1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2025 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "PointersSettings.h"
#include "Compiler/CodeGenContextWrapper.hpp"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Compiler/CISACodeGen/RegisterPressureEstimate.hpp"
#include "common/LLVMUtils.h"
#include "Compiler/CISACodeGen/LowerGEPForPrivMem.hpp"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/IRBuilder.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include <llvm/IR/Function.h>
#include <llvm/ADT/SmallVector.h>
#include <llvm/Transforms/Utils/Local.h>
#include <llvmWrapper/ADT/Optional.h>
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
#include <algorithm>
#define MAX_ALLOCA_PROMOTE_GRF_NUM 48
#define MAX_PRESSURE_GRF_NUM 90
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
namespace IGC {
/// @brief LowerGEPForPrivMem pass is used for lowering the allocas identified while visiting the alloca instructions
/// and then inserting insert/extract elements instead of load stores. This allows us
/// to store the data in registers instead of propagating it to scratch space.
class LowerGEPForPrivMem : public llvm::FunctionPass, public llvm::InstVisitor<LowerGEPForPrivMem> {
public:
LowerGEPForPrivMem();
~LowerGEPForPrivMem() {}
virtual StringRef getPassName() const override { return IGCOpts::LowerGEPForPrivMemPass; }
virtual void getAnalysisUsage(llvm::AnalysisUsage &AU) const override {
AU.addRequired<RegisterPressureEstimate>();
AU.addRequired<MetaDataUtilsWrapper>();
AU.addRequired<CodeGenContextWrapper>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.setPreservesCFG();
}
virtual bool runOnFunction(llvm::Function &F) override;
void visitAllocaInst(llvm::AllocaInst &I);
unsigned int extractConstAllocaSize(llvm::AllocaInst *pAlloca);
static bool IsVariableSizeAlloca(llvm::AllocaInst &pAlloca);
private:
llvm::AllocaInst *createVectorForAlloca(llvm::AllocaInst *pAlloca, llvm::Type *pBaseType);
void handleAllocaInst(llvm::AllocaInst *pAlloca);
StatusPrivArr2Reg CheckIfAllocaPromotable(llvm::AllocaInst *pAlloca);
bool IsNativeType(Type *type);
void MarkNotPromtedAllocas(llvm::AllocaInst &I, IGC::StatusPrivArr2Reg status);
public:
static char ID;
struct PromotedLiverange {
unsigned int lowId;
unsigned int highId;
unsigned int varSize;
RegisterPressureEstimate::LiveRange *LR;
};
private:
const llvm::DataLayout *m_pDL = nullptr;
CodeGenContext *m_ctx = nullptr;
DominatorTree *m_DT = nullptr;
std::vector<llvm::AllocaInst *> m_allocasToPrivMem;
RegisterPressureEstimate *m_pRegisterPressureEstimate = nullptr;
llvm::Function *m_pFunc = nullptr;
MetaDataUtils *pMdUtils = nullptr;
/// Keep track of each BB affected by promoting MemtoReg and the current pressure at that block
llvm::DenseMap<llvm::BasicBlock *, unsigned> m_pBBPressure;
std::vector<PromotedLiverange> m_promotedLiveranges;
};
FunctionPass *createPromotePrivateArrayToReg() { return new LowerGEPForPrivMem(); }
} // namespace IGC
// Register pass to igc-opt
#define PASS_FLAG "igc-priv-mem-to-reg"
#define PASS_DESCRIPTION "Lower GEP of Private Memory to Register Pass"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(LowerGEPForPrivMem, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(RegisterPressureEstimate)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(LowerGEPForPrivMem, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char LowerGEPForPrivMem::ID = 0;
LowerGEPForPrivMem::LowerGEPForPrivMem() : FunctionPass(ID), m_pFunc(nullptr) {
initializeLowerGEPForPrivMemPass(*PassRegistry::getPassRegistry());
}
llvm::AllocaInst *LowerGEPForPrivMem::createVectorForAlloca(llvm::AllocaInst *pAlloca, llvm::Type *pBaseType) {
IGC_ASSERT(pAlloca != nullptr);
IGCLLVM::IRBuilder<> IRB(pAlloca);
AllocaInst *pAllocaValue = nullptr;
if (IsVariableSizeAlloca(*pAlloca)) {
pAllocaValue = IRB.CreateAlloca(pBaseType, pAlloca->getArraySize());
} else {
IGC_ASSERT(nullptr != m_pDL);
const unsigned int denominator = int_cast<unsigned int>(m_pDL->getTypeAllocSize(pBaseType));
IGC_ASSERT(0 < denominator);
const unsigned int totalSize = extractConstAllocaSize(pAlloca) / denominator;
pAllocaValue = IRB.CreateAlloca(IGCLLVM::FixedVectorType::get(pBaseType, totalSize));
}
return pAllocaValue;
}
bool LowerGEPForPrivMem::runOnFunction(llvm::Function &F) {
m_pFunc = &F;
CodeGenContextWrapper *pCtxWrapper = &getAnalysis<CodeGenContextWrapper>();
IGC_ASSERT(nullptr != pCtxWrapper);
m_ctx = pCtxWrapper->getCodeGenContext();
m_DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
if (isOptDisabledForFunction(m_ctx->getModuleMetaData(), getPassName(), &F))
return false;
pMdUtils = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
IGC_ASSERT(nullptr != pMdUtils);
if (pMdUtils->findFunctionsInfoItem(&F) == pMdUtils->end_FunctionsInfo()) {
return false;
}
IGC_ASSERT(nullptr != F.getParent());
m_pDL = &F.getParent()->getDataLayout();
m_pRegisterPressureEstimate = &getAnalysis<RegisterPressureEstimate>();
IGC_ASSERT(nullptr != m_pRegisterPressureEstimate);
// if no live range info
if (!m_pRegisterPressureEstimate->isAvailable()) {
return false;
}
m_pRegisterPressureEstimate->buildRPMapPerInstruction();
m_allocasToPrivMem.clear();
m_promotedLiveranges.clear();
visit(F);
std::vector<llvm::AllocaInst *> &allocaToHande = m_allocasToPrivMem;
for (auto pAlloca : allocaToHande) {
handleAllocaInst(pAlloca);
}
// Last remove alloca instructions
for (auto pInst : allocaToHande) {
if (pInst->use_empty()) {
pInst->eraseFromParent();
}
}
