1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
;;
;; Copyright (c) 2012-2022, Intel Corporation
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are met:
;;
;; * Redistributions of source code must retain the above copyright notice,
;; this list of conditions and the following disclaimer.
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;; * Neither the name of Intel Corporation nor the names of its contributors
;; may be used to endorse or promote products derived from this software
;; without specific prior written permission.
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
;; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
;; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
;; DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
;; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
;; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
;; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
;; CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
;; OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
;; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;
%include "include/os.asm"
%include "include/memcpy.asm"
%include "include/const.inc"
%include "include/reg_sizes.asm"
%include "include/clear_regs.asm"
; routine to do AES192 CNTR enc/decrypt "by8"
; XMM registers are clobbered. Saving/restoring must be done at a higher level
%ifndef AES_CNTR_192
%define AES_CNTR_192 aes_cntr_192_sse
%define AES_CNTR_BIT_192 aes_cntr_bit_192_sse
%endif
extern byteswap_const, ddq_add_1, ddq_add_2, ddq_add_3, ddq_add_4
extern ddq_add_5, ddq_add_6, ddq_add_7, ddq_add_8
%define CONCAT(a,b) a %+ b
%define MOVDQ movdqu
%define xdata0 xmm0
%define xdata1 xmm1
%define xpart xmm1
%define xdata2 xmm2
%define xdata3 xmm3
%define xdata4 xmm4
%define xdata5 xmm5
%define xdata6 xmm6
%define xdata7 xmm7
%define xcounter xmm8
%define xtmp xmm8
%define xbyteswap xmm9
%define xtmp2 xmm9
%define xkey0 xmm10
%define xtmp3 xmm10
%define xkey4 xmm11
%define xkey8 xmm12
%define xkey12 xmm13
%define xkeyA xmm14
%define xkeyB xmm15
%ifdef LINUX
%define p_in rdi
%define p_IV rsi
%define p_keys rdx
%define p_out rcx
%define num_bytes r8
%define num_bits r8
%define p_ivlen r9
%else
%define p_in rcx
%define p_IV rdx
%define p_keys r8
%define p_out r9
%define num_bytes r10
%define num_bits r10
%define p_ivlen qword [rsp + 8*6]
%endif
%define tmp r11
%define r_bits r12
%define tmp2 r13
%define mask r14
%macro do_aes_load 2
do_aes %1, %2, 1
%endmacro
%macro do_aes_noload 2
do_aes %1, %2, 0
%endmacro
; do_aes num_in_par load_keys
; This increments p_in, but not p_out
%macro do_aes 3
%define %%by %1
%define %%cntr_type %2
%define %%load_keys %3
%ifidn %%cntr_type, CNTR_BIT
%define %%PADD paddq
%else
%define %%PADD paddd
%endif
%if (%%load_keys)
movdqa xkey0, [p_keys + 0*16]
%endif
movdqa xdata0, xcounter
pshufb xdata0, xbyteswap
%assign i 1
%rep (%%by - 1)
movdqa CONCAT(xdata,i), xcounter
%%PADD CONCAT(xdata,i), [rel CONCAT(ddq_add_,i)]
pshufb CONCAT(xdata,i), xbyteswap
%assign i (i + 1)
%endrep
movdqa xkeyA, [p_keys + 1*16]
pxor xdata0, xkey0
%%PADD xcounter, [rel CONCAT(ddq_add_,%%by)]
%assign i 1
%rep (%%by - 1)
pxor CONCAT(xdata,i), xkey0
%assign i (i + 1)
%endrep
movdqa xkeyB, [p_keys + 2*16]
%assign i 0
%rep %%by
aesenc CONCAT(xdata,i), xkeyA ; key 1
%assign i (i+1)
%endrep
movdqa xkeyA, [p_keys + 3*16]
