1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
|
;;
;; Copyright (c) 2020-2022, Intel Corporation
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are met:
;;
;; * Redistributions of source code must retain the above copyright notice,
;; this list of conditions and the following disclaimer.
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;; * Neither the name of Intel Corporation nor the names of its contributors
;; may be used to endorse or promote products derived from this software
;; without specific prior written permission.
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
;; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
;; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
;; DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
;; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
;; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
;; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
;; CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
;; OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
;; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;
%include "include/os.asm"
%include "include/imb_job.asm"
%include "include/memcpy.asm"
%include "include/clear_regs.asm"
%include "include/chacha_poly_defines.asm"
mksection .rodata
default rel
align 16
constants0:
dd 0x61707865, 0x61707865, 0x61707865, 0x61707865
align 16
constants1:
dd 0x3320646e, 0x3320646e, 0x3320646e, 0x3320646e
align 16
constants2:
dd 0x79622d32, 0x79622d32, 0x79622d32, 0x79622d32
align 16
constants3:
dd 0x6b206574, 0x6b206574, 0x6b206574, 0x6b206574
align 16
constants:
dd 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574
align 16
dword_1:
dd 0x00000001, 0x00000000, 0x00000000, 0x00000000
align 16
dword_2:
dd 0x00000002, 0x00000000, 0x00000000, 0x00000000
align 16
dword_0_3:
dd 0x00000000, 0x00000001, 0x00000002, 0x00000003
align 16
dword_1_4:
dd 0x00000001, 0x00000002, 0x00000003, 0x00000004
align 16
dword_4_7:
dd 0x00000004, 0x00000005, 0x00000006, 0x00000007
align 16
dword_4:
dd 0x00000004, 0x00000004, 0x00000004, 0x00000004
align 16
shuf_mask_rotl8:
db 3, 0, 1, 2, 7, 4, 5, 6, 11, 8, 9, 10, 15, 12, 13, 14
align 16
shuf_mask_rotl16:
db 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13
align 16
poly_clamp_r:
dq 0x0ffffffc0fffffff, 0x0ffffffc0ffffffc
struc STACK
_STATE: reso 16 ; Space to store first 4 states
_XMM_SAVE: reso 2 ; Space to store up to 2 temporary XMM registers
_XMM_WIN_SAVE: reso 10 ; Space to store up to 10 XMM registers
_GP_SAVE: resq 7 ; Space to store up to 7 GP registers
_RSP_SAVE: resq 1 ; Space to store rsp pointer
endstruc
%define STACK_SIZE STACK_size
%ifdef LINUX
%define arg1 rdi
%define arg2 rsi
%define arg3 rdx
%define arg4 rcx
%define arg5 r8
%else
%define arg1 rcx
%define arg2 rdx
%define arg3 r8
%define arg4 r9
%define arg5 [rsp + 40]
%endif
%define job arg1
%define added_len r12
%define APPEND(a,b) a %+ b
mksection .text
;
; Encrypts up to 64 bytes of data.
;
%macro ENCRYPT_64B 10-11
%define %%SRC %1 ; [in] Source pointer
%define %%DST %2 ; [in] Destination pointer
%define %%REG_OFF %3 ; [in] Offset into src/dst (register)
%define %%IMM_OFF %4 ; [in] Offset into src/dst (immediate)
%define %%KS0 %5 ; [in/clobbered] Bytes 0-15 of keystream
%define %%KS1 %6 ; [in/clobbered] Bytes 16-31 of keystream
%define %%KS2 %7 ; [in/clobbered] Bytes 32-47 of keystream
%define %%KS3 %8 ; [in/clobbered] Bytes 48-63 of keystream
%define %%XT0 %9 ; [clobbered] Temporary XMM
%define %%XT1 %10 ; [clobbered] Temporary XMM
%define %%KS_PTR %11 ; [in] Pointer to keystream
movdqu %%XT0, [%%SRC + %%REG_OFF + %%IMM_OFF]
movdqu %%XT1, [%%SRC + %%REG_OFF + %%IMM_OFF + 16]
%if %0 == 11
pxor %%XT0, [%%KS_PTR]
pxor %%XT1, [%%KS_PTR + 16]
%else
pxor %%XT0, %%KS0
pxor %%XT1, %%KS1
%endif
movdqu [%%DST + %%REG_OFF + %%IMM_OFF], %%XT0
movdqu [%%DST + %%REG_OFF + %%IMM_OFF + 16], %%XT1
movdqu %%XT0, [%%SRC + %%REG_OFF + %%IMM_OFF + 32]
movdqu %%XT1, [%%SRC + %%REG_OFF + %%IMM_OFF + 48]
%if %0 == 11
pxor %%XT0, [%%KS_PTR + 32]
pxor %%XT1, [%%KS_PTR + 48]
%else
pxor %%XT0, %%KS2
pxor %%XT1, %%KS3
%endif
movdqu [%%DST + %%REG_OFF + %%IMM_OFF + 32], %%XT0
movdqu [%%DST + %%REG_OFF + %%IMM_OFF + 48], %%XT1
%endmacro
;
; Encrypts 64 bytes of data.
