1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2025 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//
// This file defines a routine for simplifying a GenX intrinsic call to a
// constant or one of the operands. This is for cases where not all operands
// are constant; the constant operand cases are handled in ConstantFoldGenX.cpp.
//
//===----------------------------------------------------------------------===//
#include "llvmWrapper/Analysis/CallGraph.h"
#include "llvmWrapper/Analysis/InstructionSimplify.h"
#include "llvmWrapper/IR/CallSite.h"
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/IR/Instructions.h"
#include <llvmWrapper/IR/Type.h>
#include "vc/GenXOpts/GenXAnalysis.h"
#include "vc/GenXOpts/GenXOpts.h"
#include "vc/Utils/GenX/IntrinsicsWrapper.h"
#include "vc/Utils/GenX/Region.h"
#include <llvm/GenXIntrinsics/GenXIntrinsics.h>
#include <llvm/Analysis/PostDominators.h>
#include <llvm/IR/Dominators.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/InstIterator.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/PatternMatch.h>
#include <llvm/InitializePasses.h>
#include <llvm/Pass.h>
#include <llvm/Support/CommandLine.h>
#include <llvm/Support/Debug.h>
#include "llvmWrapper/IR/DerivedTypes.h"
#include "llvmWrapper/Support/TypeSize.h"
#include "Probe/Assertion.h"
#define DEBUG_TYPE "GenXSimplify"
using namespace llvm;
namespace llvm {
namespace genx {
bool isSafeToReplace_CheckAVLoadKillOrForbiddenUser(
const Instruction *const I, const Instruction *const To,
const DominatorTree *const DT);
};
}; // namespace llvm
static cl::opt<bool>
GenXEnablePeepholes("genx-peepholes", cl::init(true), cl::Hidden,
cl::desc("apply additional peephole optimizations"));
// Takes a constant and checks if it can be used as a RHS for mulDDQ operation
// A constant can be used as such if every component of it can be represented
// as signed/unsigned 32-bit integer.
// LHSigned represents the preferred representation for the 32-bit ints
static std::pair<Value *, bool> transformConstantToMulDDQOperand(bool LHSigned,
Constant *C) {
Type *Ty32 = Type::getInt32Ty(C->getContext());
// Checks that every value from the input array can be converted to
// desired type (signed/unsigned) 32-bit constant
auto ConvertableToI32 = [Ty32](const ArrayRef<uint64_t> &UVs, bool Signed) {
return std::all_of(UVs.begin(), UVs.end(), [Signed, Ty32](uint64_t U) {
if (Signed) {
auto S = static_cast<int64_t>(U);
return ConstantInt::isValueValidForType(Ty32, S);
}
return ConstantInt::isValueValidForType(Ty32, U);
});
};
SmallVector<uint64_t, 16> UVs;
bool IsVector = C->getType()->isVectorTy();
if (IsVector) {
auto *CDS = cast<ConstantDataSequential>(C);
for (unsigned i = 0, num = CDS->getNumElements(); i < num; ++i)
UVs.push_back(CDS->getElementAsInteger(i));
} else {
UVs.push_back(cast<ConstantInt>(C)->getZExtValue());
}
bool RHSigned = false;
if (ConvertableToI32(UVs, LHSigned)) {
RHSigned = LHSigned;
} else if (ConvertableToI32(UVs, !LHSigned)) {
RHSigned = !LHSigned;
} else
return {nullptr, false}; // Constant can't be expressed as i32 type
SmallVector<uint32_t, 16> CnvData;
std::transform(UVs.begin(), UVs.end(), std::back_inserter(CnvData),
[](uint64_t V) { return static_cast<uint32_t>(V); });
Value *V = !IsVector ? ConstantInt::get(Ty32, CnvData.front(), RHSigned)
: ConstantDataVector::get(Ty32->getContext(), CnvData);
return {V, RHSigned};
}
// simplifyMulDDQ:
// Tries to detect cases when we do 64-bit mulitiplication which can be
// replaced by multiplication of 32-bit integers to generate a more efficient
// vISA.
