1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2024 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "IGCVectorizer.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include <algorithm>
//
// IGCVectorizer pass currently looks for insert elements instructions
// that are going inside LSC2DBlockWrite & sub_group_dpas
// intrinsics and vectorizes phi nodes and eliminates
// unnecessary insert/extract element operations
//
// BEFORE:
// %phi_a = phi %extr_a
// %phi_b = phi %extr_b
// %dpas_vec = insert element %phi_a
// %dpas_vec = insert element %phi_b
// %dpas_res = dpas (%dpas_vec ...)
// %extr_a = extract element %dpas_res
// %extr_b = extrat elelment %dpas_res
// end of BB
//
// %a = phi %extr_a
// %b = phi %extr_b
// %vec = insert element %a
// %vec = insert element %b
// lsc_block_write (%vec ...)
// end of BB
//
// AFTER:
// %phi_vec = phi 2xfloat %dpas_res
// %dpas_res = dpas (%phi_vec ...)
// end of BB
//
// %phi_vec_2 = phi 2xfloat %dpas_res
// lsc_block_write (%phi_vec_2 ...)
// end of BB
//
// we vectorize PHI & scatter/gather pairs to eliminate scalar path between
// inherently vector intrinsics
//
// the backbone of the optimization is a vector_slice_tree (VectorSliceChain):
// each slice is a vector with index matching position of a scalar value
// inside the final vector:
// using strict ordering we can check that data inside final vector matches
// the data of the original vector element
//
// example 4 elements for compactness:
// [ 0 1 2 3 ]
// [ tmp104 tmp105 tmp106 tmp107 ]
// [ tmp90 tmp91 tmp92 tmp93 ]
// [ tmp114 tmp115 tmp116 tmp117 ]
//
// Slice:
// --> %tmp104 = insertelement <8 x float> zeroinitializer, float %tmp90, i64 0
// --> %tmp105 = insertelement <8 x float> %tmp104, float %tmp91, i64 1
// --> %tmp106 = insertelement <8 x float> %tmp105, float %tmp92, i64 2
// --> %tmp107 = insertelement <8 x float> %tmp106, float %tmp93, i64 3
// Slice:
// --> %tmp90 = phi float [ 0.000000e+00, %bb60 ], [ %tmp114, %bb88 ]
// --> %tmp91 = phi float [ 0.000000e+00, %bb60 ], [ %tmp115, %bb88 ]
// --> %tmp92 = phi float [ 0.000000e+00, %bb60 ], [ %tmp116, %bb88 ]
// --> %tmp93 = phi float [ 0.000000e+00, %bb60 ], [ %tmp117, %bb88 ]
// Slice:
// --> %tmp114 = extractelement <8 x float> %tmp113, i64 0
// --> %tmp115 = extractelement <8 x float> %tmp113, i64 1
// --> %tmp116 = extractelement <8 x float> %tmp113, i64 2
// --> %tmp117 = extractelement <8 x float> %tmp113, i64 3
//
// to better make sense what is happening please
// to check the logs: IGC_DumpToCustomDir=Dump IGC_VectorizerLog=1
char IGCVectorizer::ID = 0;
#define PASS_FLAG2 "igc-vectorizer"
#define PASS_DESCRIPTION2 "Vectorizes scalar path around igc vector intrinsics like dpas"
#define PASS_CFG_ONLY2 false
#define PASS_ANALYSIS2 false
IGC_INITIALIZE_PASS_BEGIN(IGCVectorizer, PASS_FLAG2, PASS_DESCRIPTION2, PASS_CFG_ONLY2, PASS_ANALYSIS2)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(IGCVectorizer, PASS_FLAG2, PASS_DESCRIPTION2, PASS_CFG_ONLY2, PASS_ANALYSIS2)
#define DEBUG IGC_IS_FLAG_ENABLED(VectorizerLog)
#define PRINT_LOG(Str) \
if (DEBUG) { \
OutputLogStream << Str; \
writeLog(); \
}
#define PRINT_LOG_NL(Str) \
if (DEBUG) { \
OutputLogStream << Str << "\n"; \
writeLog(); \
}
#define PRINT_INST(I) \
if (DEBUG) { \
I->print(OutputLogStream, false); \
}
#define PRINT_INST_NL(I) \
if (DEBUG) { \
if (I) { \
I->print(OutputLogStream, false); \
} else { \
PRINT_LOG("NULL"); \
} \
OutputLogStream << "\n"; \
}
#define PRINT_DECL_NL(I) \
if (DEBUG) { \
if (I) { \
I->print(OutputLogStream); \
} else { \
PRINT_LOG("NULL"); \
} \
OutputLogStream << "\n"; \
}
#define PRINT_DS(Str, DS) \
if (DEBUG) { \
for (auto DS_EL : DS) { \
PRINT_LOG(Str); \
PRINT_INST_NL(DS_EL); \
} \
}
IGCVectorizer::IGCVectorizer() : FunctionPass(ID) { initializeIGCVectorizerPass(*PassRegistry::getPassRegistry()); };
void IGCVectorizer::writeLog() {
if (IGC_IS_FLAG_ENABLED(VectorizerLog) && IGC_IS_FLAG_DISABLED(VectorizerLogToErr) && OutputLogFile->is_open())
*OutputLogFile << OutputLogStream.str();
if (IGC_IS_FLAG_ENABLED(VectorizerLog) && IGC_IS_FLAG_ENABLED(VectorizerLogToErr))
llvm::errs() << OutputLogStream.str();
OutputLogStream.str().clear();
}
void IGCVectorizer::initializeLogFile(Function &F) {
if (!IGC_IS_FLAG_ENABLED(VectorizerLog))
return;
string FName = F.getName().str();
if (FName.size() > 128)
FName.resize(128);
std::stringstream ss;
ss << FName << "_" << "Vectorizer";
auto Name = Debug::DumpName(IGC::Debug::GetShaderOutputName())
.Hash(CGCtx->hash)
.Type(CGCtx->type)
.Retry(CGCtx->m_retryManager.GetRetryId())
.Pass(ss.str().c_str())
.Extension("ll");
