1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "common/LLVMWarningsPush.hpp"
#include <llvm/Pass.h>
#include <llvm/ADT/SmallVector.h>
#include <llvmWrapper/IR/CallSite.h>
#include <llvm/Transforms/Utils/Cloning.h>
#include "common/LLVMWarningsPop.hpp"
#include "Compiler/CISACodeGen/ShaderCodeGen.hpp"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/MetaDataUtilsWrapper.h"
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
// OpenCL C specification states that a kernel function is just a regular
// function call if a __kernel function is called by another kernel function.
// But, it doesn't clarify what's the behavior exactly. Under certain
// conditions, such a call may be ambiguous without separating kernel function
// and user functions, e.g.
//
// __kernel __attribute__((reqd_work_group_size(1, 1, 1)))
// void bar(...) {
// ...
// }
//
// __kernel __attribute__((reqd_work_group_size(32, 1, 1)))
// void foo(...) {
// ...
// bar(...);
// ...
// }
//
// Such ambiguity also exists if function call is enabled as well as if there
// are optimizations which may treat kernel function differently from user
// functions, such as inline buffer resolution, which will resolve the first
// local pointer argument at compilation time. If a function is used as both a
// kernel function and a user function. The first local pointer argument is
// ambiguous for optimization to resolve it statically.
//
// OpenCL C++ specification already clarifies the issue and would not allow a
// kernel function to called from another kernel function. However, we still
// need to handle that for OCL 1.2 and OCL 2.0.
//
// This pass is added to clone a kernel function to a user function if it's
// called.
//
namespace {
class KernelFunctionCloning : public ModulePass {
public:
static char ID;
KernelFunctionCloning() : ModulePass(ID) {}
bool runOnModule(Module &) override;
llvm::StringRef getPassName() const override { return "KernelFunctionCloning"; }
private:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<CodeGenContextWrapper>();
AU.addRequired<MetaDataUtilsWrapper>();
}
};
} // End anonymous namespace
namespace IGC {
ModulePass *createKernelFunctionCloningPass() { return new KernelFunctionCloning(); }
#define PASS_FLAG "igc-kernel-function-cloning"
#define PASS_DESC "Clone kernel functions if it's called."
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(KernelFunctionCloning, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_END(KernelFunctionCloning, PASS_FLAG, PASS_DESC, PASS_CFG_ONLY, PASS_ANALYSIS)
} // namespace IGC
char KernelFunctionCloning::ID = 0;
template <typename PatternTypeFirst, typename... PatternTypeRest> struct PatternChecker {
template <typename Checker> static bool run(User *user, Checker check) {
auto casted = dyn_cast<PatternTypeFirst>(user);
if (!casted)
return false;
if constexpr (sizeof...(PatternTypeRest) > 0) {
for (auto user : casted->users()) {
if (!PatternChecker<PatternTypeRest...>::run(user, check)) {
return false;
}
}
}
return check(casted);
}
};
bool KernelFunctionCloning::runOnModule(Module &M) {
MetaDataUtils *MDU = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
// Collect kernel functions being called.
SmallVector<Function *, 8> KernelsToClone;
for (auto &F : M) {
auto FII = MDU->findFunctionsInfoItem(&F);
if (FII == MDU->end_FunctionsInfo())
continue;
// Check this kernell function is called.
for (auto *U : F.users()) {
//
// Ignore if it's a user semantic decoration on function.
//
// GlobalVariable("llvm.global.annotations"):
// ConstantArray:
// ConstantStruct:
// BitCastOperator:
// Function = [ANNOTATED_FUNCTION]
// GetElementPtr:
// GlobalVariable = [ANNOTATION]
// ConstantStruct:
// ...
//
bool user_semantic =
PatternChecker<BitCastOperator, ConstantStruct, ConstantArray, GlobalVariable>::run(U, [](User *user) {
if (auto casted = dyn_cast<GlobalVariable>(user)) {
return casted->getName().compare("llvm.global.annotations") == 0;
}
return true;
});
if (user_semantic) {
continue;
}
IGCLLVM::CallSite *call = nullptr;
call = dyn_cast<IGCLLVM::CallSite>(U);
if (!call)
continue;
KernelsToClone.push_back(&F);
break;
}
}
// Clone it
bool Changed = false;
for (auto *F : KernelsToClone) {
ValueToValueMapTy VMap;
auto *NewF = CloneFunction(F, VMap);
NewF->setLinkage(GlobalValue::InternalLinkage);
if (!F->getParent()->getFunction(NewF->getName()))
F->getParent()->getFunctionList().push_back(NewF);
// Collect pointers to users (callsites) of the original kernel
// function and loop through the collection. Otherwise when looping
// through F->users(), calling call->setCalledFunction(NewF) modifies
// the F->users() by removing the very first element (second element
// becomes first) and the loop skips every second element.
SmallVector<User *, 8> originalKernelFunctionUsers;
for (auto *U : F->users()) {
originalKernelFunctionUsers.push_back(U);
}
// Replace the original calls to kernel function with calls to user
// function clone at the callsites.
for (auto &U : originalKernelFunctionUsers) {
IGCLLVM::CallSite *call = nullptr;
call = dyn_cast<IGCLLVM::CallSite>(U);
if (!call)
continue;
if (call->getCalledFunction()->getType() == NewF->getType())
call->setCalledFunction(NewF);
}
Changed = true;
}
return Changed;
}
|