// Currently, the following patterns are detected:
// DxD->Q:
// l = sext op1 to i64
// r = sext op2 to i64
// -> res = genx_ssmul(op1, op2)
// UDxUD->UQ:
// l = zext op1 to i64
// r = zext op2 to i64
// res = mul l, r
// -> res = genx_uumul(op1, op2)
// One of op1/op2 can be constant
static Value *simplifyMulDDQ(BinaryOperator &Mul) {
Value *LH = nullptr;
Value *RH = nullptr;
Constant *C = nullptr;
// skip non 64-bit mulitplication
if (Mul.getType()->getScalarSizeInBits() != 64)
return nullptr;
using namespace llvm::PatternMatch;
if (!match(&Mul,
m_c_Mul(m_ZExtOrSExt(m_Value(LH)),
m_CombineOr(m_ZExtOrSExt(m_Value(RH)), m_Constant(C)))))
return nullptr;
bool LHSigned = isa<SExtInst>(Mul.getOperand(0));
bool RHSigned = isa<SExtInst>(Mul.getOperand(1));
// If one of the operands is constant - we must make sure that we can convert
// it to i32 type, so we can use 32-bit multiplication
if (C) {
// One of the operand is Constant => SExt can be anywhere
LHSigned = LHSigned || RHSigned;
std::tie(RH, RHSigned) = transformConstantToMulDDQOperand(LHSigned, C);
if (!RH)
return nullptr;
}
if (LH->getType()->getScalarSizeInBits() > 32 ||
RH->getType()->getScalarSizeInBits() > 32)
return nullptr;
// Currently we do not support case when operands are of different signes.
// It is possible to handle such cases, but in that case we should make
// sure that such cases are handled properly by GenXLowering
if (LHSigned != RHSigned)
return nullptr;
IRBuilder<> Builder(&Mul);
if (LH->getType() != RH->getType()) {
auto TryUpcast = [](IRBuilder<> &B, Value *V, Type *To, bool Sign) {
if (V->getType()->getScalarSizeInBits() >= To->getScalarSizeInBits())
return V;
if (auto *VTy = dyn_cast<IGCLLVM::FixedVectorType>(V->getType()))
To = IGCLLVM::FixedVectorType::get(To, VTy->getNumElements());
return Sign ? B.CreateSExt(V, To, V->getName() + ".sext")
: B.CreateZExt(V, To, V->getName() + ".zext");
};
Type *Ty32 = Type::getInt32Ty(Mul.getContext());
// TODO: probably we could upcast to RH->getType()/LH->getType()
LH = TryUpcast(Builder, LH, Ty32, LHSigned);
RH = TryUpcast(Builder, RH, Ty32, RHSigned);
}
auto *Ty64 = Mul.getType();
auto *OpType = LH->getType();
auto IID = GenXIntrinsic::getGenXMulIID(LHSigned, RHSigned);
auto *FIMul =
GenXIntrinsic::getGenXDeclaration(Mul.getModule(), IID, {Ty64, OpType});
auto *Result = Builder.CreateCall(FIMul, {LH, RH}, Mul.getName() + ".imul");
return Result;
}
static bool usesBothOperands(const ArrayRef<int> &Mask, int InputLen) {
int OperandIdx = -1;
for (int Index : Mask) {
if (Index < 0)
continue; // skip undef
int CurrentIdx = (Index >= InputLen) ? 1 : 0;
if (OperandIdx == -1) {
OperandIdx = CurrentIdx;
} else if (OperandIdx != CurrentIdx) {
return true; // Both operands are used
}
}
return false;
}
static void checkInputsForMask(ArrayRef<int> &Mask1, ArrayRef<int> &Mask2,
ArrayRef<int> &CurrentMask, bool &UsesInput1,
bool &UsesInput2) {
for (auto Index : CurrentMask) {
if (Index < 0) {
continue; // Undef index.
