1->asPredicate()->compareOperand(Opnd2, builder);
// all other cases, virtual call.
return Opnd1->compareOperand(Opnd2, builder);
}
bool LiveNode::addDefinition(G4_INST *DefInst, Gen4_Operand_Number DefOpNum,
LocalLivenessInfo &LLI) {
const IR_Builder &builder = Inst->getBuilder();
// This definition does not overlap with this live node.
G4_Operand *DefOpnd = DefInst->getOperand(DefOpNum);
G4_Operand *UseOpnd = getOperand();
G4_CmpRelation Rel = compOpnd(DefOpnd, UseOpnd, builder);
if (Rel == G4_CmpRelation::Rel_disjoint)
return false;
// Check if this definition will be fully convered by a previous definition.
// This checks a single definition only. It is not optimal, but should cover
// common cases.
for (auto &Node : DefNodes) {
if (Node.second != DefOpNum)
continue;
G4_INST *PrevDefInst = Node.first;
if (PrevDefInst->getPredicate() || DefInst->getPredicate())
continue;
if (PrevDefInst->getMaskOffset() != DefInst->getMaskOffset())
continue;
if (!PrevDefInst->isWriteEnableInst() && DefInst->isWriteEnableInst())
continue;
G4_Operand *PrevDef = PrevDefInst->getOperand(Node.second);
G4_Operand *CurrDef = DefInst->getOperand(DefOpNum);
vASSERT((PrevDef != nullptr) && (CurrDef != nullptr));
G4_CmpRelation DefRel = compOpnd(PrevDef, CurrDef, builder);
if (DefRel == G4_CmpRelation::Rel_eq || DefRel == G4_CmpRelation::Rel_gt)
return false;
}
// Determine to count this definition's footprint or not.
auto CombineBitV = [this, DefInst, DefOpNum, &LLI]() {
// If definition is predicated and it is not sel, then
// this definition cannot count, unless use is predicated
// by the same predicate value.
if (G4_Predicate *DefPred = DefInst->getPredicate()) {
if (DefInst->opcode() != G4_opcode::G4_sel) {
// The following case is a full definition, when predicates
// have the same value.
// (+P1) mov (8, M1) V33(0,0)<1>:d 1 // DefInst
// (+P1) add (8, M1) V34(0,0)<1>:d V33(0,0)<1;1,0>:d V32(0,0)<1;1,0>:d
G4_Predicate *UsePred = this->Inst->getPredicate();
if (UsePred == nullptr || !DefPred->samePredicate(*UsePred))
return false;
// If UsePred is alive and has no definition, then UsePred should
// have the same value as DefPred.
G4_Declare *Dcl = UsePred->getTopDcl();
auto Iter = LLI.LiveNodes.find(Dcl);
if (Iter == LLI.LiveNodes.end())
return false;
// Find this live node..
auto NI = std::find_if(
Iter->second.begin(), Iter->second.end(), [this](const LiveNode &LN) {
return LN.Inst == this->Inst && LN.OpNum == Opnd_pred;
});
// Not alive or alive but partially defined.
if (NI == Iter->second.end() || !NI->DefNodes.empty())
return false;
}
}
// If def does not depend on channel mask, then combine its footprint.
if (!dependsOnChannelMask(LLI.IsInSimdFlow, DefInst, DefOpNum))
return true;
// Otherwise, if this use does not depend on channel mask, then do not
// combine.
if (!dependsOnChannelMask(LLI.IsInSimdFlow, this->Inst, this->OpNum))
return false;
return alignedWithChannelMask(DefInst, DefOpNum, this->Inst, this->OpNum);
};
if (CombineBitV()) {
G4_Operand *DefOpnd = DefInst->getOperand(DefOpNum);
combineFootprint(DefOpnd, mask, builder);
}
if (UseOpnd &&
mask.isEmpty(UseOpnd->getLeftBound(), UseOpnd->getRightBound())) {
// Use reverse_iterator as analysis is bottom-up. This makes
// early defs come first in the def-use lists.
if (!DefInst->isPseudoKill())
DefInst->addDefUse(this->Inst, this->OpNum);
for (auto I = DefNodes.rbegin(), E = DefNodes.rend(); I != E; ++I)
I->first->addDefUse(this->Inst, this->OpNum);
return true;
}
// This live node is not yet fully killed.