// IR changed only if we had alloca instruction to optimize
return !allocaToHande.empty();
}
void TransposeHelper::EraseDeadCode() {
for (auto pInst = m_toBeRemovedGEP.rbegin(); pInst != m_toBeRemovedGEP.rend(); ++pInst) {
Instruction *I = *pInst;
IGC_ASSERT_MESSAGE(I->use_empty(), "Instruction still has usage");
(*pInst)->eraseFromParent();
}
}
bool LowerGEPForPrivMem::IsVariableSizeAlloca(llvm::AllocaInst &pAlloca) {
IGC_ASSERT(nullptr != pAlloca.getArraySize());
if (isa<ConstantInt>(pAlloca.getArraySize()))
return false;
return true;
}
unsigned int LowerGEPForPrivMem::extractConstAllocaSize(llvm::AllocaInst *pAlloca) {
IGC_ASSERT(nullptr != m_pDL);
IGC_ASSERT(nullptr != pAlloca);
IGC_ASSERT(nullptr != pAlloca->getArraySize());
IGC_ASSERT(nullptr != pAlloca->getAllocatedType());
unsigned int arraySize = int_cast<unsigned int>(cast<ConstantInt>(pAlloca->getArraySize())->getZExtValue());
unsigned int totalArrayStructureSize =
int_cast<unsigned int>(m_pDL->getTypeAllocSize(pAlloca->getAllocatedType()) * arraySize);
return totalArrayStructureSize;
}
static void GetAllocaLiverange(Instruction *I, unsigned int &liverangeStart, unsigned int &liverangeEnd,
RegisterPressureEstimate *rpe,
SmallVector<LowerGEPForPrivMem::PromotedLiverange, 16> &GEPliveranges) {
IGC_ASSERT(nullptr != I);
for (Value::user_iterator use_it = I->user_begin(), use_e = I->user_end(); use_it != use_e; ++use_it) {
if (isa<GetElementPtrInst>(*use_it) || isa<BitCastInst>(*use_it)) {
// collect liveranges for GEP operations related to alloca
Instruction *Inst = cast<Instruction>(*use_it);
LowerGEPForPrivMem::PromotedLiverange GEPliverange;
GEPliverange.LR = rpe->getLiveRangeOrNull(Inst);
GEPliverange.lowId = GEPliverange.highId = rpe->getAssignedNumberForInst(Inst);
GetAllocaLiverange(Inst, GEPliverange.lowId, GEPliverange.highId, rpe, GEPliveranges);
GEPliverange.varSize = rpe->getRegisterWeightForInstruction(Inst);
if (GEPliverange.LR)
GEPliveranges.push_back(GEPliverange);
liverangeStart = std::min(liverangeStart, GEPliverange.lowId);
liverangeEnd = std::max(liverangeEnd, GEPliverange.highId);
} else if (isa<LoadInst>(*use_it) || isa<StoreInst>(*use_it) || isa<llvm::IntrinsicInst>(*use_it)) {
unsigned int idx = rpe->getAssignedNumberForInst(cast<Instruction>(*use_it));
liverangeStart = std::min(liverangeStart, idx);
liverangeEnd = std::max(liverangeEnd, idx);
}
}
}
bool LowerGEPForPrivMem::IsNativeType(Type *type) {
if (type->isDoubleTy() && m_ctx->platform.hasNoFP64Inst()) {
return false;
}
if (type->isIntegerTy(8) && (IGC_IS_FLAG_ENABLED(ForcePromoteI8) ||
(IGC_IS_FLAG_ENABLED(EnablePromoteI8) && !m_ctx->platform.supportByteALUOperation()))) {
// Byte indirect: not supported for Vx1 and VxH on PVC.
// As GRF from promoted privMem may use indirect accesses, disable it
// to prevent Vx1 and VxH accesses.
return false;
}
if (type->isStructTy())
return false;
return true;
}
StatusPrivArr2Reg LowerGEPForPrivMem::CheckIfAllocaPromotable(llvm::AllocaInst *pAlloca) {
// vla is not promotable
IGC_ASSERT(pAlloca != nullptr);
if (IsVariableSizeAlloca(*pAlloca))
return StatusPrivArr2Reg::IsDynamicAlloca;
bool isUniformAlloca = pAlloca->getMetadata("uniform") != nullptr;
bool useAssumeUniform = pAlloca->getMetadata("UseAssumeUniform") != nullptr;
unsigned int allocaSize = extractConstAllocaSize(pAlloca);
unsigned int allowedAllocaSizeInBytes = MAX_ALLOCA_PROMOTE_GRF_NUM * 4;
unsigned int SIMDSize = numLanes(m_ctx->platform.getMinDispatchMode());
// consider GRF width in alloca register promotion limit
allowedAllocaSizeInBytes = allowedAllocaSizeInBytes * m_ctx->platform.getGRFSize() / 32;
// scale alloc size based on the number of GRFs we have
float grfRatio = m_ctx->getNumGRFPerThread() / 128.0f;
allowedAllocaSizeInBytes = (uint32_t)(allowedAllocaSizeInBytes * grfRatio);
if (m_ctx->type == ShaderType::OPENCL_SHADER) {
FunctionInfoMetaDataHandle funcInfoMD = pMdUtils->getFunctionsInfoItem(m_pFunc);
SubGroupSizeMetaDataHandle subGroupSize = funcInfoMD->getSubGroupSize();
if (subGroupSize->hasValue()) {
SIMDSize = std::max((uint32_t)subGroupSize->getSIMDSize(), SIMDSize);
}
allowedAllocaSizeInBytes = (allowedAllocaSizeInBytes * 8) / SIMDSize;
}
SOALayoutChecker checker(*pAlloca, m_ctx->type == ShaderType::OPENCL_SHADER);
SOALayoutInfo SOAInfo = checker.getOrGatherInfo();
if (!SOAInfo.canUseSOALayout) {
return StatusPrivArr2Reg::CannotUseSOALayout;
}
if (!IsNativeType(SOAInfo.baseType)) {
return StatusPrivArr2Reg::IsNotNativeType;
}
if (isUniformAlloca) {
// Heuristic: for uniform alloca we divide the size by SIMDSize to adjust the pressure
// as they will be allocated as uniform array
allocaSize = iSTD::Round(allocaSize, SIMDSize) / SIMDSize;
}
if (useAssumeUniform || allocaSize <= IGC_GET_FLAG_VALUE(ByPassAllocaSizeHeuristic)) {
return StatusPrivArr2Reg::OK;
}
// if alloca size exceeds alloc size threshold, return false
if (allocaSize > allowedAllocaSizeInBytes) {
return StatusPrivArr2Reg::OutOfAllocSizeLimit;
}
// Multiple indirect byte access could be harmful for performance
if (SOAInfo.baseType->getScalarType()->isIntegerTy(8) && !isUniformAlloca &&
m_ctx->platform.isCoreChildOf(IGFX_XE_HPG_CORE)) {
// Limit promotable alloca size with byte indirect access by 4 GRF vector size
if (allocaSize * SIMDSize / m_ctx->platform.getGRFSize() > 4)
return StatusPrivArr2Reg::IsNotNativeType;
}
// get all the basic blocks that contain the uses of the alloca
// then estimate how much changing this alloca to register adds to the pressure at that block.