%assign i 0
%rep %%by
aesenc CONCAT(xdata,i), xkeyB ; key 2
%assign i (i+1)
%endrep
add p_in, 16*%%by
%if (%%load_keys)
movdqa xkey4, [p_keys + 4*16]
%endif
%assign i 0
%rep %%by
aesenc CONCAT(xdata,i), xkeyA ; key 3
%assign i (i+1)
%endrep
movdqa xkeyA, [p_keys + 5*16]
%assign i 0
%rep %%by
aesenc CONCAT(xdata,i), xkey4 ; key 4
%assign i (i+1)
%endrep
movdqa xkeyB, [p_keys + 6*16]
%assign i 0
%rep %%by
aesenc CONCAT(xdata,i), xkeyA ; key 5
%assign i (i+1)
%endrep
movdqa xkeyA, [p_keys + 7*16]
%assign i 0
%rep %%by
aesenc CONCAT(xdata,i), xkeyB ; key 6
%assign i (i+1)
%endrep
%if (%%load_keys)
movdqa xkey8, [p_keys + 8*16]
%endif
%assign i 0
%rep %%by
aesenc CONCAT(xdata,i), xkeyA ; key 7
%assign i (i+1)
%endrep
movdqa xkeyA, [p_keys + 9*16]
%assign i 0
%rep %%by
aesenc CONCAT(xdata,i), xkey8 ; key 8
%assign i (i+1)
%endrep
movdqa xkeyB, [p_keys + 10*16]
%assign i 0
%rep %%by
aesenc CONCAT(xdata,i), xkeyA ; key 9
%assign i (i+1)
%endrep
movdqa xkeyA, [p_keys + 11*16]
%assign i 0
%rep %%by
aesenc CONCAT(xdata,i), xkeyB ; key 10
%assign i (i+1)
%endrep
%if (%%load_keys)
movdqa xkey12, [p_keys + 12*16]
%endif
%assign i 0
%rep %%by
aesenc CONCAT(xdata,i), xkeyA ; key 11
%assign i (i+1)
%endrep
%assign i 0
%rep %%by
aesenclast CONCAT(xdata,i), xkey12 ; key 12
%assign i (i+1)
%endrep
%assign i 0
%rep (%%by / 2)
%assign j (i+1)
MOVDQ xkeyA, [p_in + i*16 - 16*%%by]
MOVDQ xkeyB, [p_in + j*16 - 16*%%by]
pxor CONCAT(xdata,i), xkeyA
pxor CONCAT(xdata,j), xkeyB
%assign i (i+2)
%endrep
%if (i < %%by)
MOVDQ xkeyA, [p_in + i*16 - 16*%%by]
pxor CONCAT(xdata,i), xkeyA
%endif
%ifidn %%cntr_type, CNTR_BIT
;; check if this is the end of the message
mov tmp, num_bytes
and tmp, ~(%%by*16)
jnz %%skip_preserve
;; Check if there is a partial byte
or r_bits, r_bits
jz %%skip_preserve
%assign idx (%%by - 1)
;; Load output to get last partial byte
movdqu xtmp, [p_out + idx * 16]
;; Save RCX in temporary GP register
mov tmp, rcx
mov mask, 0xff
mov cl, BYTE(r_bits)
shr mask, cl ;; e.g. 3 remaining bits -> mask = 00011111
mov rcx, tmp
movq xtmp2, mask
pslldq xtmp2, 15
;; At this point, xtmp2 contains a mask with all 0s, but with some ones
;; in the partial byte
;; Clear all the bits that do not need to be preserved from the output
pand xtmp, xtmp2
;; Clear all bits from the input that are not to be ciphered
pandn xtmp2, CONCAT(xdata, idx)
por xtmp2, xtmp
movdqa CONCAT(xdata, idx), xtmp2
%%skip_preserve:
%endif
%assign i 0
%rep %%by
MOVDQ [p_out + i*16], CONCAT(xdata,i)
%assign i (i+1)
%endrep
%endmacro
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mksection .text
;; Macro performing AES-CTR.
;;
%macro DO_CNTR 1
%define %%CNTR_TYPE %1 ; [in] Type of CNTR operation to do (CNTR/CNTR_BIT)
%ifndef LINUX
mov num_bytes, [rsp + 8*5]
%endif
%ifidn %%CNTR_TYPE, CNTR_BIT
push r12
push r13
push r14
%endif
movdqa xbyteswap, [rel byteswap_const]
%ifidn %%CNTR_TYPE, CNTR
test p_ivlen, 16
jnz %%iv_is_16_bytes
; Read 12 bytes: Nonce + ESP IV. Then pad with block counter 0x00000001
mov DWORD(tmp), 0x01000000
pinsrq xcounter, [p_IV], 0
pinsrd xcounter, [p_IV + 8], 2
pinsrd xcounter, DWORD(tmp), 3
%else ;; CNTR_BIT
; Read 16 byte IV: Nonce + 8-byte block counter (BE)
movdqu xcounter, [p_IV]
%endif
%%bswap_iv:
pshufb xcounter, xbyteswap
;; calculate len
;; convert bits to bytes (message length in bits for CNTR_BIT)
%ifidn %%CNTR_TYPE, CNTR_BIT