DefNodes.emplace_back(DefInst, DefOpNum);
return false;
}
bool LiveNode::dependsOnChannelMask(bool IsInSimdFlow, G4_INST *Inst,
Gen4_Operand_Number OpNum) {
// Treat non-flag scalar and indirect 1x1/Vx1 uses as noMask. Any non-noMask
// inst can't kill it.
auto opnd = Inst->getOperand(OpNum);
bool isScalarSrc = opnd->isScalarSrc() && !opnd->isFlag();
bool isIndirect1x1Vx1 = opnd->isIndirect() && !opnd->isVxHIndirect();
if (!IsInSimdFlow || Inst->isWriteEnableInst() || isScalarSrc ||
isIndirect1x1Vx1)
return false;
// Otherwise.
return true;
}
// Check if def-use is 'aligned' with channel mask.
//
// CM = 11110000 (M8)
// 00001111 (M0)
//
// mov (8, M0) V33(0,0)<2>:d 1 // defines V33.{0,2,4,6}
// mov (8, M8) V33(0,1)<2>:d 2 // defines V33.{9,11,13,15}
// add (16, M0) V34.0<1>:d V33.0<1;1,0>:d 3 // uses V33.{0,1,2,3,12,13,14,15}
//
// This is not aligned, and it is not a full kill.
//
// mov (8, M0) V33(0,0)<1>:d 1 // defines V33.{0,1,2,3}
// mov (8, M8) V33(1,0)<1>:d 2 // defines V33.{12,13,14,15}
// add (16, M0) V34.0<1>:d V33.0<1;1,0>:d 3 // uses V33.{0,1,2,3,12,13,14,15}
//
// This is aligned, and it is a full kill.
//
bool LiveNode::alignedWithChannelMask(G4_INST *DefInst,
Gen4_Operand_Number DefOpNum,
G4_INST *UseInst,
Gen4_Operand_Number UseOpNum) {
G4_Operand *DefOpnd = DefInst->getOperand(DefOpNum);
G4_Operand *UseOpnd = UseInst->getOperand(UseOpNum);
unsigned DefLB = DefOpnd->getLeftBound();
unsigned UseLB = UseOpnd->getLeftBound();
unsigned DefMaskOffset = DefInst->getMaskOffset();
unsigned UseMaskOffset = UseInst->getMaskOffset();
// Flag is tracking at bit level.
G4_Declare *Dcl = DefOpnd->getTopDcl();
if (Dcl && Dcl->getRegFile() == G4_RegFileKind::G4_FLAG) {
int DefOffset = int(DefLB - DefMaskOffset);
int UseOffset = int(UseLB - UseMaskOffset);
return DefOffset == UseOffset;
}
// UseOpnd is indirect VxH
if (UseOpnd->isVxHIndirect()) {
int DefOffset = int(DefLB - DefMaskOffset * TypeSize(ADDR_REG_TYPE));
int UseOffset = int(UseLB - UseMaskOffset * TypeSize(ADDR_REG_TYPE));
return DefOffset == UseOffset;
}
// Do not analyze instructions that may exceed two GRF boundary
if (DefInst->isSend() || DefInst->isDpas() || UseInst->isSend() ||
UseInst->isDpas())
return true;
// Check that all uses are defined under the righ emask, if defined.
unsigned DefStride = 1;
if (DefOpnd->isDstRegRegion()) {
DefStride = DefOpnd->asDstRegRegion()->getHorzStride();
}
bool IsContinguous = false;
if (UseOpnd->isSrcRegRegion()) {
G4_SrcRegRegion *UseReg = UseOpnd->asSrcRegRegion();
const RegionDesc *UseRegDesc = UseReg->getRegion();
IsContinguous = UseRegDesc->isContiguous(UseInst->getExecSize());
}
unsigned DefTySz = DefOpnd->getTypeSize();
unsigned UseTySz = UseOpnd->getTypeSize();
// Common cases.
if (DefStride == 1 && IsContinguous && DefTySz == UseTySz) {
int DefOffset = int(DefLB - DefMaskOffset * DefTySz);
int UseOffset = int(UseLB - UseMaskOffset * UseTySz);
return DefOffset == UseOffset;
}
// Other cases.