; Keystream needs to be aligned to 16 bytes,
; if pointer is passed
;
%macro ENCRYPT_1B_64B 15-16
%define %%SRC %1 ; [in/out] Source pointer
%define %%DST %2 ; [in/out] Destination pointer
%define %%LEN %3 ; [in/clobbered] Length to encrypt
%define %%REG_OFF %4 ; [in] Offset into src/dst (register)
%define %%IMM_OFF %5 ; [in] Offset into src/dst (immediate)
%define %%KS0 %6 ; [in/clobbered] Bytes 0-15 of keystream
%define %%KS1 %7 ; [in/clobbered] Bytes 16-31 of keystream
%define %%KS2 %8 ; [in/clobbered] Bytes 32-47 of keystream
%define %%KS3 %9 ; [in/clobbered] Bytes 48-63 of keystream
%define %%PT0 %10 ; [clobbered] Bytes 0-15 of plaintext
%define %%PT1 %11 ; [clobbered] Bytes 16-31 of plaintext
%define %%PT2 %12 ; [clobbered] Bytes 32-47 of plaintext
%define %%PT3 %13 ; [clobbered] Bytes 48-63 of plaintext
%define %%TMP %14 ; [clobbered] Temporary GP register
%define %%TMP2 %15 ; [clobbered] Temporary GP register
%define %%KS_PTR %16 ; [in] Pointer to keystream
cmp %%LEN, 16
jbe %%up_to_16B
cmp %%LEN, 32
jbe %%up_to_32B
cmp %%LEN, 48
jbe %%up_to_48B
cmp %%LEN, 64
jb %%up_to_63B
movdqu %%PT0, [%%SRC + %%REG_OFF + %%IMM_OFF]
movdqu %%PT1, [%%SRC + %%REG_OFF + %%IMM_OFF + 16]
movdqu %%PT2, [%%SRC + %%REG_OFF + %%IMM_OFF + 32]
movdqu %%PT3, [%%SRC + %%REG_OFF + %%IMM_OFF + 48]
%if %0 == 16
movdqu %%KS0, [%%KS_PTR]
movdqu %%KS1, [%%KS_PTR + 16]
movdqu %%KS2, [%%KS_PTR + 32]
movdqu %%KS3, [%%KS_PTR + 48]
%endif
pxor %%PT0, %%KS0
pxor %%PT1, %%KS1
pxor %%PT2, %%KS2
pxor %%PT3, %%KS3
movdqu [%%DST + %%REG_OFF + %%IMM_OFF], %%PT0
movdqu [%%DST + %%REG_OFF + %%IMM_OFF + 16], %%PT1
movdqu [%%DST + %%REG_OFF + %%IMM_OFF + 32], %%PT2
movdqu [%%DST + %%REG_OFF + %%IMM_OFF + 48], %%PT3
jmp %%end_encrypt
%%up_to_63B:
movdqu %%PT0, [%%SRC + %%REG_OFF + %%IMM_OFF]
movdqu %%PT1, [%%SRC + %%REG_OFF + %%IMM_OFF + 16]
movdqu %%PT2, [%%SRC + %%REG_OFF + %%IMM_OFF + 32]
%if %0 == 16
movdqu %%KS0, [%%KS_PTR]
movdqu %%KS1, [%%KS_PTR + 16]
movdqu %%KS2, [%%KS_PTR + 32]
%endif
pxor %%PT0, %%KS0
pxor %%PT1, %%KS1
pxor %%PT2, %%KS2
movdqu [%%DST + %%REG_OFF + %%IMM_OFF], %%PT0
movdqu [%%DST + %%REG_OFF + %%IMM_OFF + 16], %%PT1
movdqu [%%DST + %%REG_OFF + %%IMM_OFF + 32], %%PT2
lea %%SRC, [%%SRC + %%REG_OFF + 48 + %%IMM_OFF]
lea %%DST, [%%DST + %%REG_OFF + 48 + %%IMM_OFF]
sub %%LEN, (48 + %%IMM_OFF)
simd_load_sse_15_1 %%PT3, %%SRC, %%LEN
; XOR KS with plaintext and store resulting ciphertext
%if %0 == 16
movdqu %%KS3, [%%KS_PTR + 48]
%endif
pxor %%PT3, %%KS3
simd_store_sse %%DST, %%PT3, %%LEN, %%TMP, %%TMP2
jmp %%end_encrypt
%%up_to_48B:
movdqu %%PT0, [%%SRC + %%REG_OFF + %%IMM_OFF]
movdqu %%PT1, [%%SRC + %%REG_OFF + %%IMM_OFF + 16]
%if %0 == 16
movdqu %%KS0, [%%KS_PTR]
movdqu %%KS1, [%%KS_PTR + 16]
%endif
pxor %%PT0, %%KS0
pxor %%PT1, %%KS1
movdqu [%%DST + %%REG_OFF + %%IMM_OFF], %%PT0
movdqu [%%DST + %%REG_OFF + %%IMM_OFF + 16], %%PT1
lea %%SRC, [%%SRC + %%REG_OFF + 32 + %%IMM_OFF]
lea %%DST, [%%DST + %%REG_OFF + 32 + %%IMM_OFF]
sub %%LEN, (32 + %%IMM_OFF)
simd_load_sse_16_1 %%PT2, %%SRC, %%LEN
; XOR KS with plaintext and store resulting ciphertext
%if %0 == 16
movdqu %%KS2, [%%KS_PTR + 32]
%endif
pxor %%PT2, %%KS2
simd_store_sse %%DST, %%PT2, %%LEN, %%TMP, %%TMP2
jmp %%end_encrypt
%%up_to_32B:
movdqu %%PT0, [%%SRC + %%REG_OFF + %%IMM_OFF]
%if %0 == 16
movdqu %%KS0, [%%KS_PTR]
%endif
pxor %%PT0, %%KS0
movdqu [%%DST + %%REG_OFF + %%IMM_OFF], %%PT0
lea %%SRC, [%%SRC + %%REG_OFF + 16 + %%IMM_OFF]
lea %%DST, [%%DST + %%REG_OFF + 16 + %%IMM_OFF]
sub %%LEN, (16 + %%IMM_OFF)
simd_load_sse_16_1 %%PT1, %%SRC, %%LEN
; XOR KS with plaintext and store resulting ciphertext
%if %0 == 16
movdqu %%KS1, [%%KS_PTR + 16]
%endif
pxor %%PT1, %%KS1
simd_store_sse %%DST, %%PT1, %%LEN, %%TMP, %%TMP2
jmp %%end_encrypt
%%up_to_16B:
lea %%SRC, [%%SRC + %%REG_OFF + %%IMM_OFF]
lea %%DST, [%%DST + %%REG_OFF + %%IMM_OFF]
simd_load_sse_16_1 %%PT0, %%SRC, %%LEN
; XOR KS with plaintext and store resulting ciphertext
%if %0 == 16
movdqu %%KS0, [%%KS_PTR]
%endif
pxor %%PT0, %%KS0
