File: FPRoundingModeCoalescing.cpp

package info (click to toggle)
intel-graphics-compiler2 2.22.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 107,676 kB
  • sloc: cpp: 809,645; lisp: 288,070; ansic: 16,397; python: 4,010; yacc: 2,588; lex: 1,666; pascal: 314; sh: 186; makefile: 38
file content (367 lines) | stat: -rw-r--r-- 13,091 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/*========================== begin_copyright_notice ============================

Copyright (C) 2024 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

// This pass attempts to reduce number of times FP rounding mode is switched by
// moving and grouping together instructions using the same rounding mode.
// This pass works after optimizations, before emitter. Instructions are
// reordered only in the same basic block, with optional distance limit for move.

#include "Compiler/CISACodeGen/FPRoundingModeCoalescing.hpp"

#include "Compiler/CodeGenPublic.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "common/igc_regkeys.hpp"

using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;

#define DEBUG_TYPE "fp-rounding-mode-coalescing"

// Represents collection of FP instructions with the same RM. RM is not switched
// between the first and the last instruction in the group.
class FPRoundingModeGroup {
public:
  FPRoundingModeGroup(Instruction *I, ERoundingMode RM) : Head(I), Tail(I), RM(RM) { Instructions.insert(I); }

  ERoundingMode getRoundingMode() const { return RM; }

  Instruction *getHead() const { return Head; }

  bool contains(Instruction *I) const;
  bool uses(Instruction *I) const;

  void setHead(Instruction *I);
  void insertAfterGroup(Instruction *I);
  bool comesBeforeTail(Instruction *I);

private:
  // First custom RM FP instruction in the group.
  Instruction *Head = nullptr;

  // Last custom RM FP instruction. If instruction to insert to group has
  // uses that are FP instructions in different RM mode than this
  // group, these instructions would be moved here.
  //
  // Example:
  //   %fma.rtz.1.result = call double @llvm.genx.GenISA.fma.rtz.f64.f64.f64.f64(double %0, double %1, double %2) ; <-
  //   To insert %tmp = fadd double %0, %fma.rtz.1.result ; <- instruction in different RM %fma.rtz.2.result = call
  //   double @llvm.genx.GenISA.fma.rtz.f64.f64.f64.f64(double %3, double %4, double %5) ; <- HEAD %fma.rtz.3.result =
  //   call double @llvm.genx.GenISA.fma.rtz.f64.f64.f64.f64(double %6, double %7, double %8) ; <- TAIL
  //
  // Because %tmp depends on the result of instruction to move, the FP instructions would be reordered to:
  //
  //   %fma.rtz.1.result = call double @llvm.genx.GenISA.fma.rtz.f64.f64.f64.f64(double %0, double %1, double %2) ; <-
  //   new HEAD %fma.rtz.2.result = call double @llvm.genx.GenISA.fma.rtz.f64.f64.f64.f64(double %3, double %4, double
  //   %5) ; %fma.rtz.3.result = call double @llvm.genx.GenISA.fma.rtz.f64.f64.f64.f64(double %6, double %7, double %8)
  //   ; <- TAIL %tmp = fadd double %0, %fma.rtz.1.result
  //
  // Because only FP instructions are expected to be moved, there should be no impact on latency on FP pipe.
  Instruction *Tail = nullptr;

  SmallPtrSet<Instruction *, 4> Instructions;

  const ERoundingMode RM;
};

// Attempts to reorder FP instructions in one basic block.
class FPRoundingModeCoalescingImpl {
public:
  FPRoundingModeCoalescingImpl(ModuleMetaData *MMD, BasicBlock &BB) : MMD(MMD), BB(BB) {}

  bool coalesce();

private:
  bool update();

  bool setsRoundingMode(Instruction &ToMove);

  bool checkMoveThreshold(Instruction &ToMove, Instruction *InsertPoint);

  bool tryMove(Instruction &ToMove);

  bool tryMove(Instruction &ToMove, FPRoundingModeGroup &InsertPoint);

  ModuleMetaData *const MMD;
  BasicBlock &BB;

  SmallVector<FPRoundingModeGroup, 8> Groups;

  SmallPtrSet<Instruction *, 32> VisitedInstructions;
};

class FPRoundingModeCoalescing : public llvm::FunctionPass {
public:
  static char ID;

  FPRoundingModeCoalescing();

  virtual void getAnalysisUsage(llvm::AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<MetaDataUtilsWrapper>();
    AU.addPreserved<MetaDataUtilsWrapper>();
  }

  bool runOnFunction(llvm::Function &F) override;

  virtual llvm::StringRef getPassName() const override { return "FPRoundingModeCoalescing"; }
};