//
// Initial value -1 means byte not defined, for [DefLB, DefRB].
std::array<int, 256> DefByteMask;
DefByteMask.fill(-1);
// Set channel value for each defining byte.
int Channel = DefInst->getMaskOffset();
for (unsigned i = 0, n = DefInst->getExecSize(); i < n; ++i) {
for (unsigned j = 0; j < DefTySz; ++j)
DefByteMask[i * DefTySz * DefStride + j] = Channel;
++Channel;
}
// In general, enumerate elements of use region and for each byte
// check if this byte is defined by a correct emask. Note that
// it is ok that some bytes are not defined.
//
Channel = UseInst->getMaskOffset();
if (UseOpnd->isSrcRegRegion()) {
unsigned DefRB = DefOpnd->getRightBound();
auto Desc = UseOpnd->asSrcRegRegion()->getRegion();
int hs = Desc->isScalar() ? 1 : Desc->horzStride;
int vs = Desc->isScalar() ? 0 : Desc->vertStride;
int numRows = UseInst->getExecSize() / Desc->width;
for (int i = 0; i < numRows; ++i) {
for (int j = 0; j < Desc->width; ++j) {
// Check this element's emask at byte level when defined.
int eltOffset = i * vs * UseTySz + j * hs * UseTySz;
if (UseLB + eltOffset >= DefLB &&
UseLB + eltOffset + UseTySz - 1 <= DefRB) {
int Offset = UseLB + eltOffset - DefLB;
for (unsigned k = 0; k < UseTySz; ++k) {
int Mask = DefByteMask[Offset + k];
if (Mask != -1 && Mask != Channel)
return false;
}
}
++Channel;
}
}
}
return true;
}
// Remove one element from vector and return the iterator to the next element.
template <typename T, typename AllocatorTy>
typename std::vector<T, AllocatorTy>::iterator
kill(std::vector<T, AllocatorTy> &Elts,
typename std::vector<T, AllocatorTy>::iterator Iter) {
vASSERT(Iter != Elts.end());
vASSERT(!Elts.empty());
if (&*Iter == &Elts.back()) {
// This is the last element so the next one is none.
Elts.pop_back();
return Elts.end();
}
// Not the last one, swap with the tail and keep the iterator unchanged.
std::swap(*Iter, Elts.back());
Elts.pop_back();
return Iter;
}
// Process reads. This simply creates a new live read node.
//
// Note that for an indirect operand, its top dcl is its address variable.
// This models def-use for the underlying address variable, not the
// variable being addressed. An indirect definition introduces a use too.
//
static void processReadOpnds(G4_BB *BB, G4_INST *Inst, LocalLivenessInfo &LLI) {
if (Inst->isPseudoKill()) {
return;
}
// (1) Indirect dst operand reads address.
G4_DstRegRegion *Dst = Inst->getDst();
if (Dst && Dst->isIndirect()) {
G4_Declare *Dcl = Dst->getTopDcl();
vISA_ASSERT(Dcl, "out of sync");
LLI.LiveNodes[Dcl].emplace_back(Inst, Gen4_Operand_Number::Opnd_dst);
}
// (2) Direct and indirect source operands.
for (auto OpNum :
{Gen4_Operand_Number::Opnd_src0, Gen4_Operand_Number::Opnd_src1,
Gen4_Operand_Number::Opnd_src2, Gen4_Operand_Number::Opnd_src3,
Gen4_Operand_Number::Opnd_src4, Gen4_Operand_Number::Opnd_src5,
Gen4_Operand_Number::Opnd_src6, Gen4_Operand_Number::Opnd_src7,
Gen4_Operand_Number::Opnd_pred, Gen4_Operand_Number::Opnd_implAccSrc}) {
G4_Operand *opnd = Inst->getOperand(OpNum);
if (opnd == nullptr || opnd->isImm() || opnd->isNullReg() ||
opnd->isLabel())
continue;
if (Inst->isPseudoAddrMovIntrinsic()) {
G4_Declare *Dcl = opnd->asAddrExp()->getRegVar()->getDeclare();
LLI.LiveNodes[Dcl].emplace_back(Inst, OpNum);
} else {
G4_Declare *Dcl = opnd->getTopDcl();
LLI.LiveNodes[Dcl].emplace_back(Inst, OpNum);
}
}
}
static void
processReadOpndsForPseudoKill(G4_BB *BB, G4_INST *Inst,
std::unordered_set<G4_Declare *> &pseudoKills) {
if (Inst->isPseudoKill()) {
return;
}
// (1) Indirect dst operand reads address.
