File: VarSplit.cpp

package info (click to toggle)
intel-graphics-compiler2 2.20.5-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 107,552 kB
  • sloc: cpp: 807,012; lisp: 287,936; ansic: 16,397; python: 4,010; yacc: 2,588; lex: 1,666; pascal: 313; sh: 186; makefile: 37
file content (762 lines) | stat: -rw-r--r-- 26,347 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/*========================== begin_copyright_notice ============================

Copyright (C) 2019-2022 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "VarSplit.h"
#include "Assertions.h"
#include "GraphColor.h"

using namespace vISA;

namespace vISA {

LoopVarSplit::LoopVarSplit(G4_Kernel &k, GraphColor *c,
                           const LivenessAnalysis *liveAnalysis)
    : kernel(k), coloring(c), references(k) {
  for (auto spill : coloring->getSpilledLiveRanges()) {
    spilledDclSet.insert(spill->getDcl());
  }
  auto numVars = coloring->getNumVars();
  auto lrs = coloring->getLiveRanges();
  for (unsigned int i = 0; i != numVars; ++i) {
    auto rootDcl = lrs[i]->getDcl();
    dclSpillCost[rootDcl] = lrs[i]->getSpillCost();
  }
  DECLARE_LIST spills;
  std::for_each(coloring->getSpilledLiveRanges().begin(),
                coloring->getSpilledLiveRanges().end(),
                [&spills](LiveRange *lr) { spills.push_back(lr->getDcl()); });
  rpe = new RPE(c->getGRA(), liveAnalysis, &spills);
  rpe->run();
}

void LoopVarSplit::run() {
  // 1. consider list of spilled variables sorted in
  //       descending order of spill cost
  // 2. iterate over each spilled variable from sorted list
  //    a. run cost heuristic to decide if split makes sense
  //    b. if decision is to split, then check which loop(s) to split around

  std::list<std::pair<G4_Declare *, float>> sortedDcls;
  for (const auto &item : dclSpillCost) {
    if (spilledDclSet.find(item.first) != spilledDclSet.end())
      sortedDcls.push_back(std::pair(item.first, item.second));
  }

  auto SpillCostDesc = [](const std::pair<G4_Declare *, float> &first,
                          const std::pair<G4_Declare *, float> &second) {
    return first.second > second.second;
  };

  sortedDcls.sort(SpillCostDesc);

  // TODO: Iterating sequence based on spill cost may not be very accurate.
  // Thats because long living variables typically have lower spill cost.
  // But they may be referenced in some nested loop multiple times. In such
  // cases, it is beneficial to split the variable around such loops. To
  // accommodate such cases, we should be looking at reference count of
  // variables in loops and iterate in an order based on that.
  for (const auto &var : sortedDcls) {
    const auto &loops = getLoopsToSplitAround(var.first);
    for (auto &loop : loops) {
      split(var.first, *loop);
    }
  }
}

std::vector<G4_SrcRegRegion *> LoopVarSplit::getReads(G4_Declare *dcl,
                                                      Loop &loop) {
  std::vector<G4_SrcRegRegion *> reads;
  std::unordered_set<G4_INST *> duplicates;

  const auto &uses = references.getUses(dcl);
  for (const auto &use : *uses) {
    auto bb = std::get<1>(use);
    if (loop.contains(bb)) {
      auto inst = std::get<0>(use);
      if (duplicates.find(inst) != duplicates.end())
        continue;
      duplicates.insert(inst);
      for (unsigned int i = 0; i != inst->getNumSrc(); ++i) {
        auto opnd = inst->getSrc(i);
        if (!opnd || !opnd->isSrcRegRegion())
          continue;
        auto topdcl = opnd->asSrcRegRegion()->getTopDcl();
        if (topdcl == dcl)
          reads.push_back(opnd->asSrcRegRegion());
      }
    }
  }

  return reads;
}

std::vector<G4_DstRegRegion *> LoopVarSplit::getWrites(G4_Declare *dcl,
                                                       Loop &loop) {
  std::vector<G4_DstRegRegion *> writes;

  const auto &defs = references.getDefs(dcl);
  for (const auto &def : *defs) {
    auto bb = std::get<1>(def);
    if (loop.contains(bb)) {
      auto dst = std::get<0>(def)->getDst();
      writes.push_back(dst);
    }
  }