OutputLogFile = std::make_unique<std::ofstream>(Name.str());
}
void IGCVectorizer::findInsertElementsInDataFlow(llvm::Instruction *I, VecArr &Chain) {
std::queue<llvm::Instruction *> BFSQ;
BFSQ.push(I);
std::unordered_set<llvm::Instruction *> Explored;
Chain.push_back(I);
if (llvm::isa<InsertElementInst>(I))
return;
while (!BFSQ.empty()) {
llvm::Instruction *CurrI = BFSQ.front();
BFSQ.pop();
for (unsigned int i = 0; i < CurrI->getNumOperands(); ++i) {
Instruction *Op = llvm::dyn_cast<Instruction>(CurrI->getOperand(i));
if (!Op)
continue;
bool IsConstant = llvm::isa<llvm::Constant>(Op);
bool IsExplored = Explored.count(Op);
bool IsInsertElement = llvm::isa<InsertElementInst>(Op);
bool IsVectorTyped = Op->getType()->isVectorTy();
if (IsInsertElement)
Chain.push_back(Op);
bool Skip = IsConstant || IsExplored || IsInsertElement || !IsVectorTyped;
if (Skip)
continue;
Chain.push_back(Op);
Explored.insert(Op);
BFSQ.push(Op);
}
}
}
unsigned int getConstantValueAsInt(Value *I) {
ConstantInt *Value = dyn_cast<ConstantInt>(I);
IGC_ASSERT_MESSAGE(Value, "IGCVectorizer: trying to get an index from value that is not constant int");
unsigned int Result = Value->getSExtValue();
return Result;
}
unsigned int getVectorSize(Value *I) {
IGCLLVM::FixedVectorType *VecType = llvm::dyn_cast<IGCLLVM::FixedVectorType>(I->getType());
IGC_ASSERT_MESSAGE(VecType, "IGCVectorizer: Trying to get vector size from value that is not VecType");
unsigned int NumElements = VecType->getNumElements();
return NumElements;
}
// due to our emitter, currently we only process float fdiv's
bool isFDivSafe(Instruction *I) {
if (!IGC_GET_FLAG_VALUE(VectorizerAllowFDIV))
return false;
auto *Binary = llvm::dyn_cast<BinaryOperator>(I);
if (!Binary)
return false;
auto OpCode = Binary->getOpcode();
if (!(OpCode == Instruction::FDiv && I->getType()->isFloatTy()))
return false;
return true;
}
bool isBinarySafe(Instruction *I) {
bool Result = false;
auto *Binary = llvm::dyn_cast<BinaryOperator>(I);
if (!Binary)
return Result;
auto OpCode = Binary->getOpcode();
Result |= (OpCode == Instruction::FMul && IGC_GET_FLAG_VALUE(VectorizerAllowFMUL));
Result |= (OpCode == Instruction::FAdd && IGC_GET_FLAG_VALUE(VectorizerAllowFADD));
Result |= (OpCode == Instruction::FSub && IGC_GET_FLAG_VALUE(VectorizerAllowFSUB));
Result |= isFDivSafe(I);
return Result;
}
bool isPHISafe(Instruction *I) {
auto *PHI = llvm::dyn_cast<PHINode>(I);
if (PHI && PHI->getNumIncomingValues() == 2)
return true;
return false;
}
bool isFloatTyped(Instruction *I) {
const auto *fixedVecType = llvm::dyn_cast<llvm::FixedVectorType>(I->getType());
if (fixedVecType) {
if (fixedVecType->getElementType()->isFloatTy())
return true;
}
return I->getType()->isFloatTy();
}
bool isAllowedType(Instruction *I) {
return isFloatTyped(I) ||
(IGC_GET_FLAG_VALUE(VectorizerAllowI32) && I->getType()->isIntegerTy(32));
}
bool isIntrinsicSafe(Instruction *I) {
bool Result = false;
IntrinsicInst *IntrinsicI = llvm::dyn_cast<IntrinsicInst>(I);
if (!IntrinsicI)
return Result;
auto IntrinsicID = IntrinsicI->getIntrinsicID();
Result |= (IntrinsicID == llvm::Intrinsic::exp2 && IGC_GET_FLAG_VALUE(VectorizerAllowEXP2));
Result |= (IntrinsicID == llvm::Intrinsic::maxnum && IGC_GET_FLAG_VALUE(VectorizerAllowMAXNUM));
return Result;
}
bool isGenIntrinsicSafe(Instruction *I) {
auto *IntrinsicI = llvm::dyn_cast<GenIntrinsicInst>(I);
if (!IntrinsicI)
return false;
auto GenIntrinsicID = IntrinsicI->getIntrinsicID();
bool Result = (GenIntrinsicID == llvm::GenISAIntrinsic::GenISA_WaveAll) && IGC_GET_FLAG_VALUE(VectorizerAllowWAVEALL);
return Result;
}
bool isAllowedStub(Instruction *I) {
bool Result = false;
Result |= (llvm::isa<ICmpInst>(I) && IGC_GET_FLAG_VALUE(VectorizerAllowCMP));
Result |= (llvm::isa<SelectInst>(I) && IGC_GET_FLAG_VALUE(VectorizerAllowSelect));
Result |= isGenIntrinsicSafe(I);
return Result;
}
bool isSafeToVectorize(Instruction *I) {
bool IsExtract = llvm::isa<ExtractElementInst>(I);
bool IsInsert = llvm::isa<InsertElementInst>(I);
bool IsFpTrunc = llvm::isa<FPTruncInst>(I) && IGC_GET_FLAG_VALUE(VectorizerAllowFPTRUNC);
// the only typed instructions we add to slices => Insert elements
bool IsVectorTyped = I->getType()->isVectorTy();
bool IsAllowedType = isAllowedType(I);
bool Result =
isPHISafe(I) || IsExtract ||
isBinarySafe(I) || isIntrinsicSafe(I) || isAllowedStub(I);
// all allowed instructions that are float typed and not vectors
Result = (Result && IsAllowedType && !IsVectorTyped);
// always allowed
Result |= IsFpTrunc;
// only Float insert elements are allowed
Result |= IsInsert;
return Result;
}
bool IGCVectorizer::handleStub(VecArr &Slice) {
PRINT_LOG("stub vectorization: ");