unsigned int lowestAssignedNumber = 0xFFFFFFFF;
unsigned int highestAssignedNumber = 0;
SmallVector<PromotedLiverange, 16> GEPliveranges;
GetAllocaLiverange(pAlloca, lowestAssignedNumber, highestAssignedNumber, m_pRegisterPressureEstimate, GEPliveranges);
uint32_t maxGRFPressure = (uint32_t)(grfRatio * MAX_PRESSURE_GRF_NUM * 4);
unsigned int pressure = 0;
for (unsigned int i = lowestAssignedNumber; i <= highestAssignedNumber; i++) {
// subtract impact from GEP operations related to alloca from the register pressure
// since after promotion alloca to register these GEPs will be eliminated
unsigned int GEPImpact = 0;
for (const auto &GEPinst : GEPliveranges) {
if (GEPinst.LR->contains(i))
GEPImpact += GEPinst.varSize;
}
unsigned RPinst = m_pRegisterPressureEstimate->getRegisterPressureForInstructionFromRPMap(i);
pressure = std::max(pressure, RPinst - GEPImpact);
}
for (const auto &it : m_promotedLiveranges) {
// check interval intersection
if ((it.lowId < lowestAssignedNumber && it.highId > lowestAssignedNumber) ||
(it.lowId > lowestAssignedNumber && it.lowId < highestAssignedNumber)) {
pressure += it.varSize;
}
}
if (allocaSize + pressure > maxGRFPressure) {
return StatusPrivArr2Reg::OutOfMaxGRFPressure;
}
PromotedLiverange liverange;
liverange.lowId = lowestAssignedNumber;
liverange.highId = highestAssignedNumber;
liverange.varSize = allocaSize;
liverange.LR = nullptr;
m_promotedLiveranges.push_back(liverange);
return StatusPrivArr2Reg::OK;
}
SOALayoutChecker::SOALayoutChecker(AllocaInst &allocaToCheck, bool isOCL) : allocaRef(allocaToCheck) {
auto F = allocaToCheck.getParent()->getParent();
pDL = &F->getParent()->getDataLayout();
newAlgoControl = IGC_GET_FLAG_VALUE(EnablePrivMemNewSOATranspose);
if (IGC_IS_FLAG_ENABLED(NewSOATransposeForOpenCL) && !isOCL) {
newAlgoControl = 0;
}
}
SOALayoutInfo SOALayoutChecker::getOrGatherInfo() {
if (pInfo)
return *pInfo;
pInfo = std::make_unique<SOALayoutInfo>(false, nullptr, false, 4);
// Do not allow SOA layout for vla which will be stored on the stack.
// We don't support SOA layout for privates on stack at all so this is just to make
// the implementation simpler.
if (LowerGEPForPrivMem::IsVariableSizeAlloca(allocaRef))
return *pInfo;
// Don't even look at non-array allocas.
// (extractAllocaDim can not handle them anyway, causing a crash)
llvm::Type *pType = allocaRef.getAllocatedType();
if (pType->isStructTy() && pType->getStructNumElements() == 1) {
pType = pType->getStructElementType(0);
}
if ((!pType->isArrayTy() && !pType->isVectorTy()) || allocaRef.isArrayAllocation())
return *pInfo;
// Enable transpose for array of struct
pInfo->baseType = GetBaseType(pType, newAlgoControl > 0 ? true : false);
if (!pInfo->baseType)
return *pInfo;
if (useNewAlgo(pInfo->baseType)) {
SOAPartitionBytes = selectPartitionSize(pInfo->baseType);
StructType *STy = dyn_cast<StructType>(pInfo->baseType);
if (STy != nullptr) {
if (!isPowerOf2_32(SOAPartitionBytes) || !checkStruct(STy)) {
if (newAlgoControl < 3)
return *pInfo;
// newAlgoControl = 3
// check if partition size can be the entire struct
uint32_t sz = (uint32_t)pDL->getTypeStoreSize(STy);
if (sz > 16 || !isPowerOf2_32(sz)) {
return *pInfo;
}
SOAPartitionBytes = std::max(4u, sz);
}
}
// Skip for non-power-of-2 partition size
if (isPowerOf2_32(SOAPartitionBytes)) {
pInfo->canUseSOALayout = checkUsers(allocaRef);
pInfo->SOAPartitionBytes = SOAPartitionBytes;
}
return *pInfo;
}
// only handle case with a simple base type
if (!(pInfo->baseType->getScalarType()->isFloatingPointTy() || pInfo->baseType->getScalarType()->isIntegerTy()))
return *pInfo;
// Now that we've confirmed our alloca to be a valid candidate, assume that
// all memory instructions are vector unless proven otherwise.
pInfo->allUsesAreVector = true;
// Start the traversal: each specified visitor function will delegate its
// checked instruction to the same method if need be.
pInfo->canUseSOALayout = checkUsers(allocaRef);
if (!isVectorSOA) {
pInfo->baseType = pInfo->baseType->getScalarType();
}
return *pInfo;
}
uint32_t SOALayoutChecker::selectPartitionSize(Type *Ty) {
uint32_t size = 4;
if (StructType *StTy = dyn_cast<StructType>(Ty)) {
int nElts = (int)StTy->getNumElements();
for (int ix = 0; ix < nElts; ++ix) {
Type *eTy = StTy->getElementType(ix);
uint32_t sz = selectPartitionSize(eTy);
size = std::max(sz, size);
}
return size;
}
if (Ty->isArrayTy()) {
// Don't split vector
uint32_t sz = selectPartitionSize(Ty->getArrayElementType());
size = std::max(sz, size);
return size;
}
uint32_t sz = (uint32_t)pDL->getTypeStoreSize(Ty);
size = std::max(sz, size);
return size;
}
bool SOALayoutChecker::checkStruct(StructType *StTy) {
if (!StTy->isSized())
return false;
uint32_t StTyBytes = (uint32_t)pDL->getTypeStoreSize(StTy);
// Larger struct shall be multiple of partition size
if (StTyBytes > SOAPartitionBytes && (StTyBytes % SOAPartitionBytes) != 0)
return false;
// Partition shall be multiple of smaller struct size
if (StTyBytes < SOAPartitionBytes && (SOAPartitionBytes % StTyBytes) != 0)
return false;
const StructLayout *SL = pDL->getStructLayout(StTy);
int32_t nElts = (int)StTy->getNumElements();
for (int ix = 0; ix < nElts; ++ix) {
Type *ty = StTy->getElementType(ix);
uint32_t eTyBytes = (uint32_t)pDL->getTypeStoreSize(ty);
IGC_ASSERT(SOAPartitionBytes >= eTyBytes || ty->isAggregateType());
if (!isPowerOf2_32(eTyBytes))
return false;
if (newAlgoControl == 1) {
// only handle struct with members being same-sized scalars
if (SOAPartitionBytes != eTyBytes || !ty->isSingleValueType() || ty->isVectorTy()) {
return false;
}
}
// newAlgoControl=2 is handled in other places
else if (newAlgoControl > 2) {
// May handle nested struct/array, etc.
if (!ty->isSingleValueType()) {
return false;
}
}
uint32_t byteOffset = (uint32_t)SL->getElementOffset(ix);
uint32_t chunkOff = (byteOffset % SOAPartitionBytes);
// check alignment
if (MinAlign(eTyBytes, chunkOff) < eTyBytes) {
return false;
}
}
return true;
}
// TODO: Consider a worklist-based implementation instead.