  return writes;
}

unsigned int LoopVarSplit::getMaxRegPressureInLoop(Loop &loop) {
  auto it = maxRegPressureCache.find(&loop);
  if (it != maxRegPressureCache.end())
    return it->second;

  unsigned int maxRPE = 0;
  auto &bbs = loop.getBBs();

  for (auto bb : bbs) {
    for (auto inst : bb->getInstList()) {
      maxRPE = std::max(maxRPE, rpe->getRegisterPressure(inst));
    }
  }

  maxRegPressureCache[&loop] = maxRPE;

  return maxRPE;
}

void LoopVarSplit::dump(std::ostream &of) {
  for (const auto &dcl : splitResults) {
    of << "Spilled dcl: " << dcl.first->getName() << "\n";
    for (const auto &split : dcl.second) {
      of << "\tSplit dcl: " << split.first->getName() << ", for loop L"
         << split.second->id << "\n";
    }
    of << "\n";
  }
}

void LoopVarSplit::removeAllSplitInsts(GlobalRA *gra, G4_Declare *dcl) {
  // dcl is a spilled split var. remove all split code
  // for dcl from pre-header and loop exits.
  // this method is invoked when a split dcl is spilled.
  vISA_ASSERT(gra->splitResults.find(dcl) != gra->splitResults.end(),
              "didnt find split result");
  auto &bbs = gra->splitResults[dcl].insts;
  for (auto &bb : bbs) {
    bb.first->getInstList().remove_if([&](G4_INST *candidate) {
      auto it = bb.second.find(candidate);
      if (it != bb.second.end()) {
        auto dst = candidate->getDst();
        if (dst && dst->getTopDcl())
          gra->incRA.markForIntfUpdate(dst->getTopDcl());

        for (unsigned int i = 0; i != candidate->getNumSrc(); ++i) {
          auto src = candidate->getSrc(i);
          if (src && src->getTopDcl())
            gra->incRA.markForIntfUpdate(src->getTopDcl());
        }
        return true;
      }
      return false;
    });
  }
}

// This method is invoked to remove spilled split variables from
// the program.
//
// Example before split:
//
// V10 = ...
//
// loop1:
// ...
//     = V10
//
// Assume V10 is spilled and split around loop1. Following code
// would be generated:
//
// SP_V10 =
// spill SP_V10 @ Offset 0
//
// preHeader_loop1:
// fill FL_V10 @ Offset 0
// LOOP_SPLIT_V10 = FL_V10
//
// loop1:
// ...
//     = LOOP_SPLIT_V10
//
// Now, assume LOOP_SPLIT_V10 spills in later RA iteration.
// This makes copy to LOOP_SPLIT_V10 in preHeader_loop1 redundant.
// So we eliminate the fill and copy from preHeader_loop1.
// Similarly, such copies may also be present in loop exit BB that
// require removal. This method eliminates such spilled split
// variables from the program.
void LoopVarSplit::removeSplitInsts(GlobalRA *gra, G4_Declare *spillDcl,
                                    G4_BB *bb) {
  auto it = gra->splitResults.find(spillDcl);

  if (it == gra->splitResults.end())
    return;

  auto &bbInstsToRemove = (*it).second.insts;
  for (const auto &entry : bbInstsToRemove) {
    auto currBB = entry.first;

    if (currBB == bb) {
      auto &instsToRemoveFromBB = entry.second;
      for (auto instIt = bb->begin(); instIt != bb->end();) {
        auto inst = (*instIt);
        if (instsToRemoveFromBB.find(inst) == instsToRemoveFromBB.end()) {
          ++instIt;
          continue;
        }

        instIt = bb->erase(instIt);
      }
    }
  }
}

bool LoopVarSplit::removeFromPreheader(GlobalRA *gra, G4_Declare *spillDcl,
                                       G4_BB *bb,
                                       INST_LIST_ITER filledInstIter) {
  auto it = gra->splitResults.find(spillDcl);
  if (it != gra->splitResults.end() &&
      (*it).second.insts.find(bb) != (*it).second.insts.end()) {
    auto inst = *filledInstIter;
    if (inst->isRawMov()) {
      removeSplitInsts(gra, spillDcl, bb);
      return true;
    }
  }
  return false;
}