PRINT_INST_NL(Slice.front());
if (isAllowedStub(Slice.front()))
return true;
return false;
}
bool IGCVectorizer::handlePHI(VecArr &Slice) {
PHINode *ScalarPhi = static_cast<PHINode *>(Slice[0]);
if (!checkPHI(ScalarPhi, Slice))
return false;
Value *PrevVectorization = nullptr;
if (ScalarToVector.count(ScalarPhi)) {
auto Vectorized = ScalarToVector[ScalarPhi];
if (llvm::isa<InsertElementInst>(Vectorized)) {
PRINT_LOG_NL("Was sourced by other vector instruction, but wasn't vectorized");
PrevVectorization = Vectorized;
} else {
PRINT_LOG_NL(" PHI was vectorized before, no bother ");
return true;
}
}
llvm::VectorType *PhiVectorType = llvm::FixedVectorType::get(ScalarPhi->getType(), Slice.size());
PHINode *Phi = PHINode::Create(PhiVectorType, 2);
Phi->setName("vectorized_phi");
VecVal Operands;
for (auto &BB : ScalarPhi->blocks()) {
std::vector<Constant *> Elements;
VecArr ForVector;
bool IsConstOperand = true;
bool IsInstOperand = true;
bool IsVectorized = true;
for (auto &El : Slice) {
PHINode *Phi = static_cast<PHINode *>(El);
Value *Val = Phi->getIncomingValueForBlock(BB);
Value *ValCmp = ScalarPhi->getIncomingValueForBlock(BB);
PRINT_INST(Val);
PRINT_LOG(" & ");
PRINT_INST_NL(ValCmp);
Constant *Const = llvm::dyn_cast<Constant>(Val);
Constant *ConstCmp = llvm::dyn_cast<Constant>(ValCmp);
IsConstOperand &= Const && ConstCmp;
if (IsConstOperand) {
Elements.push_back(Const);
}
Instruction *Inst = llvm::dyn_cast<Instruction>(Val);
Instruction *InstCmp = llvm::dyn_cast<Instruction>(ValCmp);
IsInstOperand &= Inst && InstCmp;
if (IsInstOperand) {
ForVector.push_back(Inst);
IsVectorized &= ScalarToVector.count(Inst) && (ScalarToVector[Inst] == ScalarToVector[InstCmp]);
} else {
IsVectorized = false;
}
}
if (IsConstOperand) {
PRINT_LOG_NL("ConstOperand");
auto ConstVec = ConstantVector::get(Elements);
Operands.push_back(ConstVec);
} else if (IsVectorized) {
PRINT_LOG_NL("Vectorized: ");
auto Vectorized = ScalarToVector[ScalarPhi->getIncomingValueForBlock(BB)];
PRINT_INST_NL(Vectorized);
Operands.push_back(Vectorized);
} else if (IsInstOperand) {
PRINT_LOG_NL("Created Vector: ");
Instruction *InsertPoint = BB->getTerminator();
if (ScalarPhi->getParent() == BB) {
InsertPoint = getInsertPointForVector(ForVector)->getNextNonDebugInstruction();
if (!InsertPoint) return false;
}
auto CreatedVec = createVector(ForVector, InsertPoint);
PRINT_INST_NL(CreatedVec);
Operands.push_back(CreatedVec);
} else {
PRINT_LOG_NL("Couldn't create operand array");
return false;
}
}
for (unsigned int i = 0; i < Operands.size(); ++i) {
auto BB = ScalarPhi->getIncomingBlock(i);
Phi->addIncoming(Operands[i], BB);
}
Phi->insertBefore(ScalarPhi);
Phi->setDebugLoc(ScalarPhi->getDebugLoc());
CreatedVectorInstructions.push_back(Phi);
PRINT_LOG("PHI created: ");
PRINT_INST_NL(Phi);
replaceSliceInstructionsWithExtract(Slice, Phi);
for (auto &El : Slice) {
if (ScalarToVector.count(El)) {
PRINT_LOG_NL("Vectorized version already present");
PRINT_INST(El);
PRINT_LOG(" --> ");
PRINT_INST_NL(ScalarToVector[El]);
}
ScalarToVector[El] = Phi;
}
if (PrevVectorization) {
PRINT_LOG_NL("Replaced with proper vector version");
PrevVectorization->replaceAllUsesWith(Phi);
}
return true;
}
bool IGCVectorizer::handleInsertElement(VecArr &Slice, Instruction *Final) {
Instruction *First = Slice.front();
if (!checkInsertElement(First, Slice))
return false;
PRINT_LOG_NL("InsertElement substituted with vectorized instruction");
PRINT_LOG_NL("");
Value *Compare = ScalarToVector[First->getOperand(1)];
*(Final->use_begin()) = Compare;
return true;
}
Instruction *IGCVectorizer::getInsertPointForVector(VecArr &Arr) {
Instruction* Cmp = Arr.front();
for (auto &El : Arr)
if (El->getParent() != Cmp->getParent())
return nullptr;
Instruction* InsertPoint = getMaxPoint(Arr);
// if insert point is PHI, shift it to the first nonPHI to be safe
if (llvm::isa<llvm::PHINode>(InsertPoint))
InsertPoint = InsertPoint->getParent()->getFirstNonPHI();
if (InsertPoint->isTerminator())
InsertPoint = InsertPoint->getPrevNonDebugInstruction();
return InsertPoint;
}
Instruction* IGCVectorizer::getInsertPointForCreatedInstruction(VecVal &Operands, VecArr& Slice) {
VecArr InstOperands;
for (auto &El : Operands) {
auto Inst = llvm::dyn_cast<Instruction>(El);
if (!Inst) continue;
if (Inst->getParent() == Slice.front()->getParent())
InstOperands.push_back(Inst);
}
Instruction* InsertPoint = Slice.front()->getParent()->getFirstNonPHI();
if (InstOperands.size() != 0) {
InsertPoint = getMaxPoint(InstOperands)->getNextNonDebugInstruction();
// if insert point is PHI, shift it to the first nonPHI to be safe
if (llvm::isa<llvm::PHINode>(InsertPoint))