simd_store_sse %%DST, %%PT0, %%LEN, %%TMP, %%TMP2
%%end_encrypt:
add %%SRC, %%LEN
add %%DST, %%LEN
%endmacro
;; 4x4 32-bit transpose function
%macro TRANSPOSE4_U32 6
%define %%r0 %1 ;; [in/out] Input first row / output third column
%define %%r1 %2 ;; [in/out] Input second row / output second column
%define %%r2 %3 ;; [in/clobbered] Input third row
%define %%r3 %4 ;; [in/out] Input fourth row / output fourth column
%define %%t0 %5 ;; [out] Temporary XMM register / output first column
%define %%t1 %6 ;; [clobbered] Temporary XMM register
movdqa %%t0, %%r0
shufps %%t0, %%r1, 0x44 ; t0 = {b1 b0 a1 a0}
shufps %%r0, %%r1, 0xEE ; r0 = {b3 b2 a3 a2}
movdqa %%t1, %%r2
shufps %%t1, %%r3, 0x44 ; t1 = {d1 d0 c1 c0}
shufps %%r2, %%r3, 0xEE ; r2 = {d3 d2 c3 c2}
movdqa %%r1, %%t0
shufps %%r1, %%t1, 0xDD ; r1 = {d1 c1 b1 a1}
movdqa %%r3, %%r0
shufps %%r3, %%r2, 0xDD ; r3 = {d3 c3 b3 a3}
shufps %%r0, %%r2, 0x88 ; r0 = {d2 c2 b2 a2}
shufps %%t0, %%t1, 0x88 ; t0 = {d0 c0 b0 a0}
%endmacro
; Rotate dwords on a XMM registers to the left N_BITS
%macro PROLD 3
%define %%XMM_IN %1 ; [in/out] XMM register to be rotated
%define %%N_BITS %2 ; [immediate] Number of bits to rotate
%define %%XTMP %3 ; [clobbered] XMM temporary register
%if %%N_BITS == 8
pshufb %%XMM_IN, [rel shuf_mask_rotl8]
%elif %%N_BITS == 16
pshufb %%XMM_IN, [rel shuf_mask_rotl16]
%else
movdqa %%XTMP, %%XMM_IN
psrld %%XTMP, (32-%%N_BITS)
pslld %%XMM_IN, %%N_BITS
por %%XMM_IN, %%XTMP
%endif
%endmacro
;;
;; Performs a quarter round on all 4 columns,
;; resulting in a full round
;;
%macro quarter_round 5
%define %%A %1 ;; [in/out] XMM register containing value A of all 4 columns
%define %%B %2 ;; [in/out] XMM register containing value B of all 4 columns
%define %%C %3 ;; [in/out] XMM register containing value C of all 4 columns
%define %%D %4 ;; [in/out] XMM register containing value D of all 4 columns
%define %%XTMP %5 ;; [clobbered] Temporary XMM register
paddd %%A, %%B
pxor %%D, %%A
PROLD %%D, 16, %%XTMP
paddd %%C, %%D
pxor %%B, %%C
PROLD %%B, 12, %%XTMP
paddd %%A, %%B
pxor %%D, %%A
PROLD %%D, 8, %%XTMP
paddd %%C, %%D
pxor %%B, %%C
PROLD %%B, 7, %%XTMP
%endmacro
%macro quarter_round_x2 9
%define %%A_L %1 ;; [in/out] XMM register containing value A of all 4 columns
%define %%B_L %2 ;; [in/out] XMM register containing value B of all 4 columns
%define %%C_L %3 ;; [in/out] XMM register containing value C of all 4 columns
%define %%D_L %4 ;; [in/out] XMM register containing value D of all 4 columns
%define %%A_H %5 ;; [in/out] XMM register containing value A of all 4 columns
%define %%B_H %6 ;; [in/out] XMM register containing value B of all 4 columns
%define %%C_H %7 ;; [in/out] XMM register containing value C of all 4 columns
%define %%D_H %8 ;; [in/out] XMM register containing value D of all 4 columns
%define %%XTMP %9 ;; [clobbered] Temporary XMM register
paddd %%A_L, %%B_L
paddd %%A_H, %%B_H
pxor %%D_L, %%A_L
pxor %%D_H, %%A_H
PROLD %%D_L, 16, %%XTMP
PROLD %%D_H, 16, %%XTMP
paddd %%C_L, %%D_L
paddd %%C_H, %%D_H
pxor %%B_L, %%C_L
pxor %%B_H, %%C_H
PROLD %%B_L, 12, %%XTMP
PROLD %%B_H, 12, %%XTMP
paddd %%A_L, %%B_L
paddd %%A_H, %%B_H
pxor %%D_L, %%A_L
pxor %%D_H, %%A_H
PROLD %%D_L, 8, %%XTMP
PROLD %%D_H, 8, %%XTMP
paddd %%C_L, %%D_L
paddd %%C_H, %%D_H
pxor %%B_L, %%C_L
pxor %%B_H, %%C_H
PROLD %%B_L, 7, %%XTMP
PROLD %%B_H, 7, %%XTMP
%endmacro
;;
;; Rotates the registers to prepare the data
;; from column round to diagonal round
;;
%macro column_to_diag 3
%define %%B %1 ;; [in/out] XMM register containing value B of all 4 columns
%define %%C %2 ;; [in/out] XMM register containing value C of all 4 columns
%define %%D %3 ;; [in/out] XMM register containing value D of all 4 columns
pshufd %%B, %%B, 0x39 ; 0b00111001 ;; 0,3,2,1
pshufd %%C, %%C, 0x4E ; 0b01001110 ;; 1,0,3,2
pshufd %%D, %%D, 0x93 ; 0b10010011 ;; 2,1,0,3
%endmacro
;;
;; Rotates the registers to prepare the data
;; from diagonal round to column round
;;
%macro diag_to_column 3
%define %%B %1 ;; [in/out] XMM register containing value B of all 4 columns