} else if (static_cast<unsigned>(Index) < Mask1.size()) {
UsesInput1 = true;
} else if (static_cast<unsigned>(Index) < Mask1.size() + Mask2.size()) {
UsesInput2 = true;
} else {
IGC_ASSERT_EXIT(false && "Unexpected index in mask");
}
}
}
static int getInputLen(ShuffleVectorInst *CheckShuffle) {
auto *Type =
cast<IGCLLVM::FixedVectorType>(CheckShuffle->getOperand(0)->getType());
return static_cast<int>(Type->getNumElements());
}
// Simplify ShuffleVector one-instruction chain
// Transform from:
// %shuffle1 = shufflevector <16 x i1> %input1, <16 x i1> poison,
// <256 x i32> <i32 undef (224 times), i32 0-15 (16), i32 undef (16 times)>
// %combinedShuffle = shufflevector <256 x i1> %shuffle1, <256 x i1> poison,
// <256 x i32> <i32 undef (224 times), i32 224-239 & 256-271 (32)>
// To:
// %finalShuffle = shufflevector <16 x i1> %input1, <16 x i1> poison,
// <32 x i32> <i32 undef, ..., i32 0-15>
static Value *propagateShuffleVector(ShuffleVectorInst *Shuffle) {
LLVM_DEBUG(dbgs() << "Simplifying shufflevector: " << *Shuffle << "\n");
auto *Input1 = dyn_cast<ShuffleVectorInst>(Shuffle->getOperand(0));
auto *Input2 = dyn_cast<ShuffleVectorInst>(Shuffle->getOperand(1));
if (!Input1 && !Input2) {
LLVM_DEBUG(
dbgs()
<< "propagateShuffleVector: No chain detected, nothing to optimize.\n");
return Shuffle;
}
bool UseInput1 = !Input2;
auto *CheckShuffle = Input1 ? Input1 : Input2;
ArrayRef<int> Mask = CheckShuffle->getShuffleMask();
ArrayRef<int> CurrentMask = Shuffle->getShuffleMask();
bool UsesInput1 = false;
bool UsesInput2 = false;
checkInputsForMask(Mask, Mask, CurrentMask, UsesInput1, UsesInput2);
if (UsesInput1 && UsesInput2 || (UsesInput1 && !UseInput1) ||
(UsesInput2 && UseInput1)) {
LLVM_DEBUG(dbgs() << "Expected only one use in shuffle.\n");
return Shuffle;
}
auto InputLen = getInputLen(CheckShuffle);
SmallVector<int, 32> CombinedMask;
// Combine the masks into a single mask.
for (auto Index : CurrentMask) {
if (Index < 0) {
CombinedMask.push_back(-1); // Undef index.
} else if (static_cast<unsigned>(Index) < Mask.size()) {
CombinedMask.push_back(Mask[Index]);
} else {
CombinedMask.push_back(Mask[Index - Mask.size()] + InputLen);
}
}
LLVM_DEBUG(dbgs() << "Combined mask: ";
for (int Val : CombinedMask) dbgs() << Val << " "; dbgs() << "\n");
// Create the final shuffle vector with the combined mask.
IRBuilder<> Builder(Shuffle);
auto *NewShuffle = Builder.CreateShuffleVector(
CheckShuffle->getOperand(0), CheckShuffle->getOperand(1), CombinedMask);
LLVM_DEBUG(dbgs() << "Created new shufflevector: " << *NewShuffle << "\n");
return NewShuffle;
}
static bool checkInputsForMaskIndex(int InputLen, ArrayRef<int> Mask,
int &InputOperandIdx) {
for (auto Index : Mask) {
if (Index < 0)
continue; // skip undef
int OperandIdx = 0;
if (Index >= InputLen) {
OperandIdx = 1;
}
if (InputOperandIdx == -1) {
InputOperandIdx = OperandIdx;
} else if (InputOperandIdx != OperandIdx) {
// Both operands are used in the first shuffle.