InsertPoint = InsertPoint->getParent()->getFirstNonPHI();
}
return InsertPoint;
}
Instruction *IGCVectorizer::getMaxPoint(VecArr &Slice) {
unsigned MaxPos = 0;
Instruction *MaxPoint = Slice.front();
for (auto &El : Slice) {
unsigned NewPos = getPositionInsideBB(El);
if (NewPos > MaxPos) {
MaxPos = NewPos;
MaxPoint = El;
}
}
return MaxPoint;
}
Instruction *IGCVectorizer::getMinPoint(VecArr &Slice) {
unsigned MinPos = UINT32_MAX;
Instruction *MinPoint = Slice.front();
for (auto &El : Slice) {
unsigned NewPos = getPositionInsideBB(El);
if (NewPos < MinPos) {
MinPos = NewPos;
MinPoint = El;
}
}
return MinPoint;
}
InsertElementInst *IGCVectorizer::createVector(VecArr &Slice, Instruction *InsertPoint) {
InsertElementInst *CreatedInsert = nullptr;
llvm::Type *elementType = Slice[0]->getType();
if (elementType->isVectorTy())
return nullptr;
llvm::VectorType *vectorType = llvm::FixedVectorType::get(elementType, Slice.size());
llvm::Value *UndefVector = llvm::UndefValue::get(vectorType);
for (size_t i = 0; i < Slice.size(); i++) {
llvm::Value *index = llvm::ConstantInt::get(llvm::Type::getInt32Ty(M->getContext()), i);
// we start insert element with under value
if (CreatedInsert)
CreatedInsert = InsertElementInst::Create(CreatedInsert, Slice[i], index);
else
CreatedInsert = InsertElementInst::Create(UndefVector, Slice[i], index);
CreatedInsert->setName("vector");
CreatedInsert->setDebugLoc(Slice[i]->getDebugLoc());
CreatedInsert->insertBefore(InsertPoint);
CreatedVectorInstructions.push_back(CreatedInsert);
}
for (auto &El : Slice)
ScalarToVector[El] = CreatedInsert;
return CreatedInsert;
}
void IGCVectorizer::replaceSliceInstructionsWithExtract(VecArr &Slice, Instruction *CreatedInst) {
// this requires different deletion strategy to be enabled by default
if (IGC_IS_FLAG_DISABLED(VectorizerEnablePartialVectorization))
return;
PRINT_LOG(" Extracted from: ");
PRINT_INST_NL(CreatedInst);
Instruction *InsertPoint = (llvm::isa<PHINode>(Slice.front())) ? CreatedInst->getParent()->getFirstNonPHI()
: CreatedInst->getNextNonDebugInstruction();
for (size_t i = 0; i < Slice.size(); i++) {
llvm::Value *index = llvm::ConstantInt::get(llvm::Type::getInt32Ty(M->getContext()), i);
auto CreatedExtract = ExtractElementInst::Create(CreatedInst, index);
CreatedExtract->setName("vector_extract");
CreatedExtract->setDebugLoc(Slice[i]->getDebugLoc());
CreatedExtract->insertBefore(InsertPoint);
CreatedVectorInstructions.push_back(CreatedExtract);
PRINT_INST_NL(CreatedExtract);
Slice[i]->replaceAllUsesWith(CreatedExtract);
ScalarToVector[CreatedExtract] = CreatedInst;
}
}
bool IGCVectorizer::handleBinaryInstruction(VecArr &Slice) {
Value *PrevVectorization = nullptr;
Instruction *First = Slice.front();
if (ScalarToVector.count(First)) {
auto Vectorized = ScalarToVector[First];
if (llvm::isa<InsertElementInst>(Vectorized)) {
PRINT_LOG_NL("Was sourced by other vector instruction, but wasn't vectorized");
PrevVectorization = Vectorized;
} else {
PRINT_LOG_NL("Already was vectorized by other slice");
return true;
}
}
VecVal Operands;
for (unsigned int OperNum = 0; OperNum < First->getNumOperands(); ++OperNum) {
Value *Vectorized = checkOperandsToBeVectorized(First, OperNum, Slice);
if (Vectorized)
Operands.push_back(Vectorized);
else {
Value *VectorizedOperand = vectorizeSlice(Slice, OperNum);
if (!VectorizedOperand) {
PRINT_LOG_NL("Couldn't vectorize Slice");
return false;
}
Operands.push_back(VectorizedOperand);
}
}
PRINT_DS("Operands: ", Operands);
Instruction *InsertPoint = getInsertPointForCreatedInstruction(Operands, Slice);
auto BinaryOpcode = llvm::cast<BinaryOperator>(First)->getOpcode();
auto *CreatedInst = BinaryOperator::CreateWithCopiedFlags(BinaryOpcode, Operands[0], Operands[1], First);
CreatedInst->setName("vectorized_binary");
CreatedInst->setDebugLoc(First->getDebugLoc());
CreatedInst->insertBefore(InsertPoint);
CreatedVectorInstructions.push_back(CreatedInst);
PRINT_LOG("Binary instruction created: ");
PRINT_INST_NL(CreatedInst);
replaceSliceInstructionsWithExtract(Slice, CreatedInst);
for (auto &el : Slice) {
if (ScalarToVector.count(el)) {
PRINT_LOG_NL("Vectorized version already present");
PRINT_INST(el);
PRINT_LOG(" --> ");
PRINT_INST_NL(ScalarToVector[el]);
}
ScalarToVector[el] = CreatedInst;
}
if (PrevVectorization) {
PRINT_LOG_NL("Replaced with proper vector version");
PrevVectorization->replaceAllUsesWith(CreatedInst);
}
return true;
}
bool IGCVectorizer::handleCastInstruction(VecArr &Slice) {
Instruction *First = Slice.front();
if (ScalarToVector.count(First)) {
PRINT_LOG_NL("Cast was vectorized before by other slice");
return true;