bool LoopVarSplit::removeFromLoopExit(GlobalRA *gra, G4_Declare *spillDcl,
                                      G4_BB *bb,
                                      INST_LIST_ITER filledInstIter) {
  return removeFromPreheader(gra, spillDcl, bb, filledInstIter);
}

const std::unordered_set<G4_INST *> LoopVarSplit::getSplitInsts(GlobalRA *gra,
                                                                G4_BB *bb) {
  std::unordered_set<G4_INST *> ret;

  for (auto &splitVar : gra->splitResults)
    for (auto &insts : splitVar.second.insts)
      if (insts.first == bb) {
        for (auto item : insts.second)
          ret.insert(item);
      }

  return ret;
}

bool LoopVarSplit::split(G4_Declare *dcl, Loop &loop) {
  // Split dcl in given loop. Return true if split was successful.
  // It is assumed that dcl is spilled. This method inserts a
  // copy in preheader of loop. Dst of this copy is a new tmp and
  // source is dcl. All uses/defs of dcl in the loop are replaced
  // with the tmp. If dcl is ever written in the loop, a copy from
  // tmp to dcl is inserted in loop exit bb.
  //
  // This transformation requires a valid preheader be present for
  // loop. If dcl is written in the loop then a valid exit bb is also
  // needed.
  if (!loop.preHeader)
    return false;

  const auto &dsts = getWrites(dcl, loop);
  if (dsts.size() > 0) {
    // evaluate if it makes sense to insert the copy if loop has
    // multiple exits.
    if (loop.getLoopExits().size() != 1)
      return false;
    // TODO: Handle creation of loop preheader and loop exit in
    // presence of SIMD CF. this requires changing JIP, UIP
    // in source goto instructions and fix (if) any data structures
    // in VISA that rely on those JIP/UIP.
    if (!loop.preHeader->dominates(loop.getLoopExits().front()))
      return false;
  }

  // At this point we've decided to split dcl around loop
  coloring->getGRA().incRA.markForIntfUpdate(dcl);

  const auto &srcs = getReads(dcl, loop);

  auto splitDcl = kernel.fg.builder->createTempVar(
      dcl->getTotalElems(), dcl->getElemType(),
      coloring->getGRA().getSubRegAlign(dcl), "LOOPSPLIT", true);

  auto &splitData = coloring->getGRA().splitResults[splitDcl];
  splitData.origDcl = dcl;
  bool isDefault32bMask = coloring->getGRA().getAugmentationMask(dcl) ==
                          AugmentationMasks::Default32Bit;
  bool isDefault64bMask = coloring->getGRA().getAugmentationMask(dcl) ==
                          AugmentationMasks::Default64Bit;

  // emit TMP = dcl in preheader
  copy(loop.preHeader, splitDcl, dcl, &splitData, isDefault32bMask, isDefault64bMask);

  // emit dcl = TMP in loop exit
  if (dsts.size() > 0) {
    copy(loop.getLoopExits().front(), dcl, splitDcl, &splitData,
         isDefault32bMask, isDefault64bMask, /*pushBack*/ false);
  }

  // replace all occurences of dcl in loop with TMP
  for (auto src : srcs)
    replaceSrc(src, splitDcl, loop);

  for (auto dst : dsts)
    replaceDst(dst, splitDcl, loop);

  splitResults[dcl].push_back(std::make_pair(splitDcl, &loop));

  return true;
}

void LoopVarSplit::copy(G4_BB *bb, G4_Declare *dst, G4_Declare *src,
                        SplitResults *splitData, bool isDefault32bMask,
                        bool isDefault64bMask, bool pushBack) {
  // create mov instruction to copy dst->src
  // multiple mov instructions may be created depending on size of dcls
  // all mov instructions are appended to inst list of bb
  // when pushBack argument = true, append to BB (happens in pre-header)
  // when pushBack argument = false, insert in bb after label (happens at exit
  // bb)

  dst = dst->getRootDeclare();
  src = src->getRootDeclare();
  unsigned int numRows = dst->getNumRows();
  unsigned int bytesRemaining = dst->getByteSize();
  [[maybe_unused]] const unsigned int maxDstSize = 2;

