File: RPE.cpp

package info (click to toggle)
intel-graphics-compiler2 2.20.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 107,552 kB
  • sloc: cpp: 807,012; lisp: 287,936; ansic: 16,397; python: 4,010; yacc: 2,588; lex: 1,666; pascal: 313; sh: 186; makefile: 37
file content (225 lines) | stat: -rw-r--r-- 6,890 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/*========================== begin_copyright_notice ============================

Copyright (C) 2017-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

// This file contains implementation of Register Pressure Estimator.

#include "GraphColor.h"
#include "PointsToAnalysis.h"
#include "RPE.h"
#include "Timer.h"

namespace vISA {
RPE::RPE(const GlobalRA &g, const LivenessAnalysis *l, DECLARE_LIST *spills)
    : gra(g), fg(g.kernel.fg), liveAnalysis(l), live(), vars(l->vars)
{
  options = g.kernel.getOptions();
  if (spills) {
    std::for_each(spills->begin(), spills->end(),
                  [&](const G4_Declare *dcl) { spilledVars.insert(dcl); });
  }
}

void RPE::run() {
  TIME_SCOPE(RPE);
  if (!vars.empty()) {
    for (auto &bb : gra.kernel.fg) {
      runBB(bb);
    }
  }
}

void RPE::runBB(G4_BB *bb) {
  G4_Declare *topdcl = nullptr;
  unsigned int id = 0;

  // Compute reg pressure at BB exit
  regPressureBBExit(bb);

  auto updateLivenessForLLR = [this](LocalLiveRange *LLR, bool val) {
    int numRows = LLR->getTopDcl()->getNumRows();
    int sreg;
    G4_VarBase *preg = LLR->getPhyReg(sreg);
    int startGRF = preg->asGreg()->getRegNum();
    for (int i = startGRF; i < startGRF + numRows; ++i) {
      G4_Declare *GRFDcl = gra.getGRFDclForHRA(i);
      updateLiveness(live, GRFDcl->getRegVar()->getId(), val);
    }
  };

  // Iterate in bottom-up order to analyze register usage (similar to intf graph
  // construction)
  for (auto rInst = bb->rbegin(), rEnd = bb->rend(); rInst != rEnd; rInst++) {
    auto inst = (*rInst);
    auto dst = inst->getDst();

    rp[inst] = (uint32_t)regPressure;
    LocalLiveRange *LLR = nullptr;
    if (dst && (topdcl = dst->getTopDcl())) {
      if (topdcl->getRegVar()->isRegAllocPartaker()) {
        // Check if dst is killed
        if (liveAnalysis->writeWholeRegion(bb, inst, dst) ||
            inst->isPseudoKill()) {
          id = topdcl->getRegVar()->getId();
          updateLiveness(live, id, false);
        }
      } else if ((LLR = gra.getLocalLR(topdcl)) && LLR->getAssigned()) {
        uint32_t firstRefIdx;
        if (LLR->getFirstRef(firstRefIdx) == inst ||
            liveAnalysis->writeWholeRegion(bb, inst, dst)) {
          updateLivenessForLLR(LLR, false);
        }
      }
    }

    for (unsigned int i = 0, numSrc = inst->getNumSrc(); i < numSrc; i++) {
      auto src = inst->getSrc(i);
      G4_RegVar *regVar = nullptr;

      if (!src)
        continue;

      if (!src->isSrcRegRegion() || !src->getTopDcl())
        continue;

      if (!src->asSrcRegRegion()->isIndirect()) {
        if ((regVar = src->getTopDcl()->getRegVar()) &&
            regVar->isRegAllocPartaker()) {
          unsigned int id = regVar->getId();
          updateLiveness(live, id, true);
        } else if ((LLR = gra.getLocalLR(src->getTopDcl())) &&
                   LLR->getAssigned()) {
          updateLivenessForLLR(LLR, true);
        }
      } else if (src->asSrcRegRegion()->isIndirect()) {
        // make every var in points-to set live
        const REGVAR_VECTOR &pointsToSet =
            liveAnalysis->getPointsToAnalysis().getAllInPointsToOrIndrUse(src,
                                                                          bb);
        for (const auto &pt : pointsToSet) {
          if (pt.var->isRegAllocPartaker()) {
            updateLiveness(live, pt.var->getId(), true);
          }
        }
      }
    }
  }
}

void RPE::regPressureBBExit(G4_BB *bb) {
  live.clear();
  live = liveAnalysis->use_out[bb->getId()];
  live &= liveAnalysis->def_out[bb->getId()];