}
unsigned int OperNum = 0;
Value *Vectorized = checkOperandsToBeVectorized(First, OperNum, Slice);
if (!Vectorized)
Vectorized = vectorizeSlice(Slice, OperNum);
if (!Vectorized) {
PRINT_LOG_NL("Couldn't vectorizer slice");
return false;
}
auto VectorSize = getVectorSize((Instruction *)Vectorized);
auto Type = IGCLLVM::FixedVectorType::get(First->getType(), VectorSize);
auto CastOpcode = llvm::cast<CastInst>(First)->getOpcode();
CastInst *CreatedCast = CastInst::Create(CastOpcode, Vectorized, Type);
CreatedCast->setName("vectorized_cast");
CreatedCast->setDebugLoc(First->getDebugLoc());
CreatedCast->insertBefore(First);
CreatedVectorInstructions.push_back(CreatedCast);
PRINT_LOG("Cast instruction created: ");
PRINT_INST_NL(CreatedCast);
for (auto &el : Slice)
ScalarToVector[el] = CreatedCast;
return true;
}
bool IGCVectorizer::handleIntrinsic(VecArr &Slice) {
Value *PrevVectorization = nullptr;
Instruction *First = Slice.front();
if (ScalarToVector.count(First)) {
auto Vectorized = ScalarToVector[First];
if (llvm::isa<InsertElementInst>(Vectorized)) {
PRINT_LOG_NL("Was sourced by other vector instruction, but wasn't vectorized");
PrevVectorization = Vectorized;
} else {
PRINT_LOG_NL("Already was vectorized by other slice");
return true;
}
}
VecVal Operands;
for (unsigned int OperNum = 0; OperNum < First->getNumOperands() - 1; ++OperNum) {
Value *Vectorized = checkOperandsToBeVectorized(First, OperNum, Slice);
if (Vectorized)
Operands.push_back(Vectorized);
else {
Value *VectorizedOperand = vectorizeSlice(Slice, OperNum);
if (!VectorizedOperand) {
PRINT_LOG_NL("Couldn't vectorize Slice");
return false;
}
Operands.push_back(VectorizedOperand);
}
}
PRINT_DS("Operands: ", Operands);
Instruction *InsertPoint = getInsertPointForCreatedInstruction(Operands, Slice);
llvm::VectorType *VectorType = llvm::FixedVectorType::get(First->getType(), Slice.size());
auto IntrinsicID = llvm::cast<IntrinsicInst>(First)->getIntrinsicID();
auto *Decl = Intrinsic::getDeclaration(M, IntrinsicID, {VectorType});
PRINT_DECL_NL(Decl);
auto *CreatedInst = llvm::CallInst::Create(Decl, Operands);
CreatedInst->setName("vectorized_intrinsic");
CreatedInst->setDebugLoc(First->getDebugLoc());
CreatedInst->insertAfter(InsertPoint);
CreatedVectorInstructions.push_back(CreatedInst);
PRINT_LOG("Intrinsic instruction created: ");
PRINT_INST_NL(CreatedInst);
replaceSliceInstructionsWithExtract(Slice, CreatedInst);
for (auto &el : Slice) {
if (ScalarToVector.count(el)) {
PRINT_LOG_NL("Vectorized version already present");
PRINT_INST(el);
PRINT_LOG(" --> ");
PRINT_INST_NL(ScalarToVector[el]);
}
ScalarToVector[el] = CreatedInst;
}
if (PrevVectorization) {
PRINT_LOG_NL("Replaced with proper vector version");
PrevVectorization->replaceAllUsesWith(CreatedInst);
}
return true;
}
// this basicaly seeds the chain
bool IGCVectorizer::handleExtractElement(VecArr &Slice) {
Instruction *First = Slice.front();
if (!checkExtractElement(First, Slice))
return false;
Value *Source = First->getOperand(0);
for (auto &el : Slice)
ScalarToVector[el] = Source;
return true;
}
bool IGCVectorizer::processChain(InsertStruct &InSt) {
std::reverse(InSt.SlChain.begin(), InSt.SlChain.end());
for (auto &SliceSt : InSt.SlChain) {
PRINT_LOG_NL("");
PRINT_LOG_NL("Process slice: ");
VecArr &Slice = SliceSt.Vector;
PRINT_DS("Slice: ", Slice);
// this contains common checks for any slice
if (!checkSlice(Slice, InSt))
return false;
Instruction *First = Slice[0];
if (llvm::isa<PHINode>(First)) {
if (!handlePHI(Slice))
return false;
} else if (llvm::isa<CastInst>(First)) {
if (!handleCastInstruction(Slice))
return false;
} else if (isAllowedStub(First)) {
if (!handleStub(Slice))
return false;
} else if (llvm::isa<BinaryOperator>(First)) {
if (!handleBinaryInstruction(Slice))
return false;
} else if (llvm::isa<IntrinsicInst>(First)) {
if (!handleIntrinsic(Slice))
return false;
} else if (llvm::isa<ExtractElementInst>(First)) {
if (!handleExtractElement(Slice))
return false;
} else if (llvm::isa<InsertElementInst>(First)) {
if (!handleInsertElement(Slice, InSt.Final))
return false;
} else {
IGC_ASSERT("we should not be here");
}
}
return true;
}
void IGCVectorizer::clusterInsertElement(InsertStruct &InSt) {
Instruction *Head = InSt.Final;
while (true) {
InSt.Vec.push_back(Head);
Head = llvm::dyn_cast<Instruction>(Head->getOperand(0));
if (!Head)
break;
if (!llvm::isa<InsertElementInst>(Head))
break;
}
// purely convenience feature want first insert to be at 0 index in array
std::reverse(InSt.Vec.begin(), InSt.Vec.end());
PRINT_LOG("fin: ");
PRINT_INST_NL(InSt.Final);
PRINT_DS("vec: ", InSt.Vec);
PRINT_LOG_NL("--------------------------");