return false;
}
}
return true;
}
// Simplify ShuffleVector multi-instructions chain
// Transform from:
// %shuffle1 = shufflevector <16 x i1> %input1, <16 x i1> poison,
// <256 x i32> <i32 undef (224 times), i32 0-15 (16), i32 undef (16 times)>
// %shuffle2 = shufflevector <16 x i1> %input2, <16 x i1> poison,
// <256 x i32> <i32 0-15 (16), i32 undef (240 times)>
// %combinedShuffle = shufflevector <256 x i1> %shuffle1, <256 x i1>
// %shuffle2,
// <256 x i32> <i32 undef (224 times), i32 224-239 & 256-271 (32)>
// To:
// %finalShuffle = shufflevector <16 x i1> %input1, <16 x i1> %input2,
// <32 x i32> <i32 undef, ..., i32 0-15, i32 16-31>
static Value *simplifyShuffleVectorChain(ShuffleVectorInst *Shuffle) {
LLVM_DEBUG(dbgs() << "Simplifying shufflevector: " << *Shuffle << "\n");
auto *Input1 = dyn_cast<ShuffleVectorInst>(Shuffle->getOperand(0));
auto *Input2 = dyn_cast<ShuffleVectorInst>(Shuffle->getOperand(1));
if (!Input1 || !Input2) {
LLVM_DEBUG(dbgs() << "simplifyShuffleVectorChain: No chain detected, "
"nothing to optimize.\n");
return Shuffle;
}
ArrayRef<int> Mask1 = Input1->getShuffleMask();
ArrayRef<int> Mask2 = Input2->getShuffleMask();
ArrayRef<int> CurrentMask = Shuffle->getShuffleMask();
bool UsesInput1 = false;
bool UsesInput2 = false;
checkInputsForMask(Mask1, Mask2, CurrentMask, UsesInput1, UsesInput2);
if (!UsesInput1 || !UsesInput2) {
LLVM_DEBUG(dbgs() << "Only one input used in shuffle.\n");
return Shuffle;
}
int Input1OperandIdx = -1;
auto Input1Len = getInputLen(Input1);
if (!checkInputsForMaskIndex(Input1Len, Mask1, Input1OperandIdx))
return Shuffle;
int Input2OperandIdx = -1;
auto Input2Len = getInputLen(Input2);
if (!checkInputsForMaskIndex(Input2Len, Mask2, Input2OperandIdx))
return Shuffle;
// If we have only one operand used in the first shuffle, we need to
// set the other operand to 0.
if (Input1OperandIdx == -1)
Input1OperandIdx = 0;
if (Input2OperandIdx == -1)
Input2OperandIdx = 0;
if (Input1->getOperand(Input1OperandIdx)->getType() !=
Input2->getOperand(Input2OperandIdx)->getType()) {
// The types of the operands are different.
return Shuffle;
}
SmallVector<int, 32> CombinedMask;
// Combine the masks into a single mask.
for (auto Index : CurrentMask) {
if (Index < 0) {
CombinedMask.push_back(-1); // Undef index.
} else if (static_cast<unsigned>(Index) < Mask1.size()) {
CombinedMask.push_back(Mask1[Index] - Input1Len * Input1OperandIdx);
} else {
CombinedMask.push_back(Mask2[Index - Mask1.size()] +
Input1Len * (1 - Input2OperandIdx));
}
}
LLVM_DEBUG(dbgs() << "Combined mask: ";
for (int Val : CombinedMask) dbgs() << Val << " "; dbgs() << "\n");
// Create the final shuffle vector with the combined mask.