bool SOALayoutChecker::checkUsers(Instruction &I) {
if (IGC_IS_FLAG_ENABLED(DisableSOAPromotion)) {
return false;
}
parentLevelInst = &I;
for (Value::user_iterator userIt = I.user_begin(), userE = I.user_end(); userIt != userE; ++userIt) {
auto &userInst = *cast<Instruction>(*userIt);
if (!visit(userInst))
return false;
}
return true;
}
bool SOALayoutChecker::visitBitCastInst(BitCastInst &BI) {
// no sense in comparing pointer base types on opaque pointers
if (BI.use_empty() || IsBitCastForLifetimeMark(&BI) || AreOpaquePointersEnabled()) {
return true;
}
// FIXME: remove this once we only support opaque pointers
Type *baseT = GetBaseType(IGCLLVM::getNonOpaquePtrEltTy(BI.getType()), true);
Type *sourceType = GetBaseType(IGCLLVM::getNonOpaquePtrEltTy(BI.getOperand(0)->getType()), true);
if (baseT->isStructTy() || sourceType->isStructTy()) {
StructType *bSTy = dyn_cast<StructType>(baseT);
StructType *sSTy = dyn_cast<StructType>(sourceType);
IGC_ASSERT(bSTy || sSTy);
if (bSTy && sSTy && (bSTy == sSTy || bSTy->isLayoutIdentical(sSTy))) {
return checkUsers(BI);
} else {
return false;
}
}
if (baseT->getScalarSizeInBits() != 0 && baseT->getScalarSizeInBits() == sourceType->getScalarSizeInBits()) {
const bool sameSize = ((uint32_t)baseT->getPrimitiveSizeInBits() == (uint32_t)sourceType->getPrimitiveSizeInBits());
isVectorSOA &= sameSize;
if (newAlgoControl > 1 && baseT->isVectorTy() && !sameSize) {
return false;
}
return checkUsers(BI);
}
// Not a candidate.
return false;
}
bool SOALayoutChecker::visitGetElementPtrInst(GetElementPtrInst &GEP) { return checkUsers(GEP); }
bool SOALayoutChecker::visitIntrinsicInst(IntrinsicInst &II) {
llvm::Intrinsic::ID IID = II.getIntrinsicID();
return IID == llvm::Intrinsic::lifetime_start || IID == llvm::Intrinsic::lifetime_end;
}
// Detect size mismatches between an alloca's element and the corresponding load/store element (directly or via a GEP).
// Return true to disable SOA promotion.
bool IGC::SOALayoutChecker::MismatchDetected(Instruction &I) {
// Skip when we see an i8-based GEP with a non-constant (dynamic) byte offset. The legacy (old) algorithm assumes byte
// offsets map exactly to whole promoted elements (e.g. multiples of the lane size) and cannot safely reconstruct
// sub‑element (inter-lane or unaligned) accesses. Using it would risk incorrect indexing. The new byte-precise
// algorithm could handle this, but while it is disabled we treat such dynamic i8 GEPs as a mismatch and leave them
// untouched.
for (User *U : allocaRef.users()) {
if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
if (GEP->getSourceElementType()->isIntegerTy(8) && GEP->getNumOperands() > 1 &&
!isa<ConstantInt>(GEP->getOperand(1))) {
pInfo->canUseSOALayout = false;
return true;
}
}
}
Type *allocaTy = allocaRef.getAllocatedType();
bool allocaIsVecOrArr = allocaTy->isVectorTy() || allocaTy->isArrayTy();
if (!allocaIsVecOrArr)
return false;
if (auto *pgep = dyn_cast<GetElementPtrInst>(parentLevelInst))
allocaTy = pgep->getResultElementType();
if (auto *arrTy = dyn_cast<ArrayType>(allocaTy))
allocaTy = arrTy->getElementType();
if (auto *vec = dyn_cast<IGCLLVM::FixedVectorType>(allocaTy))
allocaTy = vec->getElementType();
Type *pUserTy = nullptr;
if (auto *storeInst = dyn_cast<StoreInst>(&I))
pUserTy = storeInst->getValueOperand()->getType();
else if (auto *loadInst = dyn_cast<LoadInst>(&I))
pUserTy = loadInst->getType();
else
return false;
auto allocaSize = allocaTy->getScalarSizeInBits();
auto vecTySize = pUserTy->getScalarSizeInBits();
if (vecTySize != allocaSize) {
pInfo->canUseSOALayout = false;
return true;
}
return false;
}
bool SOALayoutChecker::visitLoadInst(LoadInst &LI) {
bool isVectorLoad = LI.getType()->isVectorTy();
isVectorSOA &= isVectorLoad;
pInfo->allUsesAreVector &= isVectorLoad;
if (MismatchDetected(LI))
return false;
return LI.isSimple();
}
bool SOALayoutChecker::visitStoreInst(StoreInst &SI) {
if (!SI.isSimple())
return false;
llvm::Value *pValueOp = SI.getValueOperand();
bool isVectorStore = pValueOp->getType()->isVectorTy();
isVectorSOA &= isVectorStore;
pInfo->allUsesAreVector &= isVectorStore;
if (pValueOp == parentLevelInst) {
// GEP instruction is the stored value of the StoreInst (unsupported case)
return false;
}
if (MismatchDetected(SI))
return false;
return true;
}
void LowerGEPForPrivMem::MarkNotPromtedAllocas(llvm::AllocaInst &I, IGC::StatusPrivArr2Reg status) {
const char *reason = nullptr;
// The reason why the user private variable
// wasn't promoted to grfs
switch (status) {
case StatusPrivArr2Reg::CannotUseSOALayout:
reason = "CannotUseSOALayout";
break;
case StatusPrivArr2Reg::IsDynamicAlloca:
reason = "IsDynamicAlloca";
break;
case StatusPrivArr2Reg::IsNotNativeType:
reason = "IsNotNativeType";
break;
case StatusPrivArr2Reg::OutOfAllocSizeLimit:
reason = "OutOfAllocSizeLimit";
break;
case StatusPrivArr2Reg::OutOfMaxGRFPressure:
reason = "OutOfMaxGRFPressure";
break;
default:
reason = "NotDefine";
break;
}
MDNode *node = MDNode::get(I.getContext(), MDString::get(I.getContext(), reason));
UserAddrSpaceMD &userASMD = m_ctx->getUserAddrSpaceMD();
std::function<void(Instruction *, MDNode *)> markAS_PRIV;
markAS_PRIV = [&markAS_PRIV, &userASMD](Instruction *instr, MDNode *node) {
// Avoid instruction which has already md set
if (!userASMD.Has(instr, LSC_DOC_ADDR_SPACE::PRIVATE)) {
// Adding this mark because, during compilation the orginal
// addrspace is changed (for ex. from PRIVATE to GLOBAL) and
// is not visible on end stages of compilation. This will help
// to identify - which load/store is related for the private
// variables of user.
bool isLoadStore = instr->getOpcode() == Instruction::Store || instr->getOpcode() == Instruction::Load;
if (isLoadStore) {
// Add mark for any load/store which will read/write the data from
// user private variable. This information will be passed
// to the assembly level.