for (unsigned int i = 0; i < InSt.Vec.size(); ++i) {
auto *InsertionIndex = InSt.Vec[i]->getOperand(2);
unsigned int Index = getConstantValueAsInt(InsertionIndex);
// elements are stored so index of the array
// corresponds with the way how final data should be laid out
if (Index != i) {
PRINT_LOG_NL("Not supported index swizzle");
InSt.Vec.clear();
}
}
}
void IGCVectorizer::printSlice(Slice *S) {
PRINT_LOG_NL("Slice: [ " << S << " ]");
PRINT_LOG_NL("OpNum: " << S->OpNum);
PRINT_LOG_NL("ParentIndex: " << S->ParentIndex);
PRINT_DS("Slice: ", S->Vector);
}
void IGCVectorizer::buildTree(VecArr &V, VecOfSlices &Chain) {
std::unordered_set<llvm::Instruction *> Explored;
std::queue<unsigned> BFSQ;
Chain.push_back({0, V, (unsigned)-1});
// we never delete from chain, so we can just track indexes of each slice
// 0 --> root index; rest calculated as backIndex = size() - 1
BFSQ.push(0);
while (!BFSQ.empty()) {
unsigned ParentIndex = BFSQ.front();
BFSQ.pop();
Slice *CurSlice = &Chain[ParentIndex];
auto First = CurSlice->Vector.front();
PRINT_LOG_NL("");
PRINT_LOG("Start: ");
PRINT_INST_NL(First);
for (unsigned int OpNum = 0; OpNum < First->getNumOperands(); ++OpNum) {
PRINT_LOG("Operand [" << OpNum << "]: ");
Instruction *Cmp = llvm::dyn_cast<Instruction>(First->getOperand(OpNum));
bool IsSame = true;
if (!Cmp) {
IsSame = false;
PRINT_LOG_NL("Not an instruction");
continue;
}
PRINT_LOG("First: ");
PRINT_INST_NL(Cmp);
if (!isSafeToVectorize(Cmp)) {
PRINT_LOG_NL(" Not safe to vectorize ");
IsSame = false;
continue;
}
VecArr LocalVector;
for (auto &El : CurSlice->Vector) {
auto Operand = llvm::dyn_cast<Instruction>(El->getOperand(OpNum));
if (!Operand) {
IsSame = false;
break;
}
bool IsExplored = Explored.count(Operand);
if (IsExplored) {
IsSame = false;
break;
}
Explored.insert(Operand);
IsSame &= Cmp->isSameOperationAs(Operand, false);
if (!IsSame)
break;
LocalVector.push_back(Operand);
}
PRINT_DS(" check: ", LocalVector);
if (IsSame) {
PRINT_LOG_NL("Pushed");
Chain.push_back({OpNum, std::move(LocalVector), ParentIndex});
BFSQ.push(Chain.size() - 1);
}
}
}
}
bool IGCVectorizer::checkPHI(Instruction *Compare, VecArr &Slice) {
PHINode *ComparePHI = static_cast<PHINode *>(Slice[0]);
if (ComparePHI->getNumIncomingValues() != 2) {
PRINT_LOG_NL("Only 2-way phi supported");
return false;
}
BasicBlock *CmpBB = Compare->getParent();
for (auto Phi : Slice) {
if (CmpBB != Phi->getParent()) {
PRINT_LOG_NL(" Only phi's from the same BB are supported");
return false;
}
}
return true;
}
Value *IGCVectorizer::vectorizeSlice(VecArr &Slice, unsigned int OperNum) {
VecArr NotVectorizedInstruction;
VecConst ConstNotVectorized;
Value *NewVector = nullptr;
for (auto &El : Slice) {
Value *Val = El->getOperand(OperNum);
PRINT_INST(El);
PRINT_LOG(" --> ");
PRINT_INST_NL(Val);
auto Inst = llvm::dyn_cast<Instruction>(Val);
if (Inst) {
NotVectorizedInstruction.push_back(Inst);
continue;
}
auto Const = llvm::dyn_cast<Constant>(Val);
if (Const) {
ConstNotVectorized.push_back(Const);
continue;
}
}
if (ConstNotVectorized.size() == Slice.size()) {
NewVector = ConstantVector::get(ConstNotVectorized);
PRINT_LOG("New vector created: ");
PRINT_INST_NL(NewVector);
}
if (NotVectorizedInstruction.size() == Slice.size()) {
Instruction *InsertPoint = getInsertPointForVector(NotVectorizedInstruction);
if (!InsertPoint) {
PRINT_LOG_NL("Couldn't find insert point");
return nullptr;
}
NewVector = createVector(NotVectorizedInstruction, InsertPoint->getNextNonDebugInstruction());
PRINT_LOG("New vector created: ");
PRINT_INST_NL(NewVector);
}
return NewVector;
}
Value *IGCVectorizer::checkOperandsToBeVectorized(Instruction *First, unsigned int OperNum, VecArr &Slice) {
Value *Compare = ScalarToVector[First->getOperand(OperNum)];
if (!Compare) {
PRINT_LOG_NL(" Operand num: " << OperNum << " is not vectorized");
return nullptr;
}
for (auto &El : Slice) {
Value *Val = El->getOperand(OperNum);
Value *ValCompare = ScalarToVector[Val];
if (ValCompare != Compare) {
PRINT_LOG("Compare: ");
PRINT_INST_NL(Compare);
PRINT_LOG("ValCompare: ");
PRINT_INST_NL(ValCompare);
PRINT_LOG_NL("Operands in slice do not converge");
return nullptr;
}
}
return Compare;
}
bool IGCVectorizer::checkInsertElement(Instruction *First, VecArr &Slice) {
for (unsigned int i = 0; i < Slice.size(); ++i) {
auto *InsertionIndex = Slice[i]->getOperand(2);
unsigned int Index = getConstantValueAsInt(InsertionIndex);
// elements are stored so index of the array
// corresponds with the way how final data should be laid out
if (Index != i) {
PRINT_LOG_NL("Not supported index swizzle");
return false;
}
}