IRBuilder<> Builder(Shuffle);
auto *NewShuffle = Builder.CreateShuffleVector(
Input1->getOperand(Input1OperandIdx),
Input2->getOperand(Input2OperandIdx), CombinedMask);
LLVM_DEBUG(dbgs() << "Created new shufflevector: " << *NewShuffle << "\n");
return NewShuffle;
}
static inline bool isBitcastFits(BitCastInst *BC) {
return BC->getSrcTy()->isVectorTy() && BC->getDestTy()->isIntegerTy();
}
static inline bool isTrunkFits(TruncInst *TC) {
return TC->getSrcTy()->isVectorTy() && TC->getDestTy()->isVectorTy() &&
TC->getDestTy()->getScalarType()->isIntegerTy(1);
}
static inline bool simplifyBinOp(BinaryOperator *BinOp) {
auto Op = BinOp->getOpcode();
// Only logical operations without overflow are expected
if ((Op != Instruction::And) && (Op != Instruction::Or) &&
(Op != Instruction::Xor))
return false;
bool Changed = false;
auto *Bitcast1 = dyn_cast<BitCastInst>(BinOp->getOperand(0));
auto *Bitcast2 = dyn_cast<BitCastInst>(BinOp->getOperand(1));
if (Bitcast1 && Bitcast2 && (Bitcast1->getSrcTy() == Bitcast2->getSrcTy())) {
if (isBitcastFits(Bitcast1) && isBitcastFits(Bitcast2)) {
for (auto *User : BinOp->users()) {
if (auto *BitcastBack = dyn_cast<BitCastInst>(User)) {
if (BitcastBack->getDestTy()->isVectorTy()) {
IRBuilder<> Builder(BinOp);
auto *NewOp =
Builder.CreateBinOp(BinOp->getOpcode(), Bitcast1->getOperand(0),
Bitcast2->getOperand(0));
BitcastBack->replaceAllUsesWith(NewOp);
Changed = true;
BinOp = cast<BinaryOperator>(NewOp);
break;
}
}
}
}
}
auto *Trunc1 = dyn_cast<TruncInst>(BinOp->getOperand(0));
auto *Trunc2 = dyn_cast<TruncInst>(BinOp->getOperand(1));
if (Trunc1 && Trunc2 && (Trunc1->getSrcTy() == Trunc2->getSrcTy())) {
if (isTrunkFits(Trunc1) && isTrunkFits(Trunc2)) {
for (auto *User : BinOp->users()) {
if (auto *ZextInst = dyn_cast<ZExtInst>(User)) {
if (auto *DestVecType = dyn_cast<VectorType>(ZextInst->getDestTy())) {
if (DestVecType->getElementType()->isIntegerTy()) {
IRBuilder<> Builder(BinOp);
auto *NewOp =
Builder.CreateBinOp(BinOp->getOpcode(), Trunc1->getOperand(0),
Trunc2->getOperand(0));
ZextInst->replaceAllUsesWith(NewOp);
Changed = true;
break;
}
}
}
}
}
}
return Changed;
}
static Value *GenXSimplifyInstruction(llvm::Instruction *Inst) {
IGC_ASSERT(Inst);
if (!GenXEnablePeepholes)
return nullptr;
if (Inst->getOpcode() == Instruction::Mul)
return simplifyMulDDQ(*cast<BinaryOperator>(Inst));
if (auto *Shuffle = dyn_cast<ShuffleVectorInst>(Inst)) {
auto *Chain = simplifyShuffleVectorChain(Shuffle);
if (Chain != Shuffle) {
return Chain;
}
return propagateShuffleVector(Shuffle);
}
return nullptr;
}
// isWriteWithUndefInput - checks whether provided \p Inst is a write
// intrinsic (currently wrregion, wrpredregion) and it's input value
// (new value) is undef (undef value is written into a vector).
static bool isWriteWithUndefInput(const Instruction &Inst) {
switch (GenXIntrinsic::getAnyIntrinsicID(&Inst)) {
default:
return false;
case GenXIntrinsic::genx_wrregioni:
case GenXIntrinsic::genx_wrregionf:
return isa<UndefValue>(
Inst.getOperand(GenXIntrinsic::GenXRegion::NewValueOperandNum));
case GenXIntrinsic::genx_wrpredregion:
return isa<UndefValue>(Inst.getOperand(vc::WrPredRegionOperand::NewValue));
}
}
static Value &getWriteOldValueOperand(Instruction &Inst) {
switch (GenXIntrinsic::getAnyIntrinsicID(&Inst)) {
default:
IGC_ASSERT_EXIT_MESSAGE(
0, "wrong argument: write region intrinsics are expected");
case GenXIntrinsic::genx_wrregioni:
case GenXIntrinsic::genx_wrregionf:
return *Inst.getOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum);
case GenXIntrinsic::genx_wrpredregion:
return *Inst.getOperand(vc::WrPredRegionOperand::OldValue);
}
}
// processWriteWithUndefInput - removes provided \p Inst, replaces its uses
// with the old value. If this replacement produced new context (write
// intrinsic's input value was replaced with undef), those writes are put into
// \p ToProcess output iterator.