userASMD.Set(instr, LSC_DOC_ADDR_SPACE::PRIVATE, node);
} else {
// Special case to avoid stack overflow
userASMD.Set(instr, LSC_DOC_ADDR_SPACE::PRIVATE);
bool allowedInst = instr->getOpcode() == Instruction::Alloca || instr->getOpcode() == Instruction::PHI ||
instr->getOpcode() == Instruction::GetElementPtr ||
instr->getOpcode() == Instruction::PtrToInt || instr->getOpcode() == Instruction::IntToPtr ||
instr->isBinaryOp();
if (allowedInst) {
for (auto user_i = instr->user_begin(); user_i != instr->user_end(); ++user_i) {
markAS_PRIV(llvm::dyn_cast<Instruction>(*user_i), node);
}
}
}
}
};
markAS_PRIV(&I, node);
}
void LowerGEPForPrivMem::visitAllocaInst(AllocaInst &I) {
// Alloca should always be private memory
IGC_ASSERT(nullptr != I.getType());
IGC_ASSERT(I.getType()->getAddressSpace() == ADDRESS_SPACE_PRIVATE);
StatusPrivArr2Reg status = CheckIfAllocaPromotable(&I);
if (status != StatusPrivArr2Reg::OK) {
MarkNotPromtedAllocas(I, status);
// alloca size extends remain per-lane-reg space
return;
}
m_allocasToPrivMem.push_back(&I);
}
void TransposeHelper::HandleAllocaSources(Instruction *v, Value *idx) {
SmallVector<Value *, 10> instructions;
for (Value::user_iterator it = v->user_begin(), e = v->user_end(); it != e; ++it) {
Value *inst = cast<Value>(*it);
instructions.push_back(inst);
}
for (auto instruction : instructions) {
if (GetElementPtrInst *pGEP = dyn_cast<GetElementPtrInst>(instruction)) {
handleGEPInst(pGEP, idx);
} else if (BitCastInst *bitcast = dyn_cast<BitCastInst>(instruction)) {
m_toBeRemovedGEP.push_back(bitcast);
HandleAllocaSources(bitcast, idx);
} else if (StoreInst *pStore = llvm::dyn_cast<StoreInst>(instruction)) {
handleStoreInst(pStore, idx);
} else if (LoadInst *pLoad = llvm::dyn_cast<LoadInst>(instruction)) {
handleLoadInst(pLoad, idx);
} else if (IntrinsicInst *inst = dyn_cast<IntrinsicInst>(instruction)) {
handleLifetimeMark(inst);
}
}
}
class TransposeHelperPromote : public TransposeHelper {
public:
void handleLoadInst(LoadInst *pLoad, Value *pScalarizedIdx);
void handleStoreInst(StoreInst *pStore, Value *pScalarizedIdx);
void handleLifetimeMark(IntrinsicInst *inst);
AllocaInst *pVecAlloca;
// location of lifetime starts
llvm::SmallPtrSet<Instruction *, 4> pStartPoints;
TransposeHelperPromote(AllocaInst *pAI, const DataLayout &DL) : TransposeHelper(DL, false) {
pVecAlloca = pAI;
// Determine promoted lane scalar type and record its size in bytes so that
// GEP indexing through reinterpreted vectors can advance the scalarized
// index in units of promoted lanes rather than the smaller vector elements.
llvm::Type *AllocTy = pAI->getAllocatedType();
llvm::Type *LaneTy = AllocTy->isVectorTy() ? cast<IGCLLVM::FixedVectorType>(AllocTy)->getElementType() : AllocTy;
m_promotedLaneBytes = (uint32_t)DL.getTypeAllocSize(LaneTy);
}
};
void LowerGEPForPrivMem::handleAllocaInst(llvm::AllocaInst *pAlloca) {
// Extract the Alloca size and the base Type
Type *pType = pAlloca->getAllocatedType();
Type *pBaseType = GetBaseType(pType)->getScalarType();
IGC_ASSERT(pBaseType);
llvm::AllocaInst *pVecAlloca = createVectorForAlloca(pAlloca, pBaseType);
if (!pVecAlloca) {
return;
}
IRBuilder<> IRB(pVecAlloca);
Value *idx = IRB.getInt32(0);
TransposeHelperPromote helper(pVecAlloca, *m_pDL);
helper.HandleAllocaSources(pAlloca, idx);
IGC_ASSERT(nullptr != pAlloca);
// for uniform alloca, we need to insert an initial definition
// to keep the promoted vector as uniform in the next round of WIAnalysis
bool isUniformAlloca = pAlloca->getMetadata("uniform") != nullptr;
if (isUniformAlloca && pAlloca->getAllocatedType()->isArrayTy()) {
if (helper.pStartPoints.empty())
helper.pStartPoints.insert(pAlloca);
for (auto InsertionPoint : helper.pStartPoints) {
IRBuilder<> IRB1(InsertionPoint);
auto pVecF = GenISAIntrinsic::getDeclaration(m_pFunc->getParent(), GenISAIntrinsic::GenISA_vectorUniform,
pVecAlloca->getAllocatedType());
auto pVecInit = IRB1.CreateCall(pVecF);
// create a store of pVecInit into pVecAlloca
IRB1.CreateStore(pVecInit, pVecAlloca);
}
}
helper.EraseDeadCode();
if (pAlloca->use_empty()) {
IGC_ASSERT(m_DT);
replaceAllDbgUsesWith(*pAlloca, *pVecAlloca, *pVecAlloca, *m_DT);
}
}
std::pair<unsigned int, Type *> TransposeHelper::getArrSizeAndEltType(Type *T) {
unsigned int arr_sz = 1;
Type *retTy{};
if (T->isStructTy()) {
arr_sz = 1;
retTy = T->getStructElementType(0);
} else if (T->isArrayTy()) {
arr_sz = int_cast<unsigned int>(T->getArrayNumElements());
retTy = T->getArrayElementType();
} else if (T->isVectorTy()) {
// Based on whether we want the index in number of element or number of vector.
// Vectors can only contain primitives or pointers, so there's no need for additional
// logic to account for vectors contained in vectors.
if (m_vectorIndex) {
arr_sz = 1;
} else {
auto *vTy = cast<IGCLLVM::FixedVectorType>(T);
unsigned int vector_size_in_bytes = int_cast<unsigned int>(m_DL.getTypeAllocSize(T));
unsigned int elt_size_in_bytes = int_cast<unsigned int>(m_DL.getTypeAllocSize(vTy->getElementType()));
// If the vector is a reinterpret of the promoted storage (its element size
// differs from the promoted lane size), advance the scalarized index in
// units of promoted lanes, not in units of the smaller vector elements.
if (m_promotedLaneBytes != 0 && m_promotedLaneBytes != elt_size_in_bytes &&
(vector_size_in_bytes % m_promotedLaneBytes) == 0) {
arr_sz = vector_size_in_bytes / m_promotedLaneBytes;
} else {
arr_sz = vector_size_in_bytes / elt_size_in_bytes;
}
}
retTy = cast<VectorType>(T)->getElementType();
} else {
arr_sz = 1;
retTy = T; // To preserve past behaviour
}
return std::make_pair(arr_sz, retTy);
}
Type *TransposeHelper::getFirstNonScalarSourceElementType(const GetElementPtrInst &GEP) {
Type *currTy = GEP.getSourceElementType();
if (getArrSizeAndEltType(currTy).first > 1)
return currTy;
const Value *base = GEP.getPointerOperand()->stripPointerCasts();
if (const auto *AI = dyn_cast<AllocaInst>(base))
return AI->getAllocatedType();
if (const auto *GV = dyn_cast<GlobalVariable>(base))
return GV->getValueType();
if (const auto *LI = dyn_cast<LoadInst>(base))
return LI->getType();
if (const auto *SI = dyn_cast<StoreInst>(base))
return SI->getValueOperand()->getType();
return currTy;
}
void TransposeHelper::handleGEPInst(llvm::GetElementPtrInst *pGEP, llvm::Value *idx) {
// TODO: Add support for GEP attributes: nsw, nuw, inbounds. Currently, neigher the old nor the new algorithm handles
// them.
if (useNewAlgo()) {
handleGEPInstNew(pGEP, idx);
return;
}
IGC_ASSERT(nullptr != pGEP);
IGC_ASSERT(static_cast<ADDRESS_SPACE>(pGEP->getPointerAddressSpace()) == ADDRESS_SPACE_PRIVATE);
// Add GEP instruction to remove list
m_toBeRemovedGEP.push_back(pGEP);
if (pGEP->use_empty()) {
// GEP has no users, do nothing.
return;
}
IRBuilder<> IRB(pGEP);
Value *pScalarizedIdx = IRB.getInt32(0);
// If the GEP is on i8, its index is a byte offset and must be converted to an element index of the underlying base
// type.
if (pGEP->getSourceElementType()->isIntegerTy(8)) {
// Get the non-scalar/aggregate GEP source element type.