  auto insertCopy = [&](G4_INST *inst) {
    if (pushBack || bb->size() == 0) {
      bb->push_back(inst);
      splitData->insts[bb].insert(inst);
    } else {
      if (bb->front()->isLabel()) {
        auto insertAfterIt = bb->begin();
        ++insertAfterIt;
        if (insertAfterIt != bb->end() &&
            (*insertAfterIt)->opcode() == G4_join) {
          bb->insertAfter(insertAfterIt, inst);
        } else
          bb->insertAfter(bb->begin(), inst);
      } else {
        vISA_ASSERT(bb->size() == 0 || bb->front()->opcode() != G4_join,
                    "shouldnt insert copy before join");
        bb->push_front(inst);
      }

      splitData->insts[bb].insert(inst);
    }
    if (inst->isWriteEnableInst() &&
        coloring->getGRA().EUFusionNoMaskWANeeded()) {
      coloring->getGRA().addEUFusionNoMaskWAInst(bb, inst);
    }
  };

  // if variable fits within 1 or 2 GRFs and uses Default32Bit augmentation mask
  // then make the copy use M0 mask instead of using WriteEnable.
  // TODO: Copy should use same EM as original variable.
  unsigned int instOption = InstOpt_WriteEnable;
  if (isDefault32bMask) {
    if (bytesRemaining % kernel.numEltPerGRF<Type_UD>() == 0 &&
        bytesRemaining <= kernel.numEltPerGRF<Type_UB>() * 2) {
      instOption = G4_InstOption::InstOpt_M0;
    }
  }

  // first copy full GRF rows
  if (numRows > 1 ||
      (dst->getTotalElems() * dst->getElemSize() == kernel.getGRFSize())) {
    // dcls are GRF sized so emit max SIMD size possible and copy 2 rows at
    // a time
    for (unsigned int i = 0; i < numRows;) {
      const RegionDesc *rd = kernel.fg.builder->getRegionStride1();
      G4_ExecSize execSize{kernel.numEltPerGRF<Type_UD>()};

      unsigned int rowsCopied = 1;
      G4_Type movType = Type_F;
      if (bytesRemaining >= kernel.numEltPerGRF<Type_UB>() * 2) {
        // copy 2 GRFs at a time if byte size permits
        if (instOption == InstOpt_WriteEnable ||
            kernel.getSimdSize() >= execSize * 2) {
          // When instruction uses default EM, max # of rows to be
          // written per mov instruction is restricted by kernel's
          // simd size. For eg, assume a variable with 2 rows
          // belongs to Default32Bit augmentation bucket. It means
          // each row is defined using Default32Bit EM. So on 32-byte
          // GRF platform under SIMD8, we should emit 2 movs, each
          // writing 1 row and both movs must use default EM. Emitting
          // single SIMD16 mov with default EM is illegal is this case.
          rowsCopied = 2;
          movType = Type_F;
        }
      }
      execSize = G4_ExecSize(kernel.numEltPerGRF(movType) * rowsCopied);

      auto dstRgn = kernel.fg.builder->createDst(dst->getRegVar(), (short)i, 0,
                                                 1, movType);
      auto srcRgn = kernel.fg.builder->createSrc(src->getRegVar(), (short)i, 0,
                                                 rd, movType);
      auto inst = kernel.fg.builder->createMov(execSize, dstRgn, srcRgn,
                                               instOption, false);

      insertCopy(inst);
      vISA_ASSERT(
          bytesRemaining >=
              (unsigned int)(execSize.value * G4_Type_Table[movType].byteSize),
          "Invalid copy exec size");
      bytesRemaining -= (execSize.value * G4_Type_Table[movType].byteSize);

      i += rowsCopied;

      if (bytesRemaining < kernel.numEltPerGRF<Type_UB>())
        break;
    }
  }

  if (kernel.getOption(vISA_FillConstOpt) && bytesRemaining > 0) {
    // if src is a const def then emit mov with imm src
    auto defs = references.getDefs(src);
    if (defs && defs->size() == 1) {
      auto onlyDef = std::get<0>(defs->front());
      if (immFillCandidate(onlyDef)) {
        auto immSrc = onlyDef->getSrc(0)->asImm();
        auto dstRgn = kernel.fg.builder->createDst(
            dst->getRegVar(), 0, 0, 1, onlyDef->getDst()->getType());
        auto inst = kernel.fg.builder->createMov(g4::SIMD1, dstRgn, immSrc,
                                                 instOption, false);