template <typename OutIter>
void processWriteWithUndefInput(Instruction &Inst, OutIter ToProcess) {
IGC_ASSERT_MESSAGE(
isWriteWithUndefInput(Inst),
"wrong argument: write intrinsic with undef input was expected");
auto *OldVal = &getWriteOldValueOperand(Inst);
Inst.replaceAllUsesWith(OldVal);
// As a result of operand promotion we can get new suitable instructions.
// Using additional copy_if instead of make_filter_range as workaround,
// because user_iterator returns pointer instead of reference.
std::vector<User *> UsersToProcess;
std::copy_if(Inst.user_begin(), Inst.user_end(),
std::back_inserter(UsersToProcess), [](User *Usr) {
return isa<Instruction>(Usr) &&
isWriteWithUndefInput(*cast<Instruction>(Usr));
});
std::transform(UsersToProcess.begin(), UsersToProcess.end(), ToProcess,
[](User *Usr) { return cast<Instruction>(Usr); });
Inst.eraseFromParent();
}
bool llvm::simplifyWritesWithUndefInput(Function &F) {
using WorkListT = std::vector<Instruction *>;
WorkListT WorkList;
auto WorkListRange =
make_filter_range(instructions(F), [](const Instruction &Inst) {
return isWriteWithUndefInput(Inst);
});
llvm::transform(WorkListRange, std::back_inserter(WorkList),
[](Instruction &Inst) { return &Inst; });
bool Modified = !WorkList.empty();
while (!WorkList.empty()) {
WorkListT CurrentWorkList = std::move(WorkList);
WorkList = WorkListT{};
auto WorkListInserter = std::back_inserter(WorkList);
std::for_each(CurrentWorkList.begin(), CurrentWorkList.end(),
[WorkListInserter](Instruction *Inst) {
processWriteWithUndefInput(*Inst, WorkListInserter);
});
}
return Modified;
}
/***********************************************************************
* SimplifyGenXIntrinsic : given a GenX intrinsic and a set of arguments,
* see if we can fold the result.
*
* ConstantFoldingGenX.cpp handles pure constant folding cases. This code
* only handles cases where not all operands are constant, but we can do
* some folding anyway.
*
* If this call could not be simplified, returns null.
*/
Value *llvm::SimplifyGenXIntrinsic(CallInst *CI, const DataLayout &DL) {
auto IID = vc::getAnyIntrinsicID(CI);
auto *RetTy = CI->getType();
Use *Args = CI->arg_begin();
switch (IID) {
case GenXIntrinsic::genx_rdregioni:
case GenXIntrinsic::genx_rdregionf: {
// Identity rdregion can be simplified to its "old value" input.
if (RetTy ==
Args[GenXIntrinsic::GenXRegion::OldValueOperandNum]->getType()) {
unsigned NumElements =
cast<IGCLLVM::FixedVectorType>(RetTy)->getNumElements();
unsigned Width =
cast<ConstantInt>(Args[GenXIntrinsic::GenXRegion::RdWidthOperandNum])
->getZExtValue();
auto IndexV = dyn_cast<Constant>(
Args[GenXIntrinsic::GenXRegion::RdIndexOperandNum]);
if (!IndexV)
return nullptr;
unsigned Index = 0;
if (!isa<VectorType>(IndexV->getType()))
Index = cast<ConstantInt>(IndexV)->getZExtValue() /
(DL.getTypeSizeInBits(RetTy->getScalarType()) / 8);
else
return nullptr;
if ((Index == 0 || Index >= NumElements) &&
(Width == NumElements ||
Width == cast<ConstantInt>(
Args[GenXIntrinsic::GenXRegion::RdVStrideOperandNum])
->getSExtValue()))
if (NumElements == 1 ||
cast<ConstantInt>(
Args[GenXIntrinsic::GenXRegion::RdStrideOperandNum])
->getSExtValue())
return Args[GenXIntrinsic::GenXRegion::OldValueOperandNum];
}
// rdregion with splatted constant input can be simplified to a constant of
// the appropriate type, ignoring the possibly variable index.