Type *baseAggregateTy = getFirstNonScalarSourceElementType(*pGEP);
// Find the scalar element type at the bottom of the aggregate.
Type *elementTy = baseAggregateTy;
while (elementTy->isStructTy() || elementTy->isArrayTy() || elementTy->isVectorTy()) {
elementTy = getArrSizeAndEltType(elementTy).second;
}
elementTy = elementTy->getScalarType();
uint32_t elementBytes = (uint32_t)m_DL.getTypeAllocSize(elementTy);
// The 1st operand is the byte offset, convert bytes to element count.
Value *byteIndex = IRB.CreateZExtOrTrunc(pGEP->getOperand(1), IRB.getInt32Ty());
if (elementBytes > 1)
byteIndex = IRB.CreateUDiv(byteIndex, IRB.getInt32(elementBytes));
pScalarizedIdx = IRB.CreateAdd(pScalarizedIdx, byteIndex);
pScalarizedIdx = IRB.CreateAdd(pScalarizedIdx, idx);
HandleAllocaSources(pGEP, pScalarizedIdx);
return;
}
// Given %p = getelementptr [4 x [3 x <2 x float>]]* %v, i64 0, i64 %1, i64 %2
// compute the scalarized index with an auxiliary array [4, 3, 2]:
//
// Formula: index = (%1 x 3 + %2) x 2
//
Type *T = pGEP->getSourceElementType();
for (unsigned i = 0, e = pGEP->getNumIndices(); i < e; ++i) {
// If T is VectorType we should be at the last loop iteration. This will break things only if m_vectorIndex == true.
IGC_ASSERT_MESSAGE(!m_vectorIndex || (!T->isVectorTy() || (i == (e - 1))),
"GEPs shouldn't index into vector elements.");
// https://llvm.org/docs/GetElementPtr.html#can-gep-index-into-vector-elements
auto GepOpnd = IRB.CreateZExtOrTrunc(pGEP->getOperand(i + 1), IRB.getInt32Ty());
auto [arr_sz, eltTy] = getArrSizeAndEltType(T);
pScalarizedIdx = IRB.CreateAdd(pScalarizedIdx, GepOpnd);
pScalarizedIdx = IRB.CreateMul(pScalarizedIdx, IRB.getInt32(arr_sz));
T = eltTy;
}
while (T->isStructTy() || T->isArrayTy() || T->isVectorTy()) {
auto [arr_sz, eltTy] = getArrSizeAndEltType(T);
pScalarizedIdx = IRB.CreateMul(pScalarizedIdx, IRB.getInt32(arr_sz));
T = eltTy;
}
pScalarizedIdx = IRB.CreateAdd(pScalarizedIdx, idx);
HandleAllocaSources(pGEP, pScalarizedIdx);
}
void TransposeHelper::handleGEPInstNew(llvm::GetElementPtrInst *pGEP, llvm::Value *idx) {
IGC_ASSERT(nullptr != pGEP);
IGC_ASSERT(static_cast<ADDRESS_SPACE>(pGEP->getPointerAddressSpace()) == ADDRESS_SPACE_PRIVATE);
// Add GEP instruction to remove list
m_toBeRemovedGEP.push_back(pGEP);
if (pGEP->use_empty()) {
// GEP has no users, do nothing.
return;
}
auto isIntZero = [](Value *V) {
ConstantInt *CI = dyn_cast<ConstantInt>(V);
return (CI && CI->isZero());
};
IRBuilder<> IRB(pGEP);
// linearOffset : byte offset of int32 (could be negative, no overflow).
Value *linearOffset = IRB.getInt32(0);
gep_type_iterator GTI = gep_type_begin(pGEP);
for (auto OI = pGEP->op_begin() + 1, E = pGEP->op_end(); OI != E; ++OI, ++GTI) {
Value *ix = *OI;
Value *OffsetVal;
if (StructType *StTy = GTI.getStructTypeOrNull()) {
unsigned Field = int_cast<unsigned>(cast<ConstantInt>(ix)->getZExtValue());
uint64_t Offset = m_DL.getStructLayout(StTy)->getElementOffset(Field);
OffsetVal = IRB.getInt32((uint32_t)Offset);
} else {
Value *NewIx = IRB.CreateSExtOrTrunc(ix, linearOffset->getType());
// OffsetVal = NewIx * tyBytes
if (isIntZero(NewIx)) {
OffsetVal = NewIx;
} else {
Type *Ty = GTI.getIndexedType();
uint64_t tyBytes = m_DL.getTypeAllocSize(Ty);
OffsetVal = IRB.CreateNSWMul(NewIx, IRB.getInt32((uint32_t)tyBytes));
}
}
// linearOffset += OffsetVal
if (!isIntZero(OffsetVal)) {
if (isIntZero(linearOffset))
linearOffset = OffsetVal;
else
linearOffset = IRB.CreateNSWAdd(linearOffset, OffsetVal);
}
}
// linearOffset += idx
if (!isIntZero(idx))
linearOffset = IRB.CreateAdd(linearOffset, idx);
HandleAllocaSources(pGEP, linearOffset);
}
// Load a value scalar/vector <N * DstScalarTy> out of a private alloca that has been promoted to a flat vector <M *
// SrcScalarTy>. This assumes the GEP lowering has already produced a linear lane index pScalarizedIdx into that
// promoted vector.
//
// The implementation supports two scenarios:
// 1. Simple path (SrcBits == DstBits). In this case the destination element width matches the promoted lane width, so
// only need to extract N consecutive lanes and legalize type differences.
// 2. General path (SrcBits != DstBits). In this case, the destination element width differs from the promoted lane
// width. So read K = ceil(N * DstBits / SrcBits) promoted lanes, pack them into a big integer of K*SrcBits bits, trim
// to exactly NeedBits = N * DstBits, then expand to either a scalar or <N * DstScalarType>.
//
// Note, "lane" here means one element of the promoted vecotr <M * SrcScalarTy>.
static Value *loadEltsFromVecAlloca(unsigned N, AllocaInst *pVecAlloca, Value *pScalarizedIdx,
IGCLLVM::IRBuilder<> &IRB, Type *DstScalarTy) {
IGC_ASSERT(pVecAlloca && pScalarizedIdx && DstScalarTy);
IGC_ASSERT(N >= 1);
// Promoted vector type and its scalar element type (destination lanes are of this type).
auto *PromotedVecTy = cast<IGCLLVM::FixedVectorType>(pVecAlloca->getAllocatedType());
Type *SrcScalarTy = PromotedVecTy->getElementType();
const DataLayout &DL = pVecAlloca->getModule()->getDataLayout();
const uint64_t SrcBits = DL.getTypeStoreSizeInBits(SrcScalarTy);
const uint64_t DstBits = DL.getTypeStoreSizeInBits(DstScalarTy);
const uint64_t NeedBits = DstBits * (uint64_t)N;
IGC_ASSERT_MESSAGE(SrcBits > 0 && DstBits > 0, "Unexpected zero-sized scalar type");
// Load the entire promoted vector only once, all reads will extract from this value.