%define %%C %2 ;; [in/out] XMM register containing value C of all 4 columns
%define %%D %3 ;; [in/out] XMM register containing value D of all 4 columns
pshufd %%B, %%B, 0x93 ; 0b10010011 ; 2,1,0,3
pshufd %%C, %%C, 0x4E ; 0b01001110 ; 1,0,3,2
pshufd %%D, %%D, 0x39 ; 0b00111001 ; 0,3,2,1
%endmacro
;;
;; Generates 64 or 128 bytes of keystream
;; States IN A-C are the same for first 64 and last 64 bytes
;; State IN D differ because of the different block count
;;
%macro GENERATE_64_128_KS 9-14
%define %%STATE_IN_A %1 ;; [in] XMM containing state A
%define %%STATE_IN_B %2 ;; [in] XMM containing state B
%define %%STATE_IN_C %3 ;; [in] XMM containing state C
%define %%STATE_IN_D_L %4 ;; [in] XMM containing state D (low block count)
%define %%A_L_KS0 %5 ;; [out] XMM to contain keystream 0-15 bytes
%define %%B_L_KS1 %6 ;; [out] XMM to contain keystream 16-31 bytes
%define %%C_L_KS2 %7 ;; [out] XMM to contain keystream 32-47 bytes
%define %%D_L_KS3 %8 ;; [out] XMM to contain keystream 48-63 bytes
%define %%XTMP %9 ;; [clobbered] Temporary XMM register
%define %%STATE_IN_D_H %10 ;; [in] XMM containing state D (high block count)
%define %%A_H_KS4 %11 ;; [out] XMM to contain keystream 64-79 bytes
%define %%B_H_KS5 %12 ;; [out] XMM to contain keystream 80-95 bytes
%define %%C_H_KS6 %13 ;; [out] XMM to contain keystream 96-111 bytes
%define %%D_H_KS7 %14 ;; [out] XMM to contain keystream 112-127 bytes
movdqa %%A_L_KS0, %%STATE_IN_A
movdqa %%B_L_KS1, %%STATE_IN_B
movdqa %%C_L_KS2, %%STATE_IN_C
movdqa %%D_L_KS3, %%STATE_IN_D_L
%if %0 == 14
movdqa %%A_H_KS4, %%STATE_IN_A
movdqa %%B_H_KS5, %%STATE_IN_B
movdqa %%C_H_KS6, %%STATE_IN_C
movdqa %%D_H_KS7, %%STATE_IN_D_H
%endif
%rep 10
%if %0 == 14
quarter_round_x2 %%A_L_KS0, %%B_L_KS1, %%C_L_KS2, %%D_L_KS3, \
%%A_H_KS4, %%B_H_KS5, %%C_H_KS6, %%D_H_KS7, %%XTMP
column_to_diag %%B_L_KS1, %%C_L_KS2, %%D_L_KS3
column_to_diag %%B_H_KS5, %%C_H_KS6, %%D_H_KS7
quarter_round_x2 %%A_L_KS0, %%B_L_KS1, %%C_L_KS2, %%D_L_KS3, \
%%A_H_KS4, %%B_H_KS5, %%C_H_KS6, %%D_H_KS7, %%XTMP
diag_to_column %%B_L_KS1, %%C_L_KS2, %%D_L_KS3
diag_to_column %%B_H_KS5, %%C_H_KS6, %%D_H_KS7
%else
quarter_round %%A_L_KS0, %%B_L_KS1, %%C_L_KS2, %%D_L_KS3, %%XTMP
column_to_diag %%B_L_KS1, %%C_L_KS2, %%D_L_KS3
quarter_round %%A_L_KS0, %%B_L_KS1, %%C_L_KS2, %%D_L_KS3, %%XTMP
diag_to_column %%B_L_KS1, %%C_L_KS2, %%D_L_KS3
%endif
%endrep
paddd %%A_L_KS0, %%STATE_IN_A
paddd %%B_L_KS1, %%STATE_IN_B
paddd %%C_L_KS2, %%STATE_IN_C
paddd %%D_L_KS3, %%STATE_IN_D_L
%if %0 == 14
paddd %%A_H_KS4, %%STATE_IN_A
paddd %%B_H_KS5, %%STATE_IN_B
paddd %%C_H_KS6, %%STATE_IN_C
paddd %%D_H_KS7, %%STATE_IN_D_H
%endif
%endmacro
; Perform 4 times the operation in first parameter
%macro XMM_OP_X4 9
%define %%OP %1 ; [immediate] Instruction
%define %%DST_SRC1_1 %2 ; [in/out] First source/Destination 1
%define %%DST_SRC1_2 %3 ; [in/out] First source/Destination 2
%define %%DST_SRC1_3 %4 ; [in/out] First source/Destination 3
%define %%DST_SRC1_4 %5 ; [in/out] First source/Destination 4
%define %%SRC2_1 %6 ; [in] Second source 1
%define %%SRC2_2 %7 ; [in] Second source 2
%define %%SRC2_3 %8 ; [in] Second source 3
%define %%SRC2_4 %9 ; [in] Second source 4
%%OP %%DST_SRC1_1, %%SRC2_1
%%OP %%DST_SRC1_2, %%SRC2_2
%%OP %%DST_SRC1_3, %%SRC2_3
%%OP %%DST_SRC1_4, %%SRC2_4
%endmacro
%macro XMM_ROLS_X4 6
%define %%XMM_OP1_1 %1
%define %%XMM_OP1_2 %2
%define %%XMM_OP1_3 %3
%define %%XMM_OP1_4 %4
%define %%BITS_TO_ROTATE %5
%define %%XTMP %6
; Store temporary register when bits to rotate is not 8 and 16,
; as the register will be clobbered in these cases,
; containing needed information
%if %%BITS_TO_ROTATE != 8 && %%BITS_TO_ROTATE != 16
movdqa [rsp + _XMM_SAVE], %%XTMP
%endif
PROLD %%XMM_OP1_1, %%BITS_TO_ROTATE, %%XTMP
PROLD %%XMM_OP1_2, %%BITS_TO_ROTATE, %%XTMP
PROLD %%XMM_OP1_3, %%BITS_TO_ROTATE, %%XTMP
PROLD %%XMM_OP1_4, %%BITS_TO_ROTATE, %%XTMP
%if %%BITS_TO_ROTATE != 8 && %%BITS_TO_ROTATE != 16
movdqa %%XTMP, [rsp + _XMM_SAVE]
%endif
%endmacro
;;
;; Performs a full chacha20 round on 4 states,