if (auto C = dyn_cast<Constant>(
Args[GenXIntrinsic::GenXRegion::OldValueOperandNum]))
if (auto Splat = C->getSplatValue()) {
if (auto VT = dyn_cast<IGCLLVM::FixedVectorType>(RetTy))
return ConstantVector::getSplat(
IGCLLVM::getElementCount(VT->getNumElements()), Splat);
return Splat;
}
} break;
case GenXIntrinsic::genx_wrregioni:
case GenXIntrinsic::genx_wrregionf:
// The wrregion case specifically excludes genx_wrconstregion.
// Identity wrregion can be simplified to its "new value" input.
if (RetTy ==
Args[GenXIntrinsic::GenXRegion::NewValueOperandNum]->getType()) {
if (auto CMask = dyn_cast<Constant>(
Args[GenXIntrinsic::GenXRegion::PredicateOperandNum])) {
if (CMask->isAllOnesValue()) {
unsigned NumElements =
cast<IGCLLVM::FixedVectorType>(RetTy)->getNumElements();
unsigned Width =
cast<ConstantInt>(
Args[GenXIntrinsic::GenXRegion::WrWidthOperandNum])
->getZExtValue();
auto IndexV = dyn_cast<Constant>(
Args[GenXIntrinsic::GenXRegion::WrIndexOperandNum]);
if (!IndexV)
return nullptr;
unsigned Index = 0;
if (!isa<VectorType>(IndexV->getType()))
Index = cast<ConstantInt>(IndexV)->getZExtValue() /
(DL.getTypeSizeInBits(RetTy->getScalarType()) / 8);
else
return nullptr;
if ((Index == 0 || Index >= NumElements) &&
(Width == NumElements ||
Width ==
cast<ConstantInt>(
Args[GenXIntrinsic::GenXRegion::WrVStrideOperandNum])
->getSExtValue()))
if (NumElements == 1 ||
cast<ConstantInt>(
Args[GenXIntrinsic::GenXRegion::WrStrideOperandNum])
->getSExtValue())
return Args[GenXIntrinsic::GenXRegion::NewValueOperandNum];
}
}
}
// Wrregion with constant 0 predicate can be simplified to its "old value"
// input.
if (auto CMask = dyn_cast<Constant>(
Args[GenXIntrinsic::GenXRegion::PredicateOperandNum]))
if (CMask->isNullValue())
return Args[GenXIntrinsic::GenXRegion::OldValueOperandNum];
// Wrregion writing a value that has just been read out of the same
// region in the same vector can be simplified to its "old value" input.
// This works even if the predicate is not all true.
if (auto RdR = dyn_cast<CallInst>(
Args[GenXIntrinsic::GenXRegion::NewValueOperandNum])) {
if (auto RdRFunc = RdR->getCalledFunction()) {
Value *OldVal = Args[GenXIntrinsic::GenXRegion::OldValueOperandNum];
if ((GenXIntrinsic::getGenXIntrinsicID(RdRFunc) ==
GenXIntrinsic::genx_rdregioni ||
GenXIntrinsic::getGenXIntrinsicID(RdRFunc) ==
GenXIntrinsic::genx_rdregionf) &&
RdR->getArgOperand(GenXIntrinsic::GenXRegion::OldValueOperandNum) ==
OldVal) {
// Check the region parameters match between the rdregion and
// wrregion. There are 4 region parameters: vstride, width, stride,
// index.
bool CanSimplify = true;
for (unsigned i = 0; i != 4; ++i) {
if (Args[GenXIntrinsic::GenXRegion::WrVStrideOperandNum + i] !=
RdR->getArgOperand(
GenXIntrinsic::GenXRegion::RdVStrideOperandNum + i)) {
CanSimplify = false;
break;
}
}
if (CanSimplify)
return OldVal;
}
}
}
break;
}
return nullptr;
}
/***********************************************************************
* SimplifyGenX : given a GenX related instruction, see if we can fold
* the result.