  // Iterate over all live variables and add up numRows required
  // for each. For scalar variables, add them up separately.
  regPressure = 0;
  unsigned int numScalarBytes = 0;
  for (auto LI = live.begin(), LE = live.end(); LI != LE; ++LI) {
    unsigned i = *LI;
    {
      auto range = vars[i];
      G4_Declare *rootDcl = range->getDeclare()->getRootDeclare();
      if (isSpilled(rootDcl))
        continue;
      if (isStackPseudoVar(rootDcl))
        continue;
      if (rootDcl->getNumElems() > 1) {
        regPressure += rootDcl->getNumRows();
      } else {
        auto dclSize = rootDcl->getByteSize();
        auto alignBytes = static_cast<uint32_t>(rootDcl->getSubRegAlign()) * 2;
        if (dclSize < gra.builder.getGRFSize() && dclSize < alignBytes) {
          dclSize = std::min(dclSize * 2, alignBytes);
        }
        numScalarBytes += dclSize;
      }
    }
  }

  regPressure += (double)numScalarBytes / gra.builder.getGRFSize();
}

void RPE::updateLiveness(SparseBitVector &live, uint32_t id, bool val) {
  bool change = false;
  bool clean = false;
  if (val) { //true
    if (!live.test(id)) { //used to be false
      change = true;
      live.set(id);
    }
  } else {
    if (live.test(id)) { //
      change = true;
      clean = true;
      live.reset(id);
    }
  }
  updateRegisterPressure(change, clean, id);
}

void RPE::updateRegisterPressure(bool change, bool clean,
                                 unsigned int id) {
  if (change) {
    auto dcl = vars[id]->getDeclare();
    if (isSpilled(dcl))
      return;
    if (isStackPseudoVar(dcl))
      return;
    // For <1 GRF variable we have to take alignment into consideration as well
    // when computing register pressure. For now we double each <1GRF variable's
    // size if its alignment also exceeds its size. Alternative is to simply
    // take the alignment as the size, but it might cause performance
    // regressions due to being too conservative (i.e., a GRF-aligned variable
    // may share physical GRF with several other
    auto dclSize = dcl->getByteSize();
    auto alignBytes = static_cast<uint32_t>(dcl->getSubRegAlign()) * 2;
    if (dclSize < gra.builder.getGRFSize() && dclSize < alignBytes) {
      dclSize = std::min(dclSize * 2, alignBytes);
    }

    double delta = dclSize < gra.builder.getGRFSize()
                       ? dclSize / (double)gra.builder.getGRFSize()
                       : (double)dcl->getNumRows();
    if (clean) {
      if (regPressure < delta) {
        regPressure = 0;
      } else {
        regPressure -= delta;
      }
    } else {
      regPressure += delta;
    }
  }
  maxRP = std::max(maxRP, (uint32_t)regPressure);
}

void RPE::recomputeMaxRP() {
  maxRP = 0;
  // Find max register pressure over all entries in map
  for (const auto &item : rp) {
    maxRP = std::max(maxRP, item.second);
  }
}

void RPE::dump() const {
  std::cerr << "Max pressure = " << maxRP << "\n";
  for (auto &bb : gra.kernel.fg) {
    for (auto inst : *bb) {
      std::cerr << "[";
      if (rp.count(inst)) {
        std::cerr << rp.at(inst);
      } else {
        std::cerr << "??";
      }
      std::cerr << "]";
      inst->dump();
    }
    std::cerr << "\n";
  }
}
} // namespace vISA