;; consisting of 4 quarter rounds, which are done in parallel
;;
%macro CHACHA20_ROUND 16
%define %%XMM_DWORD_A1 %1 ;; [in/out] XMM register containing dword A for first quarter round
%define %%XMM_DWORD_A2 %2 ;; [in/out] XMM register containing dword A for second quarter round
%define %%XMM_DWORD_A3 %3 ;; [in/out] XMM register containing dword A for third quarter round
%define %%XMM_DWORD_A4 %4 ;; [in/out] XMM register containing dword A for fourth quarter round
%define %%XMM_DWORD_B1 %5 ;; [in/out] XMM register containing dword B for first quarter round
%define %%XMM_DWORD_B2 %6 ;; [in/out] XMM register containing dword B for second quarter round
%define %%XMM_DWORD_B3 %7 ;; [in/out] XMM register containing dword B for third quarter round
%define %%XMM_DWORD_B4 %8 ;; [in/out] XMM register containing dword B for fourth quarter round
%define %%XMM_DWORD_C1 %9 ;; [in/out] XMM register containing dword C for first quarter round
%define %%XMM_DWORD_C2 %10 ;; [in/out] XMM register containing dword C for second quarter round
%define %%XMM_DWORD_C3 %11 ;; [in/out] XMM register containing dword C for third quarter round
%define %%XMM_DWORD_C4 %12 ;; [in/out] XMM register containing dword C for fourth quarter round
%define %%XMM_DWORD_D1 %13 ;; [in/out] XMM register containing dword D for first quarter round
%define %%XMM_DWORD_D2 %14 ;; [in/out] XMM register containing dword D for second quarter round
%define %%XMM_DWORD_D3 %15 ;; [in/out] XMM register containing dword D for third quarter round
%define %%XMM_DWORD_D4 %16 ;; [in/out] XMM register containing dword D for fourth quarter round
; A += B
XMM_OP_X4 paddd, %%XMM_DWORD_A1, %%XMM_DWORD_A2, %%XMM_DWORD_A3, %%XMM_DWORD_A4, \
%%XMM_DWORD_B1, %%XMM_DWORD_B2, %%XMM_DWORD_B3, %%XMM_DWORD_B4
; D ^= A
XMM_OP_X4 pxor, %%XMM_DWORD_D1, %%XMM_DWORD_D2, %%XMM_DWORD_D3, %%XMM_DWORD_D4, \
%%XMM_DWORD_A1, %%XMM_DWORD_A2, %%XMM_DWORD_A3, %%XMM_DWORD_A4
; D <<< 16
XMM_ROLS_X4 %%XMM_DWORD_D1, %%XMM_DWORD_D2, %%XMM_DWORD_D3, %%XMM_DWORD_D4, 16, \
%%XMM_DWORD_B1
; C += D
XMM_OP_X4 paddd, %%XMM_DWORD_C1, %%XMM_DWORD_C2, %%XMM_DWORD_C3, %%XMM_DWORD_C4, \
%%XMM_DWORD_D1, %%XMM_DWORD_D2, %%XMM_DWORD_D3, %%XMM_DWORD_D4
; B ^= C
XMM_OP_X4 pxor, %%XMM_DWORD_B1, %%XMM_DWORD_B2, %%XMM_DWORD_B3, %%XMM_DWORD_B4, \
%%XMM_DWORD_C1, %%XMM_DWORD_C2, %%XMM_DWORD_C3, %%XMM_DWORD_C4
; B <<< 12
XMM_ROLS_X4 %%XMM_DWORD_B1, %%XMM_DWORD_B2, %%XMM_DWORD_B3, %%XMM_DWORD_B4, 12, \
%%XMM_DWORD_D1
; A += B
XMM_OP_X4 paddd, %%XMM_DWORD_A1, %%XMM_DWORD_A2, %%XMM_DWORD_A3, %%XMM_DWORD_A4, \
%%XMM_DWORD_B1, %%XMM_DWORD_B2, %%XMM_DWORD_B3, %%XMM_DWORD_B4
; D ^= A
XMM_OP_X4 pxor, %%XMM_DWORD_D1, %%XMM_DWORD_D2, %%XMM_DWORD_D3, %%XMM_DWORD_D4, \
%%XMM_DWORD_A1, %%XMM_DWORD_A2, %%XMM_DWORD_A3, %%XMM_DWORD_A4
; D <<< 8
XMM_ROLS_X4 %%XMM_DWORD_D1, %%XMM_DWORD_D2, %%XMM_DWORD_D3, %%XMM_DWORD_D4, 8, \
%%XMM_DWORD_B1
; C += D
XMM_OP_X4 paddd, %%XMM_DWORD_C1, %%XMM_DWORD_C2, %%XMM_DWORD_C3, %%XMM_DWORD_C4, \
%%XMM_DWORD_D1, %%XMM_DWORD_D2, %%XMM_DWORD_D3, %%XMM_DWORD_D4
; B ^= C
XMM_OP_X4 pxor, %%XMM_DWORD_B1, %%XMM_DWORD_B2, %%XMM_DWORD_B3, %%XMM_DWORD_B4, \
%%XMM_DWORD_C1, %%XMM_DWORD_C2, %%XMM_DWORD_C3, %%XMM_DWORD_C4
; B <<< 7
XMM_ROLS_X4 %%XMM_DWORD_B1, %%XMM_DWORD_B2, %%XMM_DWORD_B3, %%XMM_DWORD_B4, 7, \
%%XMM_DWORD_D1
%endmacro
;;
;; Encodes 4 Chacha20 states, outputting 256 bytes of keystream
;; Data still needs to be transposed to get the keystream in the correct order
;;
%macro GENERATE_256_KS 17
%define %%XMM_DWORD_0 %1 ;; [out] XMM register to contain encoded dword 0 of the 4 Chacha20 states
%define %%XMM_DWORD_1 %2 ;; [out] XMM register to contain encoded dword 1 of the 4 Chacha20 states
%define %%XMM_DWORD_2 %3 ;; [out] XMM register to contain encoded dword 2 of the 4 Chacha20 states
%define %%XMM_DWORD_3 %4 ;; [out] XMM register to contain encoded dword 3 of the 4 Chacha20 states
%define %%XMM_DWORD_4 %5 ;; [out] XMM register to contain encoded dword 4 of the 4 Chacha20 states
%define %%XMM_DWORD_5 %6 ;; [out] XMM register to contain encoded dword 5 of the 4 Chacha20 states