Value *Whole = IRB.CreateLoad(PromotedVecTy, pVecAlloca);
// Helper for casting a sinlge scalar to an integer with exactly Bits width.
auto toIntOfWidth = [&](Value *V, uint64_t Bits) -> Value * {
Type *Ty = V->getType();
Type *IntTy = IRB.getIntNTy((unsigned)Bits);
if (Ty->isPointerTy())
return IRB.CreatePtrToInt(V, IntTy);
if (Ty->isIntegerTy((unsigned)Bits))
return V;
return IRB.CreateBitCast(V, IntTy);
};
// Helper for casting an integer back to the requested destination scalar type.
auto intToDstScalar = [&](Value *VInt) -> Value * {
if (DstScalarTy->isPointerTy())
return IRB.CreateIntToPtr(VInt, DstScalarTy);
if (DstScalarTy->isIntegerTy((unsigned)DstBits))
return VInt;
return IRB.CreateBitCast(VInt, DstScalarTy);
};
// 1. Fast path
if (SrcBits == DstBits) {
if (N == 1) {
// This is scalar read: extract one lane, legalize type, and return.
Value *Elem = IRB.CreateExtractElement(Whole, pScalarizedIdx);
Type *Ty = Elem->getType();
if (Ty == DstScalarTy)
return Elem;
if (Ty->isPointerTy() && DstScalarTy->isIntegerTy((unsigned)DstBits))
return IRB.CreatePtrToInt(Elem, DstScalarTy);
if (Ty->isIntegerTy((unsigned)SrcBits) && DstScalarTy->isPointerTy())
return IRB.CreateIntToPtr(Elem, DstScalarTy);
return IRB.CreateBitCast(Elem, DstScalarTy);
}
// This is vector read: extract N lanes, legalize per lane type, build <N * DstScalarTy>.
Type *RetVecTy = IGCLLVM::FixedVectorType::get(DstScalarTy, N);
Value *Result = PoisonValue::get(RetVecTy);
for (unsigned i = 0; i < N; ++i) {
Value *Off = ConstantInt::get(pScalarizedIdx->getType(), i);
Value *Idx = IRB.CreateAdd(pScalarizedIdx, Off);
Value *Elem = IRB.CreateExtractElement(Whole, Idx);
if (Elem->getType() != DstScalarTy) {
if (Elem->getType()->isPointerTy() && DstScalarTy->isIntegerTy((unsigned)DstBits))
Elem = IRB.CreatePtrToInt(Elem, DstScalarTy);
else if (Elem->getType()->isIntegerTy((unsigned)SrcBits) && DstScalarTy->isPointerTy())
Elem = IRB.CreateIntToPtr(Elem, DstScalarTy);
else
Elem = IRB.CreateBitCast(Elem, DstScalarTy);
}
Result = IRB.CreateInsertElement(Result, Elem, Off);
}
return Result;
}
// 2. General path
//
// Algorithm:
// 1. Determine how many promoted lanes are needed, K = ceil(NeedBits / SrcBits).
// 2. Extract those K lanes as integers i{SrcBits} and pack into a <K * iSrcBits>.
// 3. Bitcast <K * iSrcBits> to a single i{K*SrcBits} integer.
// 4. Truncate to exactly NeedBits.
// 5. Expand to the requested result type: For scalars, intToDstScalar(i{DstBits}). For vectors, bitcast to <N *
// iDstBits>, then per lane inttoptr if pointer elements, otherwise just bitcast to <N * DstScalarTy>.
const uint64_t K = (NeedBits + SrcBits - 1) / SrcBits; // ceil
// Build <K * iSrcBits> by extracting K consecutive promoted lanes starting at pScalarizedIdx.
Type *IntSrcTy = IRB.getIntNTy((unsigned)SrcBits);
IGCLLVM::FixedVectorType *PackVecIntTy = IGCLLVM::FixedVectorType::get(IntSrcTy, (unsigned)K);
Value *PackVecInt = PoisonValue::get(PackVecIntTy);
for (uint64_t i = 0; i < K; ++i) {
Value *Off = ConstantInt::get(pScalarizedIdx->getType(), (uint64_t)i);
Value *Idx = IRB.CreateAdd(pScalarizedIdx, Off);
Value *SrcElem = IRB.CreateExtractElement(Whole, Idx);
Value *SrcElemInt = toIntOfWidth(SrcElem, SrcBits);
PackVecInt = IRB.CreateInsertElement(PackVecInt, SrcElemInt, Off);
}
// Concatenate the K integers into a single i{K*SrcBits} by bitcasting the vector.
Type *BigIntTy = IRB.getIntNTy((unsigned)(K * SrcBits));
Value *BigInt = IRB.CreateBitCast(PackVecInt, BigIntTy);
// Trim to the requested width.
Value *NeedInt = (NeedBits == K * SrcBits) ? BigInt : IRB.CreateTrunc(BigInt, IRB.getIntNTy((unsigned)NeedBits));
// Expand to the user-visible return type.
if (N == 1) {
// For scalars, i{DstBits} into DstScalarTy.
return intToDstScalar(NeedInt);
}
// For vectors, bitcast to <N * iDstBits>, then change element type if needed.
IGCLLVM::FixedVectorType *VecIntTy = IGCLLVM::FixedVectorType::get(IRB.getIntNTy((unsigned)DstBits), N);
Value *AsIntVec = (NeedBits == (uint64_t)DL.getTypeStoreSizeInBits(VecIntTy)) ? IRB.CreateBitCast(NeedInt, VecIntTy)
: (Value *)nullptr;
if (!DstScalarTy->isPointerTy()) {
if (DstScalarTy->isIntegerTy((unsigned)DstBits))
return AsIntVec;
return IRB.CreateBitCast(AsIntVec, IGCLLVM::FixedVectorType::get(DstScalarTy, N));
}
IGCLLVM::FixedVectorType *RetVecTy = IGCLLVM::FixedVectorType::get(DstScalarTy, N);
Value *Ret = PoisonValue::get(RetVecTy);
for (unsigned i = 0; i < N; ++i) {
Value *LaneIdx = ConstantInt::get(IRB.getInt32Ty(), i);
Value *LaneInt = IRB.CreateExtractElement(AsIntVec, LaneIdx);
Value *LanePtr = IRB.CreateIntToPtr(LaneInt, DstScalarTy);
Ret = IRB.CreateInsertElement(Ret, LanePtr, LaneIdx);
}
return Ret;
}
void TransposeHelperPromote::handleLoadInst(LoadInst *pLoad, Value *pScalarizedIdx) {
IGC_ASSERT(nullptr != pLoad);
IGC_ASSERT(pLoad->isSimple());
IGCLLVM::IRBuilder<> IRB(pLoad);
IGC_ASSERT(nullptr != pLoad->getType());
unsigned N =
pLoad->getType()->isVectorTy() ? (unsigned)cast<IGCLLVM::FixedVectorType>(pLoad->getType())->getNumElements() : 1;
Value *Val = loadEltsFromVecAlloca(N, pVecAlloca, pScalarizedIdx, IRB, pLoad->getType()->getScalarType());
pLoad->replaceAllUsesWith(Val);
pLoad->eraseFromParent();
}
// Store a scalar/vector value into a promoted private alloca that is represented as a flat vector.