        insertCopy(inst);
        bytesRemaining = 0;
      }
    }
  }

  while (bytesRemaining > 0) {
    G4_Type type = Type_W;
    G4_ExecSize execSize = g4::SIMD16;

    if (bytesRemaining >= 16)
      execSize = g4::SIMD8;
    else if (bytesRemaining >= 8 && bytesRemaining < 16)
      execSize = g4::SIMD4;
    else if (bytesRemaining >= 4 && bytesRemaining < 8)
      execSize = g4::SIMD2;
    else if (bytesRemaining >= 2 && bytesRemaining < 4)
      execSize = g4::SIMD1;
    else if (bytesRemaining == 1) {
      // If a region has odd number of bytes, copy last byte in final iteration
      execSize = g4::SIMD1;
      type = Type_UB;
    } else {
      vISA_ASSERT(false, "Unexpected condition");
    }

    const RegionDesc *rd = kernel.fg.builder->getRegionStride1();
    if (execSize == g4::SIMD1)
      rd = kernel.fg.builder->getRegionScalar();

    unsigned int row =
        (dst->getByteSize() - bytesRemaining) / kernel.numEltPerGRF<Type_UB>();
    unsigned int col =
        (dst->getByteSize() - bytesRemaining) % kernel.numEltPerGRF<Type_UB>();
    if (G4_Type_Table[type].byteSize > 1) {
      vISA_ASSERT(col % 2 == 0, "Unexpected condition");
      col /= 2;
    }

    G4_DstRegRegion *dstRgn =
        kernel.fg.builder->createDst(dst->getRegVar(), row, col, 1, type);
    G4_SrcRegRegion *srcRgn =
        kernel.fg.builder->createSrc(src->getRegVar(), row, col, rd, type);

    vISA_ASSERT(instOption == InstOpt_WriteEnable, "Unexpected inst option");

    auto inst = kernel.fg.builder->createMov(execSize, dstRgn, srcRgn,
                                             instOption, false);

    insertCopy(inst);

    vISA_ASSERT(bytesRemaining >= (execSize.value *
                                   (unsigned int)G4_Type_Table[type].byteSize),
                "Invalid copy exec size");
    bytesRemaining -= (execSize.value * G4_Type_Table[type].byteSize);
  };
}

void LoopVarSplit::replaceSrc(G4_SrcRegRegion *src, G4_Declare *dcl,
                              const Loop &loop) {
  auto srcDcl = src->getBase()->asRegVar()->getDeclare();
  dcl = getNewDcl(srcDcl, dcl, loop);

  auto newSrcRgn = kernel.fg.builder->createSrc(
      dcl->getRegVar(), src->getRegOff(), src->getSubRegOff(), src->getRegion(),
      src->getType(), src->getAccRegSel());
  newSrcRgn->setModifier(src->getModifier());
  auto inst = src->getInst();
  for (unsigned int i = 0; i != inst->getNumSrc(); ++i) {
    if (inst->getSrc(i) == src) {
      inst->setSrc(newSrcRgn, i);
      break;
    }
  }
}

void LoopVarSplit::replaceDst(G4_DstRegRegion *dst, G4_Declare *dcl,
                              const Loop &loop) {
  auto dstDcl = dst->getBase()->asRegVar()->getDeclare();
  dcl = getNewDcl(dstDcl, dcl, loop);

  auto newDstRgn = kernel.fg.builder->createDst(
      dcl->getRegVar(), dst->getRegOff(), dst->getSubRegOff(),
      dst->getHorzStride(), dst->getType(), dst->getAccRegSel());