%define %%XMM_DWORD_6 %7 ;; [out] XMM register to contain encoded dword 6 of the 4 Chacha20 states
%define %%XMM_DWORD_7 %8 ;; [out] XMM register to contain encoded dword 7 of the 4 Chacha20 states
%define %%XMM_DWORD_8 %9 ;; [out] XMM register to contain encoded dword 8 of the 4 Chacha20 states
%define %%XMM_DWORD_9 %10 ;; [out] XMM register to contain encoded dword 9 of the 4 Chacha20 states
%define %%XMM_DWORD_10 %11 ;; [out] XMM register to contain encoded dword 10 of the 4 Chacha20 states
%define %%XMM_DWORD_11 %12 ;; [out] XMM register to contain encoded dword 11 of the 4 Chacha20 states
%define %%XMM_DWORD_12 %13 ;; [out] XMM register to contain encoded dword 12 of the 4 Chacha20 states
%define %%XMM_DWORD_13 %14 ;; [out] XMM register to contain encoded dword 13 of the 4 Chacha20 states
%define %%XMM_DWORD_14 %15 ;; [out] XMM register to contain encoded dword 14 of the 4 Chacha20 states
%define %%XMM_DWORD_15 %16 ;; [out] XMM register to contain encoded dword 15 of the 4 Chacha20 states
%define %%LOOP_IDX %17 ;; [clobbered] GP register to contain loop index
%assign i 0
%rep 16
movdqa APPEND(%%XMM_DWORD_, i), [rsp + _STATE + 16*i]
%assign i (i + 1)
%endrep
mov DWORD(%%LOOP_IDX), 10
%%start_loop:
CHACHA20_ROUND %%XMM_DWORD_0, %%XMM_DWORD_1, %%XMM_DWORD_2, %%XMM_DWORD_3, \
%%XMM_DWORD_4, %%XMM_DWORD_5, %%XMM_DWORD_6, %%XMM_DWORD_7, \
%%XMM_DWORD_8, %%XMM_DWORD_9, %%XMM_DWORD_10, %%XMM_DWORD_11, \
%%XMM_DWORD_12, %%XMM_DWORD_13, %%XMM_DWORD_14, %%XMM_DWORD_15
CHACHA20_ROUND %%XMM_DWORD_0, %%XMM_DWORD_1, %%XMM_DWORD_2, %%XMM_DWORD_3, \
%%XMM_DWORD_5, %%XMM_DWORD_6, %%XMM_DWORD_7, %%XMM_DWORD_4, \
%%XMM_DWORD_10, %%XMM_DWORD_11, %%XMM_DWORD_8, %%XMM_DWORD_9, \
%%XMM_DWORD_15, %%XMM_DWORD_12, %%XMM_DWORD_13, %%XMM_DWORD_14
dec DWORD(%%LOOP_IDX)
jnz %%start_loop
%assign i 0
%rep 16
paddd APPEND(%%XMM_DWORD_, i), [rsp + _STATE + 16*i]
%assign i (i + 1)
%endrep
%endmacro
align 32
MKGLOBAL(submit_job_chacha20_enc_dec_sse,function,internal)
submit_job_chacha20_enc_dec_sse:
%define src r8
%define dst r9
%define len r10
%define iv r11
%define keys rdx
%define off rax
%define tmp iv
%define tmp2 keys
push r13
; Read pointers and length
mov len, [job + _msg_len_to_cipher_in_bytes]
; Check if there is nothing to encrypt
or len, len
jz exit
mov keys, [job + _enc_keys]
mov iv, [job + _iv]
mov src, [job + _src]
add src, [job + _cipher_start_src_offset_in_bytes]
mov dst, [job + _dst]
mov rax, rsp
sub rsp, STACK_SIZE
and rsp, -16
mov [rsp + _RSP_SAVE], rax ; save RSP
xor off, off
; If less than or equal to 64*2 bytes, prepare directly states for
; up to 2 blocks
cmp len, 64*2
jbe check_1_or_2_blocks_left
; Prepare first 4 chacha states
movdqa xmm0, [rel constants0]
movdqa xmm1, [rel constants1]
movdqa xmm2, [rel constants2]
movdqa xmm3, [rel constants3]
; Broadcast 8 dwords from key into XMM4-11
movdqu xmm12, [keys]
movdqu xmm15, [keys + 16]
pshufd xmm4, xmm12, 0x0
pshufd xmm5, xmm12, 0x55
pshufd xmm6, xmm12, 0xAA
pshufd xmm7, xmm12, 0xFF
pshufd xmm8, xmm15, 0x0
pshufd xmm9, xmm15, 0x55
pshufd xmm10, xmm15, 0xAA
pshufd xmm11, xmm15, 0xFF
; Broadcast 3 dwords from IV into XMM13-15
movd xmm13, [iv]
movd xmm14, [iv + 4]
pshufd xmm13, xmm13, 0
pshufd xmm14, xmm14, 0
movd xmm15, [iv + 8]
pshufd xmm15, xmm15, 0
; Set block counters for first 4 Chacha20 states
movdqa xmm12, [rel dword_1_4]
%assign i 0
%rep 16
movdqa [rsp + _STATE + 16*i], xmm %+ i
%assign i (i + 1)
%endrep
; 64*2 < length < 64*4
cmp len, 64*4
jb more_than_2_blocks_left
align 32
start_loop:
; Generate 256 bytes of keystream
GENERATE_256_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, r13
;; Transpose state to get keystream and XOR with plaintext
;; to get ciphertext
; Save registers to be used as temp registers
movdqa [rsp + _XMM_SAVE], xmm14
movdqa [rsp + _XMM_SAVE + 16], xmm15
; Transpose to get 16-31, 80-95, 144-159, 208-223 bytes of KS
TRANSPOSE4_U32 xmm0, xmm1, xmm2, xmm3, xmm14, xmm15
; xmm14, xmm1, xmm0, xmm3
; xmm2, xmm15 free to use
movdqu xmm2, [src + off]