G4_DstRegRegion *Dst = Inst->getDst();
if (Dst && Dst->isIndirect()) {
G4_Declare *dcl = Dst->getTopDcl();
if (pseudoKills.find(dcl) != pseudoKills.end()) {
dcl->setIsBBLocal(false);
pseudoKills.erase(dcl);
}
}
// (2) Direct and indirect source operands.
for (auto OpNum :
{Gen4_Operand_Number::Opnd_src0, Gen4_Operand_Number::Opnd_src1,
Gen4_Operand_Number::Opnd_src2, Gen4_Operand_Number::Opnd_src3,
Gen4_Operand_Number::Opnd_src4, Gen4_Operand_Number::Opnd_src5,
Gen4_Operand_Number::Opnd_src6, Gen4_Operand_Number::Opnd_src7,
Gen4_Operand_Number::Opnd_pred, Gen4_Operand_Number::Opnd_implAccSrc}) {
G4_Operand *opnd = Inst->getOperand(OpNum);
if (opnd == nullptr || opnd->isImm() || opnd->isNullReg() ||
opnd->isLabel())
continue;
G4_Declare *dcl = nullptr;
if (Inst->isPseudoAddrMovIntrinsic()) {
dcl =opnd->asAddrExp()->getRegVar()->getDeclare();
} else {
dcl = opnd->getTopDcl();
}
if (pseudoKills.find(dcl) != pseudoKills.end()) {
dcl->setIsBBLocal(false);
pseudoKills.erase(dcl);
}
}
}
// Process writes. If this is a partial definition, then record this partial
// definition. When all partial definitions together define this live read node,
// it is killed and du/ud links are added.
//
static void processWriteOpnds(G4_BB *BB, G4_INST *Inst,
LocalLivenessInfo &LLI) {
if (Inst->isPseudoKill()) {
return;
}
for (auto OpNum :
{Gen4_Operand_Number::Opnd_dst, Gen4_Operand_Number::Opnd_condMod,
Gen4_Operand_Number::Opnd_implAccDst}) {
G4_Operand *opnd = Inst->getOperand(OpNum);
if (opnd == nullptr || opnd->isNullReg())
continue;
// Do not try to kill uses with indirect definitions.
if (opnd->isDstRegRegion() && opnd->asDstRegRegion()->isIndirect())
continue;
// Iterate all live nodes associated to the same declaration.
auto &Nodes = LLI.LiveNodes[opnd->getTopDcl()];
for (auto Iter = Nodes.begin(); Iter != Nodes.end(); /*empty*/) {
LiveNode &liveNode = *Iter;
if (liveNode.addDefinition(Inst, OpNum, LLI)) {
Iter = kill(Nodes, Iter);
continue;
}
++Iter;
}
}
}
void FlowGraph::localDataFlowAnalysis() {
// For pseudo kill varaible
// If there is use exposed in a BB, it's treated as global.
// Otherwise, it's treated as local even the same pseudo kill may appear in
// multiple BBs
std::unordered_set<G4_Declare *> pesudoKilledDcls;
for (auto BB : BBs) {
LocalLivenessInfo LLI(!BB->isAllLaneActive());
for (auto I = BB->rbegin(), E = BB->rend(); I != E; ++I) {
G4_INST *Inst = *I;
G4_opcode Op = Inst->opcode();
if (Op == G4_opcode::G4_return || Op == G4_opcode::G4_label)
continue;
if (Inst->isOptBarrier()) {
// Do not try to build def-use accross an optimization barrier,
// and this effectively disables optimizations across it.