  auto inst = dst->getInst();
  inst->setDest(newDstRgn);
}

G4_Declare *LoopVarSplit::getNewDcl(G4_Declare *dcl1, G4_Declare *dcl2,
                                    const Loop &loop) {
  // this method gets args dcl1, dcl2. this method is invoked
  // when the transformation replaces existing src/dst rgn with
  // equivalent one but using split variable. for eg,
  //
  // op ... V10(0,5) ... <-- assume V10 is alias of V9
  //
  // assume V9 gets split so V10 src rgn above has to be replaced.
  // say V9's split dcl is called LOOP_SPLIT_V9.
  // so in this function we create a new dcl, LOOP_SPLIT_V10 that
  // aliases LOOP_SPLIT_V9 exactly like V10 aliases V9. this
  // way we dont need any complicated logic to flatten V10.
  //
  // dcl1 is a dcl used to construct some src or dst rgn.
  // dcl2 is a new dcl that splits dcl1. dcl2 is always root dcl.
  // dcl1 may or may not be alias of another dcl.
  // if dcl1 is also root dcl, then return dcl2.
  // if dcl1 is an alias dcl, then construct new dcl that aliases
  //   dcl2 at similar offset.
  // mapping from old dcl to new dcl is stored for future invocations.
  // this mapping is done per loop as a single spilled variable could
  // be split in multiple loops and each split instance would use a
  // different loop split variable.

  vISA_ASSERT(!dcl2->getAliasDeclare(), "Expecting to see root dcl for dcl2");

  auto &oldNewDcl = oldNewDclPerLoop[&loop];

  auto it = oldNewDcl.find(dcl1);
  if (it != oldNewDcl.end())
    return (*it).second;

  if (!dcl1->getAliasDeclare()) {
    oldNewDcl[dcl1] = dcl2;
    return dcl2;
  }

  auto newDcl = kernel.fg.builder->createTempVar(
      dcl1->getTotalElems(), dcl1->getElemType(), dcl1->getSubRegAlign());
  newDcl->setAliasDeclare(getNewDcl(dcl1->getRootDeclare(), dcl2, loop),
                          dcl1->getOffsetFromBase());

  oldNewDcl[dcl1] = newDcl;

  return newDcl;
}

std::vector<Loop *> LoopVarSplit::getLoopsToSplitAround(G4_Declare *dcl) {
  // return a list of Loop* around which variable dcl should be split
  std::vector<Loop *> loopsToSplitAround;

  if (dcl->getAddressed())
    return loopsToSplitAround;

  // first make list of all loops where dcl is ever referenced
  auto uses = references.getUses(dcl);
  auto defs = references.getDefs(dcl);

  auto StableOrder = [](const G4_BB *first, const G4_BB *second) {
    return first->getId() < second->getId();
  };
  std::set<G4_BB *, decltype(StableOrder)> bbsWithRefToDcl(StableOrder);

  if (uses) {
    for (auto &use : *uses) {
      auto bb = std::get<1>(use);
      bbsWithRefToDcl.insert(bb);
    }
  }

  if (defs) {
    for (auto &def : *defs) {
      auto bb = std::get<1>(def);
      bbsWithRefToDcl.insert(bb);
    }
  }

  auto OrderByRegPressure = [&](Loop *loop1, Loop *loop2) {
    auto maxRP1 = getMaxRegPressureInLoop(*loop1);
    auto maxRP2 = getMaxRegPressureInLoop(*loop2);
    if (maxRP1 != maxRP2)
      return maxRP1 > maxRP2;
    if (loop1->getNestingLevel() != loop2->getNestingLevel())
      return loop1->getNestingLevel() > loop2->getNestingLevel();
    return loop1->id > loop2->id;
  };

  std::set<Loop *, decltype(OrderByRegPressure)> innerMostLoops(
      OrderByRegPressure);

  // now collect innermost loop for each referenced BB
  for (auto bb : bbsWithRefToDcl) {
    auto innerMost = kernel.fg.getLoops().getInnerMostLoop(bb);
    if (innerMost)
      innerMostLoops.insert(innerMost);
  }

  // prune list of loops
  // 1. loops are stored in descending order of max reg pressure
  // 2. apply cost heuristic to decide if variable should be split at a loop
  // 3. once split at a loop, don't split at any parent or nested loop
  //
  // Example:
  //
  // -----
  // |
  // | Loop A
  // | =X
  // -----
  //
  // -----
  // |
  // | Loop B
  // | =X
  // | -----
  // | | =X
  // | | Loop C
  // | -----
  // |
  // -----
  //
  // Assume variable X is spilled and is referenced in Loop A, Loop B, Loop C.
  // Loop C is nested in Loop B.
  // The algorithm below decides whether it is better to spill X around Loop C
  // or Loop B. X is spilled around only 1 of these 2 loops since they've a
  // parent-nested relationship. Independently, the algorithm can also decide to
  // split X around Loop A as it is not a parent or nested loop of other loops.
  //

  for (auto loop : innerMostLoops) {
    // cannot split without pre-header
    if (!loop->preHeader)
      continue;