// we check that all the scalar elements in the slice are
// already present inside generated vector element
if (!ScalarToVector.count(First->getOperand(1))) {
PRINT_LOG_NL("some elements weren't even vectorized");
return false;
}
if (!checkOperandsToBeVectorized(First, 1, Slice))
return false;
return true;
}
bool IGCVectorizer::checkExtractElement(Instruction *Compare, VecArr &Slice) {
Value *CompareSource = Slice[0]->getOperand(0);
if (getVectorSize(CompareSource) != Slice.size()) {
PRINT_LOG_NL("Extract is wider than the slice, need additional handling, not implemented");
return false;
}
if (!llvm::isa<Instruction>(CompareSource)) {
PRINT_LOG_NL("Source is not an instruction");
return false;
}
for (unsigned int i = 0; i < Slice.size(); ++i) {
if (CompareSource != Slice[i]->getOperand(0)) {
PRINT_LOG_NL("Source operand differ between extract elements");
return false;
}
unsigned int Index = getConstantValueAsInt(Slice[i]->getOperand(1));
// elements are stored so index of the array
// corresponds with the way how final data should be laid out
if (Index != i) {
PRINT_LOG_NL("Not supported index swizzle");
return false;
}
}
return true;
}
unsigned IGCVectorizer::getPositionInsideBB(Instruction *Inst) {
if (!PositionMap.count(Inst))
collectPositionInsideBB(Inst);
return PositionMap[Inst];
}
void IGCVectorizer::collectPositionInsideBB(Instruction *Inst) {
unsigned Counter = 0;
for (auto &I : *Inst->getParent()) {
PositionMap[&I] = Counter++;
}
}
bool IGCVectorizer::checkDependencyAndTryToEliminate(VecArr &Slice) {
// this set will contain all results our slice produces
// need to check that they are completely independent
// from each other, meaning that results from one part of the slice
// are not used as operand in another part
// %17 = fmul fast float %a0, %1
// %18 = fmul fast float %17, %2
// like in this case
std::unordered_set<Value *> Poisoned;
std::unordered_set<Value *> SliceSet;
bool IsInsertEl = llvm::isa<InsertElementInst>(Slice.front());
// #TODO: put a pin on that
// insert element is OKAY, it's interdependent by design
if (IsInsertEl)
return false;
// SLICE is always located in the same BB
Instruction *MinPoint = getMinPoint(Slice);
Instruction *MaxPoint = getMaxPoint(Slice);
VecArr SliceScope;
Instruction *SearchPoint = MinPoint;
SliceScope.push_back(SearchPoint);
while (SearchPoint != MaxPoint) {
SearchPoint = SearchPoint->getNextNonDebugInstruction();
SliceScope.push_back(SearchPoint);
}
PRINT_INST_NL(MinPoint);
PRINT_INST_NL(MaxPoint);
PRINT_DS("Slice Scope: ", SliceScope);
unsigned DependencyWindowCoefficient = IGC_GET_FLAG_VALUE(VectorizerDepWindowMultiplier);
// limit the window of potential rescheduling
// best case when all slice instrucitons are
// consecutive
unsigned WindowSize = Slice.size() * DependencyWindowCoefficient;
if (SliceScope.size() > WindowSize) {
PRINT_LOG_NL("Slice scope is too big -> bail");
return true;
}
for (auto El : Slice) {
Poisoned.insert(El);
SliceSet.insert(El);
}
// this is a small implementation of a wavefront algorithm
// that searches through operands and detects dependency
// on slice values
for (auto El : SliceScope) {
// we check all operands inside the slice scope
// and check that they are not interdependent on results
for (Value *Operand : El->operands()) {
// if this data point is dependent on slice value
// it's poisoned
if (!Poisoned.count(Operand))
continue;
Poisoned.insert(El);
break;
}
}
for (auto El : Slice) {
for (Value *Operand : El->operands()) {
if (!Poisoned.count(Operand))
continue;
PRINT_INST(Operand);
PRINT_LOG_NL(" <-- operands inside the slice depend on slice results");
return true;
}
}
Instruction *AfterInsertPoint = MaxPoint->getNextNonDebugInstruction();
// scheduling part
// everything that doesn't depend on slice values goes before
// everything that DEPENDS on slice-value goes after
for (auto El : SliceScope) {
if (!Poisoned.count(El)) {
PRINT_LOG("Before minpoint: ");
PRINT_INST_NL(El);
El->moveBefore(MinPoint);
} else if (SliceSet.count(El))
continue;
else {
PRINT_LOG("After maxpoint: ");
PRINT_INST_NL(El);
El->moveBefore(AfterInsertPoint);
}
}
return false;
}
bool IGCVectorizer::checkSlice(VecArr &Slice, InsertStruct &InSt) {
if (Slice.size() != getVectorSize(InSt.Final)) {
PRINT_LOG_NL("vector size isn't equal to the width of the vector tree");
return false;
}
Instruction *Compare = Slice[0];
if (!isSafeToVectorize(Compare)) {
PRINT_LOG("instruction in a chain is not supported: ");
PRINT_INST_NL(Compare);
return false;
}
for (unsigned int i = 1; i < Slice.size(); ++i) {
if (!Compare->isSameOperationAs(Slice[i])) {
PRINT_LOG_NL("Not all operations in the slice are identical");
return false;