*
* ConstantFoldingGenX.cpp handles pure constant folding cases. This code
* also handles cases where not all operands are constant.
*
* If this instruction could not be simplified, returns null.
*/
Value *llvm::SimplifyGenX(CallInst *I, const DataLayout &DL) {
LLVM_DEBUG(dbgs() << "Trying to simplify " << *I << "\n");
if (Value *Ret = SimplifyGenXIntrinsic(I, DL)) {
LLVM_DEBUG(dbgs() << "Simplified to " << *Ret << "\n");
return Ret;
}
LLVM_DEBUG(dbgs() << "Failed to simplify, trying to constant fold\n");
Constant *C = ConstantFoldGenX(I, DL);
if (C)
LLVM_DEBUG(dbgs() << "Successfully folded to " << *C << "\n");
else
LLVM_DEBUG(dbgs() << "Failed to constant fold instruction\n");
return C;
}
namespace {
class GenXSimplify : public FunctionPass {
#if LLVM_VERSION_MAJOR >= 16
DominatorTree &DT;
#endif
public:
static char ID;
#if LLVM_VERSION_MAJOR < 16
GenXSimplify() : FunctionPass(ID) {
#else
GenXSimplify(DominatorTree &DT) : DT(DT), FunctionPass(ID) {
#endif
initializeGenXSimplifyPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
private:
bool processGenXIntrinsics(Function &F);
};
} // namespace
bool GenXSimplify::runOnFunction(Function &F) {
const DataLayout &DL = F.getParent()->getDataLayout();
#if LLVM_VERSION_MAJOR < 16
const auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
#endif
bool Changed = false;
auto replaceWithNewValue = [](Instruction &Inst, Value &V) {
if (&Inst == &V)
return false;
Inst.replaceAllUsesWith(&V);
Inst.eraseFromParent();
return true;
};
for (auto &BB : F) {
for (auto I = BB.begin(); I != BB.end();) {
Instruction *Inst = &*I++;
if (auto IID = vc::getAnyIntrinsicID(Inst);
vc::isAnyNonTrivialIntrinsic(IID)) {
auto *V = SimplifyGenX(cast<CallInst>(Inst), DL);
if (!V)
continue;
auto *NewI = dyn_cast<Instruction>(V);
if (NewI && !genx::isSafeToReplace_CheckAVLoadKillOrForbiddenUser(
Inst, NewI, &DT))
continue;
Changed |= replaceWithNewValue(*Inst, *V);
continue;
}
// Do general LLVM simplification
if (Value *V = IGCLLVM::simplifyInstruction(Inst, DL)) {
Changed |= replaceWithNewValue(*Inst, *V);
continue;
}
// Do GenX-specific Instruction simplification
if (Value *V = GenXSimplifyInstruction(Inst)) {
Changed |= replaceWithNewValue(*Inst, *V);
continue;
}
if (auto *BO = dyn_cast<BinaryOperator>(Inst))
Changed |= simplifyBinOp(BO);
}
}
Changed |= simplifyWritesWithUndefInput(F);
return Changed;
}
char GenXSimplify::ID = 0;
INITIALIZE_PASS_BEGIN(GenXSimplify, "GenXSimplify",
"simplify genx specific instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(GenXSimplify, "GenXSimplify",
"simplify genx specific instructions", false, false)
#if LLVM_VERSION_MAJOR < 16
namespace llvm {
FunctionPass *createGenXSimplifyPass() { return new GenXSimplify; }
} // namespace llvm
#else
PreservedAnalyses GenXSimplifyPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
GenXSimplify GenXSimpl(DT);
if (GenXSimpl.runOnFunction(F))
return PreservedAnalyses::none();
return PreservedAnalyses::all();
}
#endif
|