mov r_bits, num_bits
add num_bits, 7
shr num_bits, 3 ; "num_bits" and "num_bytes" registers are the same
and r_bits, 7 ; Check if there are remainder bits (0-7)
%endif
mov tmp, num_bytes
and tmp, 7*16
jz %%chk ; multiple of 8 blocks and/or below 16 bytes
; 1 <= tmp <= 7
cmp tmp, 4*16
jg %%gt4
je %%eq4
; 1 <= tmp <= 3
cmp tmp, 2*16
jg %%eq3
je %%eq2
%%eq1:
do_aes_load 1, %%CNTR_TYPE ; 1 block
add p_out, 1*16
jmp %%chk
%%eq2:
do_aes_load 2, %%CNTR_TYPE ; 2 blocks
add p_out, 2*16
jmp %%chk
%%eq3:
do_aes_load 3, %%CNTR_TYPE ; 3 blocks
add p_out, 3*16
jmp %%chk
%%eq4:
do_aes_load 4, %%CNTR_TYPE
add p_out, 4*16
jmp %%chk
%%gt4:
; 5 <= tmp <= 7
cmp tmp, 6*16
jg %%eq7
je %%eq6
%%eq5:
do_aes_load 5, %%CNTR_TYPE
add p_out, 5*16
jmp %%chk
%%eq6:
do_aes_load 6, %%CNTR_TYPE
add p_out, 6*16
jmp %%chk
%%eq7:
do_aes_load 7, %%CNTR_TYPE
add p_out, 7*16
; fall through to chk
%%chk:
and num_bytes, ~(7*16)
jz %%do_return2
cmp num_bytes, 16
jb %%last
; process multiples of 4 blocks
movdqa xkey0, [p_keys + 0*16]
movdqa xkey4, [p_keys + 4*16]
movdqa xkey8, [p_keys + 8*16]
movdqa xkey12, [p_keys + 12*16]
align 32
%%main_loop2:
; num_bytes is a multiple of 8 blocks + partial bytes
do_aes_noload 8, %%CNTR_TYPE
add p_out, 8*16
sub num_bytes, 8*16
cmp num_bytes, 8*16
jae %%main_loop2
; Check if there is a partial block
or num_bytes, num_bytes
jnz %%last
%%do_return2:
%ifidn %%CNTR_TYPE, CNTR_BIT
pop r14
pop r13
pop r12
%endif
%ifdef SAFE_DATA
clear_all_xmms_sse_asm
%endif ;; SAFE_DATA
ret
%%last:
; load partial block into XMM register
simd_load_sse_15_1 xpart, p_in, num_bytes
%%final_ctr_enc:
; Encryption of a single partial block
pshufb xcounter, xbyteswap
movdqa xdata0, xcounter
pxor xdata0, [p_keys + 16*0]
%assign i 1
%rep 11
aesenc xdata0, [p_keys + 16*i]
%assign i (i+1)
%endrep
; created keystream
aesenclast xdata0, [p_keys + 16*i]
; xor keystream with the message (scratch)
pxor xdata0, xpart
%ifidn %%CNTR_TYPE, CNTR_BIT
;; Check if there is a partial byte
or r_bits, r_bits
jz %%store_output
;; Load output to get last partial byte
simd_load_sse_15_1 xtmp, p_out, num_bytes
;; Save RCX in temporary GP register
mov tmp, rcx
mov mask, 0xff
%ifidn r_bits, rcx
%error "r_bits cannot be mapped to rcx!"
%endif
mov cl, BYTE(r_bits)
shr mask, cl ;; e.g. 3 remaining bits -> mask = 00011111
mov rcx, tmp
movq xtmp2, mask
;; Get number of full bytes in last block of 16 bytes
mov tmp, num_bytes
dec tmp
XPSLLB xtmp2, tmp, xtmp3, tmp2
;; At this point, xtmp2 contains a mask with all 0s, but with some ones
;; in the partial byte
;; Clear all the bits that do not need to be preserved from the output
pand xtmp, xtmp2
;; Clear the bits from the input that are not to be ciphered
pandn xtmp2, xdata0
por xtmp2, xtmp
movdqa xdata0, xtmp2
%endif
%%store_output:
; copy result into the output buffer
simd_store_sse_15 p_out, xdata0, num_bytes, tmp, rax
jmp %%do_return2
%%iv_is_16_bytes:
; Read 16 byte IV: Nonce + ESP IV + block counter (BE)
movdqu xcounter, [p_IV]
jmp %%bswap_iv
%endmacro
align 32
;; aes_cntr_192_sse(void *in, void *IV, void *keys, void *out, UINT64 num_bytes, UINT64 iv_len)
MKGLOBAL(AES_CNTR_192,function,internal)
AES_CNTR_192:
DO_CNTR CNTR
align 32
;; aes_cntr_bit_192_sse(void *in, void *IV, void *keys, void *out, UINT64 num_bits, UINT64 iv_len)
MKGLOBAL(AES_CNTR_BIT_192,function,internal)
AES_CNTR_BIT_192:
DO_CNTR CNTR_BIT
mksection stack-noexec
|