LLI.populateGlobals(globalOpndHT);
// A barrier does not kill, but may introduce uses.
processReadOpnds(BB, Inst, LLI);
continue;
}
processWriteOpnds(BB, Inst, LLI);
if (Inst->isPseudoKill() && Inst->getDst() && !Inst->getDst()->isNullReg()) {
G4_Declare *dcl = Inst->getDst()->getTopDcl();
pesudoKilledDcls.insert(dcl);
// In case the use in anther BB is analyzed before define
if (!globalOpndHT.isOpndGlobal(Inst->getDst())) {
G4_Declare *dcl = Inst->getDst()->getTopDcl();
dcl->setIsBBLocal(true);
}
}
processReadOpnds(BB, Inst, LLI);
if (pesudoKilledDcls
.size()) { // Process the operand using variable which
// has psuedo kill. Since the scan is from back to
// front, exposed use will make variable global
processReadOpndsForPseudoKill(BB, Inst, pesudoKilledDcls);
}
}
// All left over live nodes are global.
LLI.populateGlobals(globalOpndHT);
// Sort use lists according to their local ids.
// This matches the use list order produced by forward
// reaching definition based analysis. It is better for
// optimizations not to rely on this order.
BB->resetLocalIds();
for (auto Inst : *BB) {
if (Inst->use_size() > 1) {
using Ty = std::pair<vISA::G4_INST *, Gen4_Operand_Number>;
auto Cmp = [](const Ty &lhs, const Ty &rhs) -> bool {
int lhsID = lhs.first->getLocalId();
int rhsID = rhs.first->getLocalId();
if (lhsID < rhsID)
return true;
else if (lhsID > rhsID)
return false;
return lhs.second < rhs.second;
};
Inst->sortUses(Cmp);
}
}
}
}
// Reset existing def-use
void FlowGraph::resetLocalDataFlowData() {
globalOpndHT.clearHashTable();
for (auto bb : BBs) {
for (auto inst : *bb) {
inst->clearDef();
inst->clearUse();
}
}
}
void DefEscapeBBAnalysis::analyzeBB(G4_BB *bb) {
// active defines in this BB, organized by root declare
invalidateBB(bb);
std::unordered_map<G4_Declare *, std::vector<G4_INST *>> activeDefines;
std::vector<G4_INST *> escapedDefs;
for (auto inst : *bb) {
if (!inst->getDst()) {
continue;
}
// analyze GRF/Address dst
auto dst = inst->getDst();
if (dst->isIndirect()) {
escapedDefs.push_back(inst);
} else if (dst->getTopDcl()) {
auto dcl = dst->getTopDcl()->getRootDeclare();
auto &&iter = activeDefines.find(dcl);
if (iter == activeDefines.end()) {
// first define for dcl in this BB
activeDefines[dcl] = {inst};
} else {
auto &&vec = iter->second;
// note size may shrink!
for (int i = 0; i < (int)vec.size(); ++i) {
auto prevInst = vec[i];
if (inst->getMaskOffset() != prevInst->getMaskOffset() ||
(prevInst->isWriteEnableInst() && !inst->isWriteEnableInst()) ||
dst->getExecTypeSize() != prevInst->getDst()->getExecTypeSize()) {
continue;
}
auto rel = dst->compareOperand(prevInst->getDst(), *fg.builder);
if (rel == Rel_eq || rel == Rel_gt) {
std::swap(vec[i], vec[vec.size() - 1]);
vec.pop_back();
#ifdef _DEBUG
// std::cerr << "Inst:\t";
// prevInst->dump();
// std::cerr << "killed by Inst:\t";
// inst->dump();
auto killIter = killedDefs.find(bb);
if (killIter == killedDefs.end()) {
killedDefs[bb] = {prevInst};
} else {
auto &&killedVec = killIter->second;
killedVec.push_back(prevInst);
}
#endif
}
}
vec.push_back(inst);
}
}
}
for (auto &&iter : activeDefines) {
auto &&vec = iter.second;
for (auto I : vec) {
escapedDefs.push_back(I);
}
}
escapedInsts[bb] = std::move(escapedDefs);
}
void DefEscapeBBAnalysis::print(std::ostream &OS) const {
for (auto &&iter : escapedInsts) {
G4_BB *bb = iter.first;
OS << "BB" << bb->getId() << ":\n";
OS << "Escaped inst:\n";
for (auto &&inst : iter.second) {
OS << "\t";
inst->print(OS);
}
#ifdef _DEBUG
auto &&killIt = killedDefs.find(bb);
if (killIt != killedDefs.end()) {
OS << "Killed inst:\n";
for (auto &&inst : killIt->second) {
OS << "\t";
inst->print(OS);
}
}
#endif // _DEBUG
OS << "\n";
}
}
|