//
// The implementation is built on the following assumptions:
// - The promoted destination is a vector <M * SrcScalarTy> where SrcScalarTy is the element type chosen for the
// promoted alloca.
// - The source to store (StoreVal) is either a) a scalar of arbitrary type/width or b) a vector <N * DstScalarTy> of
// arbitrary lane type/width.
// - The GEP lowering has already produced a linear element index pScalarizedIdx into the promoted vector. This
// implementation writes the source bytes begining at that index but can possibly span multiple lanes.
//
// Overview of the algorithm:
// 1. Normalize the source scalar/vector into a single integer of NeedBits (the exact size of the payload to store)
// 2. Split the integer into K parts, where each chunk has the bit-width of a promoted lane (SrcBits).
// 3. Bitcast/convert through inttoptr each chunk back to SrcScalarTy (if needed) and insert the chunks into consecutive
// promoted lanes.
// 4. Store the promoted vector back to the alloca.
static void storeEltsToVecAlloca(Value *StoreVal, AllocaInst *pVecAlloca, Value *pScalarizedIdx,
IGCLLVM::IRBuilder<> &IRB) {
IGC_ASSERT(StoreVal && pVecAlloca && pScalarizedIdx);
// Destination (the promoted private is a vector <M * SrcScalarTy>)
auto *PromotedVecTy = cast<IGCLLVM::FixedVectorType>(pVecAlloca->getAllocatedType());
Type *SrcScalarTy = PromotedVecTy->getElementType();
const DataLayout &DL = pVecAlloca->getModule()->getDataLayout();
// Calculate lane count (N) and lane scalar type from the store source value.
Type *ValTy = StoreVal->getType();
const unsigned N = ValTy->isVectorTy() ? (unsigned)cast<IGCLLVM::FixedVectorType>(ValTy)->getNumElements() : 1;
Type *DstScalarTy = ValTy->isVectorTy() ? cast<VectorType>(ValTy)->getElementType() : ValTy;
// Calculate sizes of the source promoted lane, destination lane, and the total payload to store.
const uint64_t SrcBits = DL.getTypeStoreSizeInBits(SrcScalarTy);
const uint64_t DstBits = DL.getTypeStoreSizeInBits(DstScalarTy);
const uint64_t NeedBits = DstBits * (uint64_t)N;
// Convert a lane value of arbitrary-type to an integer of the exact bit width (DstBits).
auto toIntOfWidth = [&](Value *V, uint64_t Bits) -> Value * {
Type *IntTy = IRB.getIntNTy((unsigned)Bits);
Type *Ty = V->getType();
if (Ty->isPointerTy())
return IRB.CreatePtrToInt(V, IntTy);
if (Ty->isIntegerTy((unsigned)Bits))
return V;
return IRB.CreateBitCast(V, IntTy); // float-like
};
// Convert an integer chunk of SrcBits back to the promoted lane scalar type (SrcScalarTy).
auto intToSrcScalar = [&](Value *VInt) -> Value * {
if (SrcScalarTy->isPointerTy())
return IRB.CreateIntToPtr(VInt, SrcScalarTy);
if (SrcScalarTy->isIntegerTy((unsigned)SrcBits))
return VInt;
return IRB.CreateBitCast(VInt, SrcScalarTy); // float-like
};
// Pack the entire store payload into a single integer of NeedBits.
// If N == 1, just normalize the scalar. If N > 1, create a vector of lane-sized integers and then bitcast it into one
// bit integer.
Value *NeedInt = nullptr;
if (N == 1) {
NeedInt = toIntOfWidth(StoreVal, DstBits);
} else {
Type *LaneIntTy = IRB.getIntNTy((unsigned)DstBits);
auto *VecIntTy = IGCLLVM::FixedVectorType::get(LaneIntTy, N);
Value *AsIntVec = PoisonValue::get(VecIntTy);
for (unsigned i = 0; i < N; ++i) {
Value *Lane = IRB.CreateExtractElement(StoreVal, IRB.getInt32(i));
Value *LaneInt = toIntOfWidth(Lane, DstBits);
AsIntVec = IRB.CreateInsertElement(AsIntVec, LaneInt, IRB.getInt32(i));
}
NeedInt = IRB.CreateBitCast(AsIntVec, IRB.getIntNTy((unsigned)NeedBits));
}
// Calculate how many promoted lanes (K) are needed to hold NeedBits. BigBits is the total bits occupied by those
// lanes.
const uint64_t K = (NeedBits + SrcBits - 1) / SrcBits;
const uint64_t BigBits = K * SrcBits;
// If the store payload does not fill the last lane, zero-extend to K * SrcBits.
if (NeedBits < BigBits)
NeedInt = IRB.CreateZExt(NeedInt, IRB.getIntNTy((unsigned)BigBits));
// Bitcast i(BigBits) into <K x iSrcBits> or in other words split into K chunks.
auto *IntSrcTy = IRB.getIntNTy((unsigned)SrcBits);
auto *PackVecIntTy = IGCLLVM::FixedVectorType::get(IntSrcTy, (unsigned)K);
Value *PackVecInt = IRB.CreateBitCast(NeedInt, PackVecIntTy);
// Load the current promoted vector, overwrite K consecutive lanes atarting at Idx, and then store the updated vector
// back.
Value *Whole = IRB.CreateLoad(PromotedVecTy, pVecAlloca);
for (unsigned i = 0; i < K; ++i) {
Value *LaneInt = IRB.CreateExtractElement(PackVecInt, IRB.getInt32(i));
Value *LaneVal = intToSrcScalar(LaneInt);
Value *Off = ConstantInt::get(pScalarizedIdx->getType(), i);
Value *Idx = IRB.CreateAdd(pScalarizedIdx, Off);
Whole = IRB.CreateInsertElement(Whole, LaneVal, Idx);
}
IRB.CreateStore(Whole, pVecAlloca);
}
void TransposeHelperPromote::handleStoreInst(llvm::StoreInst *pStore, llvm::Value *pScalarizedIdx) {
IGC_ASSERT(pStore && pStore->isSimple());
IGCLLVM::IRBuilder<> IRB(pStore);
storeEltsToVecAlloca(pStore->getValueOperand(), pVecAlloca, pScalarizedIdx, IRB);
pStore->eraseFromParent();
}
void TransposeHelperPromote::handleLifetimeMark(IntrinsicInst *inst) {
IGC_ASSERT(nullptr != inst);
IGC_ASSERT((inst->getIntrinsicID() == llvm::Intrinsic::lifetime_start) ||
(inst->getIntrinsicID() == llvm::Intrinsic::lifetime_end));
if (inst->getIntrinsicID() == llvm::Intrinsic::lifetime_start) {
pStartPoints.insert(inst);
}
m_toBeRemovedGEP.push_back(inst);
}
|