    // unsafe to split if loop has subroutine calls
    if (loop->subCalls)
      continue;

    bool dontSplit = false;
    for (auto splitLoop : loopsToSplitAround) {
      if (loop->fullSubset(splitLoop) || loop->fullSuperset(splitLoop)) {
        // variable already split in nested or parent loop
        dontSplit = true;
        break;
      }
    }

    if (dontSplit)
      continue;

    bool forceSplit = kernel.getOption(vISA_ForceSplitOnSpill);
    if (forceSplit) {
      loopsToSplitAround.push_back(loop);
      return loopsToSplitAround;
    }

    auto subRegAlign = coloring->getGRA().getSubRegAlign(dcl);

    // apply cost heuristic
    if (dcl->getNumElems() == 1 &&
        subRegAlign != coloring->getGRA().kernel.fg.builder->getGRFAlign()) {
      // unaligned scalars can be packed so dont adjust loop pressure for each
      // unaligned scalar. we may not be able to trivially pack aligned scalars
      // so use other branch to handle them.
      if (getMaxRegPressureInLoop(*loop) <
          (unsigned int)(1.0f * (float)kernel.getNumRegTotal() - 3.0f)) {
        auto scalarBytes = scalarBytesSplit[loop];
        if (scalarBytes >= kernel.numEltPerGRF<Type_UB>()) {
          // After packing, scalars contribute to 1 full GRF worth of storage.
          // Adjust loop max pressure accordingly.
          adjustLoopMaxPressure(*loop, 1);
          scalarBytesSplit[loop] -= kernel.numEltPerGRF<Type_UB>();
        }
        // scalar
        loopsToSplitAround.push_back(loop);
        scalarBytesSplit[loop] += dcl->getByteSize();
      }
    } else if (dcl->getNumRows() <= 2) {
      float Coeff = 0.95f;
      // if loop is large and has close to high RPE, reduce coeff to be less
      // aggressive
      if (isLargeLoop(*loop) &&
          getMaxRegPressureInLoop(*loop) >= 0.98f * (float)rpe->getMaxRP())
        Coeff = 0.9f;
      if (getMaxRegPressureInLoop(*loop) <=
          (unsigned int)(Coeff * (float)kernel.getNumRegTotal())) {
        loopsToSplitAround.push_back(loop);
        if (dcl->getNumElems() > 1 ||
            subRegAlign == coloring->getGRA().kernel.fg.builder->getGRFAlign())
          adjustLoopMaxPressure(*loop, dcl->getNumRows());
      }
    } else if (dcl->getNumRows() <= 4) {
      if (getMaxRegPressureInLoop(*loop) <=
          (unsigned int)(0.9f * (float)kernel.getNumRegTotal())) {
        loopsToSplitAround.push_back(loop);
        adjustLoopMaxPressure(*loop, dcl->getNumRows());
      }
    } else if (dcl->getNumRows() > 4) {
      // splitting dcls with > 4 rows should be very rare
      if (getMaxRegPressureInLoop(*loop) <=
          (unsigned int)(0.75f * (float)kernel.getNumRegTotal())) {
        loopsToSplitAround.push_back(loop);
        adjustLoopMaxPressure(*loop, dcl->getNumRows());
      }
    }
  }

  return loopsToSplitAround;
}

// When a variable is split in a loop, it increases register pressure
// in the loop because the split variable is live throughout the loop.
// Adjust max reg pressure data structure accordingly as it is used in
// cost heuristic for split decision.
void LoopVarSplit::adjustLoopMaxPressure(Loop &loop, unsigned int numRows) {
  unsigned int newMaxRegPressure = getMaxRegPressureInLoop(loop) + numRows;
  maxRegPressureCache[&loop] = newMaxRegPressure;
  for (auto &nested : loop.immNested) {
    adjustLoopMaxPressure(*nested, numRows);
  }
  Loop *parent = loop.parent;
  while (parent) {
    if (getMaxRegPressureInLoop(*parent) < newMaxRegPressure)
      maxRegPressureCache[parent] = newMaxRegPressure;
    parent = parent->parent;
  }
}

}; // namespace vISA