}
if (Compare->getParent() != Slice[i]->getParent()) {
PRINT_LOG_NL("Not all operations in the slice are located in the same BB");
return false;
}
}
if (checkDependencyAndTryToEliminate(Slice))
return false;
return true;
}
bool filterInstruction(GenIntrinsicInst *I) {
if (!I)
return false;
GenISAIntrinsic::ID ID = I->getIntrinsicID();
bool Pass = (ID == GenISAIntrinsic::GenISA_LSC2DBlockWrite) || (ID == GenISAIntrinsic::GenISA_sub_group_dpas);
return Pass;
}
bool hasPotentialToBeVectorized(Instruction *I) {
bool Result = llvm::isa<InsertElementInst>(I) || llvm::isa<CastInst>(I) || llvm::isa<PHINode>(I);
return Result;
}
void IGCVectorizer::collectInstructionToProcess(VecArr &ToProcess, Function &F) {
for (BasicBlock &BB : F) {
for (auto &I : BB) {
GenIntrinsicInst *GenI = llvm::dyn_cast<GenIntrinsicInst>(&I);
bool Pass = filterInstruction(GenI);
if (!Pass)
continue;
for (unsigned int I = 0; I < GenI->getNumOperands(); ++I) {
Instruction *Op = llvm::dyn_cast<Instruction>(GenI->getOperand(I));
if (!Op)
continue;
if (!Op->getType()->isVectorTy())
continue;
if (!hasPotentialToBeVectorized(Op))
continue;
// we collect only vector type arguments to check
// maybe they were combined from scalar values
// and could be vectorized
ToProcess.push_back(Op);
}
}
}
}
bool IGCVectorizer::checkIfSIMD16(llvm::Function &F) {
MDUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
bool Result = false;
if (MDUtils->findFunctionsInfoItem(&F) != MDUtils->end_FunctionsInfo()) {
IGC::IGCMD::FunctionInfoMetaDataHandle funcInfoMD = MDUtils->getFunctionsInfoItem(&F);
unsigned SimdSize = funcInfoMD->getSubGroupSize()->getSIMDSize();
Result = SimdSize == 16;
}
return Result;
}
bool IGCVectorizer::runOnFunction(llvm::Function &F) {
// DPAS only allowed in simd16 mode + helps to reduce untested cases
if (!checkIfSIMD16(F))
return false;
M = F.getParent();
CGCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
initializeLogFile(F);
PRINT_LOG_NL("vectorizer: fadd, fdiv, fptrunc");
VecArr ToProcess;
// we collect operands that seem promising for vectorization
collectInstructionToProcess(ToProcess, F);
PRINT_DS("Seed: ", ToProcess);
PRINT_LOG_NL("\n\n");
writeLog();
for (unsigned int Ind = 0; Ind < ToProcess.size(); ++Ind) {
unsigned int Index = IGC_GET_FLAG_VALUE(VectorizerList);
PRINT_LOG_NL(" Index: " << Index << " Ind: " << Ind);
if (Index != Ind && Index != -1)
continue;
auto &El = ToProcess[Ind];
PRINT_LOG("Candidate: ");
PRINT_INST_NL(El);
VecArr Chain;
// we take the collected operands and
// check if they have insert elements in their
// data flow, in case they do, we collect those
findInsertElementsInDataFlow(El, Chain);
PRINT_DS("Chain: ", Chain);
PRINT_LOG_NL("--------------------------");
VecArr VecOfInsert;
for (auto &El : Chain)
if (llvm::isa<InsertElementInst>(El))
VecOfInsert.push_back(El);
// multiple clusters are supported but not tested hence disabled for now
// #TODO write a test for multiple clusters
if (VecOfInsert.empty() || VecOfInsert.size() != 1) {
PRINT_LOG("Currently we support only 1 insert cluster\n\n");
continue;
}
PRINT_DS("Insert: ", VecOfInsert);
writeLog();
// we process collected insert elements into a specific data structure
// for convenience
InsertStruct InSt;
InSt.SlChain.reserve(256);
for (auto elFinal : VecOfInsert) {
InSt.SlChain.clear();
InSt.Vec.clear();
if (!elFinal->hasOneUse()) {
PRINT_LOG_NL("Final insert has more than one use -> rejected");
continue;
}
InSt.Final = elFinal;
clusterInsertElement(InSt);
if (getVectorSize(InSt.Final) == 1) {
PRINT_LOG_NL("degenerate insert of the type <1 x float> -> rejected");
continue;
}
if (InSt.Vec.size() != getVectorSize(InSt.Final)) {
PRINT_LOG_NL("partial insert -> rejected");
continue;
}
writeLog();
buildTree(InSt.Vec, InSt.SlChain);
PRINT_LOG_NL("Print slices");
for (auto &Slice : InSt.SlChain) {
printSlice(&Slice);
writeLog();
}
CreatedVectorInstructions.clear();
if (!processChain(InSt)) {
writeLog();
if (IGC_IS_FLAG_DISABLED(VectorizerEnablePartialVectorization)) {
// this is important to not mix up instructions that were created for the chain
// that was scraped later
std::reverse(CreatedVectorInstructions.begin(), CreatedVectorInstructions.end());
PRINT_DS("To Clean: ", CreatedVectorInstructions);
// we move to a new cycle-proof deletion algorithm
for (auto &el : CreatedVectorInstructions) {
PRINT_LOG("Cleaned: ");
PRINT_INST_NL(el);
writeLog();
ScalarToVector.erase(el);
el->replaceAllUsesWith(UndefValue::get(el->getType()));
el->eraseFromParent();
}
}
} else {
PRINT_DS("Created: ", CreatedVectorInstructions);
writeLog();
}
}
PRINT_LOG("\n\n");
}
writeLog();
return true;
}
|