// Utility function to move instruction + log.
void moveAfter(Instruction *I, Instruction *InsertPoint) {
  LLVM_DEBUG(dbgs() << "Moving ["; I->print(dbgs(), true); dbgs() << "] after ["; InsertPoint->print(dbgs(), true);
             dbgs() << "]\n");
  I->moveAfter(InsertPoint);
}

bool FPRoundingModeGroup::contains(Instruction *I) const { return Instructions.count(I); }

bool FPRoundingModeGroup::uses(Instruction *I) const {
  for (auto V = I->users().begin(); V != I->users().end(); ++V) {
    if (auto *User = dyn_cast<Instruction>(*V)) {
      if (this->contains(User))
        return true;
    }
  }
  return false;
}

// Sets instruction as new head of the group, without moving it.
void FPRoundingModeGroup::setHead(Instruction *I) {
  LLVM_DEBUG(dbgs() << "Setting ["; I->print(dbgs(), true); dbgs() << "] as new head before [";
             Head->print(dbgs(), true); dbgs() << "]\n");
  Head = I;
  Instructions.insert(I);
}

// Moves given instruction after last instruction in group. Does not expand group.
void FPRoundingModeGroup::insertAfterGroup(Instruction *I) {
  LLVM_DEBUG(dbgs() << "Moving ["; I->print(dbgs(), true); dbgs() << "] after tail ["; Tail->print(dbgs(), true);
             dbgs() << "] (head is ["; Head->print(dbgs(), true); dbgs() << "])\n";);
  I->moveAfter(Tail);
}

// Returns true if given instruction comes before group's tail.
bool FPRoundingModeGroup::comesBeforeTail(Instruction *I) { return IGCLLVM::comesBefore(I, Tail); }

// Returns true if at least one change is made in basic block.
bool FPRoundingModeCoalescingImpl::coalesce() {
  bool result = false;

  // Repeat until nothing can be moved.
  while (true) {
    if (update()) {
      result = true;
    } else {
      break;
    }
  }

  return result;
}

bool FPRoundingModeCoalescingImpl::update() {

  for (auto I = BB.rbegin(); I != BB.rend(); ++I) {

    if (VisitedInstructions.insert(&*I).second == false)
      continue;

    if (!setsRoundingMode(*I))
      continue;

    ERoundingMode RM = GetRoundingMode_FP(MMD, &*I);

    // For safety reasons limit transformation to only one non-default RM.
    if (!Groups.empty() && Groups.begin()->getRoundingMode() != RM)
      continue;

    if (tryMove(*I))
      return true;

    // Instruction can't be moved, create new group.
    Groups.emplace_back(&*I, RM);
  }

  return false;
}

// Returns true if given instruction will change rounding mode.
bool FPRoundingModeCoalescingImpl::setsRoundingMode(Instruction &ToMove) {
  if (!setsRMExplicitly(&ToMove))
    return false;

  // Instruction sets explicit rounding mode. But this mode might already match default one
  // in kernel, so there might be no need to change it.

  ERoundingMode RM = GetRoundingMode_FP(MMD, &ToMove);
  ERoundingMode ConvRM = GetRoundingMode_FPCvtInt(MMD, &ToMove);

  return (RM != static_cast<ERoundingMode>(MMD->compOpt.FloatRoundingMode) && RM != ERoundingMode::ROUND_TO_ANY) ||
         (ConvRM != static_cast<ERoundingMode>(MMD->compOpt.FloatCvtIntRoundingMode) &&
          ConvRM != ERoundingMode::ROUND_TO_ANY);
}

bool FPRoundingModeCoalescingImpl::checkMoveThreshold(Instruction &ToMove, Instruction *InsertPoint) {
  unsigned Dist = 1;
  for (Instruction *I = ToMove.getNextNonDebugInstruction(); I != InsertPoint;
       I = I->getNextNonDebugInstruction(), ++Dist) {
    if (Dist >= IGC_GET_FLAG_VALUE(FPRoundingModeCoalescingMaxDistance))
      return false;
  }

  return true;
}

// Returns true if instruction is moved.
bool FPRoundingModeCoalescingImpl::tryMove(Instruction &ToMove) {
  for (auto &InsertPoint : Groups) {
    if (tryMove(ToMove, InsertPoint))
      return true;
  }

  return false;
}

// Attempts to move given instruction on top of group of other FP instructions.
// Returns true if instruction is moved.
bool FPRoundingModeCoalescingImpl::tryMove(Instruction &ToMove, FPRoundingModeGroup &Group) {

  if (GetRoundingMode_FP(MMD, &ToMove) != Group.getRoundingMode())
    return false;

  // First collect all uses of instruction to move that are before group's tail.
  // In case instruction will have to be moved, uses will have to be moved too.
  // Keep uses sorted in order of occurence in LLVM IR.
  auto Cmp = [](Instruction *a, Instruction *b) { return IGCLLVM::comesBefore(a, b); };
  std::set<Instruction *, decltype(Cmp)> Users(Cmp);