movdqu xmm15, [src + off + 16*4]
pxor xmm14, xmm2
pxor xmm1, xmm15
movdqu [dst + off], xmm14
movdqu [dst + off + 16*4], xmm1
movdqu xmm2, [src + off + 16*8]
movdqu xmm15, [src + off + 16*12]
pxor xmm0, xmm2
pxor xmm3, xmm15
movdqu [dst + off + 16*8], xmm0
movdqu [dst + off + 16*12], xmm3
; Restore registers and use xmm0, xmm1 now that they are free
movdqa xmm14, [rsp + _XMM_SAVE]
movdqa xmm15, [rsp + _XMM_SAVE + 16]
; Transpose to get bytes 64-127 of KS
TRANSPOSE4_U32 xmm4, xmm5, xmm6, xmm7, xmm0, xmm1
; xmm0, xmm5, xmm4, xmm7
; xmm6, xmm1 free to use
movdqu xmm6, [src + off + 16]
movdqu xmm1, [src + off + 16*5]
pxor xmm0, xmm6
pxor xmm5, xmm1
movdqu [dst + off + 16], xmm0
movdqu [dst + off + 16*5], xmm5
movdqu xmm6, [src + off + 16*9]
movdqu xmm1, [src + off + 16*13]
pxor xmm4, xmm6
pxor xmm7, xmm1
movdqu [dst + off + 16*9], xmm4
movdqu [dst + off + 16*13], xmm7
; Transpose to get 32-47, 96-111, 160-175, 224-239 bytes of KS
TRANSPOSE4_U32 xmm8, xmm9, xmm10, xmm11, xmm0, xmm1
; xmm0, xmm9, xmm8, xmm11
; xmm10, xmm1 free to use
movdqu xmm10, [src + off + 16*2]
movdqu xmm1, [src + off + 16*6]
pxor xmm0, xmm10
pxor xmm9, xmm1
movdqu [dst + off + 16*2], xmm0
movdqu [dst + off + 16*6], xmm9
movdqu xmm10, [src + off + 16*10]
movdqu xmm1, [src + off + 16*14]
pxor xmm8, xmm10
pxor xmm11, xmm1
movdqu [dst + off + 16*10], xmm8
movdqu [dst + off + 16*14], xmm11
; Transpose to get 48-63, 112-127, 176-191, 240-255 bytes of KS
TRANSPOSE4_U32 xmm12, xmm13, xmm14, xmm15, xmm0, xmm1
; xmm0, xmm13, xmm12, xmm15
; xmm14, xmm1 free to use
movdqu xmm14, [src + off + 16*3]
movdqu xmm1, [src + off + 16*7]
pxor xmm0, xmm14
pxor xmm13, xmm1
movdqu [dst + off + 16*3], xmm0
movdqu [dst + off + 16*7], xmm13
movdqu xmm14, [src + off + 16*11]
movdqu xmm1, [src + off + 16*15]
pxor xmm12, xmm14
pxor xmm15, xmm1
movdqu [dst + off + 16*11], xmm12
movdqu [dst + off + 16*15], xmm15
; Update remaining length
sub len, 64*4
add off, 64*4
; Update counter values
movdqa xmm12, [rsp + _STATE + 16*12]
paddd xmm12, [rel dword_4]
movdqa [rsp + _STATE + 16*12], xmm12
cmp len, 64*4
jae start_loop
exit_loop:
; Check if there are no more bytes to encrypt
or len, len
jz no_partial_block
cmp len, 64*2
ja more_than_2_blocks_left
check_1_or_2_blocks_left:
cmp len, 64
ja two_blocks_left
;; 1 block left
; Get last block counter dividing offset by 64
shr off, 6
; Prepare next chacha state from IV, key
movdqu xmm1, [keys] ; Load key bytes 0-15
movdqu xmm2, [keys + 16] ; Load key bytes 16-31
; Read nonce (12 bytes)
movq xmm3, [iv]
pinsrd xmm3, [iv + 8], 2
pslldq xmm3, 4
pinsrd xmm3, DWORD(off), 0
movdqa xmm0, [rel constants]
; Increase block counter
paddd xmm3, [rel dword_1]
shl off, 6 ; Restore offset
; Generate 64 bytes of keystream
GENERATE_64_128_KS xmm0, xmm1, xmm2, xmm3, xmm9, xmm10, xmm11, \
xmm12, xmm13
cmp len, 64
jne less_than_64
;; Exactly 64 bytes left
ENCRYPT_64B src, dst, off, 0, xmm9, xmm10, xmm11, xmm12, \
xmm5, xmm6
jmp no_partial_block
less_than_64:
ENCRYPT_1B_64B src, dst, len, off, 0, xmm9, xmm10, xmm11, xmm12, \
xmm0, xmm1, xmm2, xmm3, off, src
jmp no_partial_block
two_blocks_left:
; Get last block counter dividing offset by 64
shr off, 6
; Prepare next 2 chacha states from IV, key
movdqu xmm1, [keys] ; Load key bytes 0-15
movdqu xmm2, [keys + 16] ; Load key bytes 16-31
; Read nonce (12 bytes)
movq xmm3, [iv]
pinsrd xmm3, [iv + 8], 2
pslldq xmm3, 4
pinsrd xmm3, DWORD(off), 0
movdqa xmm0, [rel constants]
movdqa xmm8, xmm3
; Increase block counters
paddd xmm3, [rel dword_1]
paddd xmm8, [rel dword_2]
shl off, 6 ; Restore offset
; Generate 128 bytes of keystream
GENERATE_64_128_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm13, xmm8, xmm9, xmm10, xmm11, xmm12
cmp len, 128
jb between_64_127
; Load 128 bytes of plaintext, XOR with KS and store ciphertext
ENCRYPT_64B src, dst, off, 0, xmm4, xmm5, xmm6, xmm7, \
xmm0, xmm1
ENCRYPT_64B src, dst, off, 64, xmm9, xmm10, xmm11, xmm12, \
xmm0, xmm1
jmp no_partial_block
between_64_127:
; Load plaintext, XOR with KS and store ciphertext for first 64 bytes