  SmallVector<Instruction *, 8> worklist;
  SmallSet<Instruction *, 8> visited;
  worklist.push_back(&ToMove);
  while (!worklist.empty()) {
    Instruction *ToCheck = worklist.back();
    worklist.pop_back();
    auto [_, inserted] = visited.insert(ToCheck);
    if (!inserted) {
      continue;
    }
    for (auto V = ToCheck->users().begin(); V != ToCheck->users().end(); ++V) {
      if (auto *I = dyn_cast<Instruction>(*V)) {
        if (I->getParent() != ToMove.getParent())
          continue;
        if (isa<PHINode>(I))
          continue;
        // Special case - if group directly uses ToMove, then this use is already on correct position.
        if (Group.comesBeforeTail(I) && (ToCheck != &ToMove || !Group.contains(I))) {
          Users.insert(I);
          worklist.push_back(I);
        }
      }
    }
  }

  // Now that all users are collected, count how many users would switch RM.
  int UsersSwitchingRM = 0;
  for (auto *I : Users) {
    if (!ignoresRoundingMode(I) && GetRoundingMode_FP(MMD, &ToMove) != GetRoundingMode_FP(MMD, I))
      ++UsersSwitchingRM;
  }

  // Next, find first instruction before group switching RM that is NOT an user
  // of instruction to move. This will be an insert point.
  Instruction *InsertPoint = nullptr;
  for (Instruction *I = Group.getHead()->getPrevNonDebugInstruction(); I != &ToMove;
       I = I->getPrevNonDebugInstruction()) {
    if (!ignoresRoundingMode(I) && Users.count(I) == 0) {
      InsertPoint = I;
      break;
    }
  }

  // If there is no insert point and no user switching rounding mode, then it means there is
  // no change in RM between instruction to move and group. There is need to move.
  if (InsertPoint == nullptr && UsersSwitchingRM == 0) {
    Group.setHead(&ToMove);
    return true;
  }

  // A move is needed. Before any move, check move threshold.
  if (!checkMoveThreshold(ToMove, InsertPoint ? InsertPoint : Group.getHead()))
    return false;

  // Check if there are any users not suitable for move.
  if (std::find_if(Users.begin(), Users.end(),
                   [](Instruction *I) { return I->mayReadOrWriteMemory() || I->mayHaveSideEffects(); }) != Users.end())
    return false;

  // Reordering too much could have an impact on latency, so consider only two scenarios:
  // 1. If there are no uses depending on RM, then all uses will be moved after insert point, BEFORE group.
  //    Higher number of impacted instructions keep their original order.
  // 2. If at least one user depends on RM, in order to minimize number of times RM is switched, all instructions
  //    are moved AFTER group.

  if (UsersSwitchingRM > 0) {

    // Move all uses after group. First check if this is safe - instruction can't be moved
    // if it is already a part of the group or is used by group's member.
    if (std::find_if(Users.begin(), Users.end(), [&](Instruction *I) { return Group.contains(I) || Group.uses(I); }) !=
        Users.end())
      return false;

    for (auto It = Users.rbegin(); It != Users.rend(); ++It)
      Group.insertAfterGroup(*It);

  } else {
    // All uses to move ignore RM. They can be moved after insert point, before group.
    // Better preserves original order of instructions.
    for (auto It = Users.rbegin(); It != Users.rend(); ++It) {
      if (IGCLLVM::comesBefore(*It, InsertPoint))
        moveAfter(*It, InsertPoint);
    }
  }

  if (InsertPoint)
    moveAfter(&ToMove, InsertPoint);

  Group.setHead(&ToMove);

  return true;
}

FPRoundingModeCoalescing::FPRoundingModeCoalescing() : FunctionPass(ID) {
  initializeFPRoundingModeCoalescingPass(*PassRegistry::getPassRegistry());
}

bool FPRoundingModeCoalescing::runOnFunction(Function &F) {
  LLVM_DEBUG(dbgs() << "Running on function " << F.getName() << ", FPRoundingModeCoalescingMaxDistance="
                    << IGC_GET_FLAG_VALUE(FPRoundingModeCoalescingMaxDistance) << "\n");

  auto *MMD = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData();

  bool result = false;

  for (auto &BB : F) {
    result |= FPRoundingModeCoalescingImpl(MMD, BB).coalesce();
  }

  return result;
}

char FPRoundingModeCoalescing::ID = 0;

#define PASS_FLAG "igc-fp-rounding-mode-coalescing"
#define PASS_DESCRIPTION "Groups FP instructions with common rounding mode"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(FPRoundingModeCoalescing, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(FPRoundingModeCoalescing, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)

FunctionPass *IGC::createFPRoundingModeCoalescingPass() { return new FPRoundingModeCoalescing(); }