ENCRYPT_64B src, dst, off, 0, xmm4, xmm5, xmm6, xmm7, \
xmm0, xmm1
sub len, 64
; Handle rest up to 63 bytes
ENCRYPT_1B_64B src, dst, len, off, 64, xmm9, xmm10, xmm11, xmm12, \
xmm0, xmm1, xmm2, xmm3, off, src
jmp no_partial_block
more_than_2_blocks_left:
; Generate 256 bytes of keystream
GENERATE_256_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, r13
;; Transpose state to get keystream and XOR with plaintext
;; to get ciphertext
; Save registers to be used as temp registers
movdqa [rsp + _XMM_SAVE], xmm14
movdqa [rsp + _XMM_SAVE + 16], xmm15
; Transpose to get 0-15, 64-79, 128-143, 192-207 bytes of KS
TRANSPOSE4_U32 xmm0, xmm1, xmm2, xmm3, xmm14, xmm15
; xmm14, xmm1, xmm0, xmm3
movdqa xmm2, xmm0
movdqa xmm0, xmm14
; xmm0-3 containing [64*I : 64*I + 15] (I = 0-3) bytes of KS
; Restore registers and save xmm0,xmm1 and use them instead
movdqa xmm14, [rsp + _XMM_SAVE]
movdqa xmm15, [rsp + _XMM_SAVE + 16]
movdqa [rsp + _XMM_SAVE], xmm2
movdqa [rsp + _XMM_SAVE + 16], xmm3
; Transpose to get 16-31, 80-95, 144-159, 208-223 bytes of KS
TRANSPOSE4_U32 xmm4, xmm5, xmm6, xmm7, xmm2, xmm3
; xmm2, xmm5, xmm4, xmm7
movdqa xmm6, xmm4
movdqa xmm4, xmm2
; xmm4-7 containing [64*I + 16 : 64*I + 31] (I = 0-3) bytes of KS
; Transpose to get 32-47, 96-111, 160-175, 224-239 bytes of KS
TRANSPOSE4_U32 xmm8, xmm9, xmm10, xmm11, xmm2, xmm3
; xmm2, xmm9, xmm8, xmm11
movdqa xmm10, xmm8
movdqa xmm8, xmm2
; xmm8-11 containing [64*I + 32 : 64*I + 47] (I = 0-3) bytes of KS
; Transpose to get 48-63, 112-127, 176-191, 240-255 bytes of KS
TRANSPOSE4_U32 xmm12, xmm13, xmm14, xmm15, xmm2, xmm3
; xmm2, xmm13, xmm12, xmm15
movdqa xmm14, xmm12
movdqa xmm12, xmm2
; xmm12-15 containing [64*I + 48 : 64*I + 63] (I = 0-3) bytes of KS
; Encrypt first 128 bytes of plaintext (there are at least two 64 byte blocks to process)
ENCRYPT_64B src, dst, off, 0, xmm0, xmm4, xmm8, xmm12, \
xmm2, xmm3
ENCRYPT_64B src, dst, off, 64, xmm1, xmm5, xmm9, xmm13, \
xmm2, xmm3
; Restore xmm2,xmm3
movdqa xmm2, [rsp + _XMM_SAVE]
movdqa xmm3, [rsp + _XMM_SAVE + 16]
sub len, 128
add off, 128
; Use now xmm0,xmm1 as scratch registers
; Check if there is at least 64 bytes more to process
cmp len, 64
jb between_129_191
; Encrypt next 64 bytes (128-191)
ENCRYPT_64B src, dst, off, 0, xmm2, xmm6, xmm10, xmm14, \
xmm0, xmm1
sub len, 64
; Check if there are remaining bytes to process
jz no_partial_block
ENCRYPT_1B_64B src, dst, len, off, 64, xmm3, xmm7, xmm11, xmm15, \
xmm0, xmm1, xmm2, xmm4, off, src
jmp no_partial_block
between_129_191:
ENCRYPT_1B_64B src, dst, len, off, 0, xmm2, xmm6, xmm10, xmm14, \
xmm0, xmm1, xmm4, xmm3, off, src
no_partial_block:
%ifdef SAFE_DATA
clear_all_xmms_sse_asm
; Clear stack frame
%assign i 0
%rep 16
movdqa [rsp + _STATE + 16*i], xmm0
%assign i (i + 1)
%endrep
movdqa [rsp + _XMM_SAVE], xmm0
movdqa [rsp + _XMM_SAVE + 16], xmm0
%endif
mov rsp, [rsp + _RSP_SAVE]
exit:
mov rax, job
or dword [rax + _status], IMB_STATUS_COMPLETED_CIPHER
pop r13
ret
align 32
MKGLOBAL(chacha20_enc_dec_ks_sse,function,internal)
chacha20_enc_dec_ks_sse:
%define blk_cnt r10
%define prev_ks r13
%define remain_ks r12
%define ctx r11
%define src arg1
%define dst arg2
%define len arg3
%define keys arg4
%define iv r15
%define off rax
%define tmp iv
%define tmp3 r14
%define tmp4 rbp
%define tmp5 rbx
%ifdef LINUX
%define tmp2 r9
%else
%define tmp2 rdi
%endif
mov ctx, arg5
mov rax, rsp
sub rsp, STACK_SIZE
and rsp, -16
mov [rsp + _GP_SAVE], r12
mov [rsp + _GP_SAVE + 8], r13
mov [rsp + _GP_SAVE + 16], r14
mov [rsp + _GP_SAVE + 24], r15
mov [rsp + _GP_SAVE + 32], rbx
mov [rsp + _GP_SAVE + 40], rbp
%ifndef LINUX
mov [rsp + _GP_SAVE + 48], rdi
%assign i 0
%assign j 6
%rep 10
movdqa [rsp + _XMM_WIN_SAVE + i*16], APPEND(xmm, j)
%assign i (i + 1)
%assign j (j + 1)
%endrep
%endif
mov [rsp + _RSP_SAVE], rax ; save RSP
; Check if there is nothing to encrypt
or len, len
jz exit_ks
xor off, off
mov blk_cnt, [ctx + LastBlkCount]
lea prev_ks, [ctx + LastKs]
mov remain_ks, [ctx + RemainKsBytes]
; Check if there are any remaining bytes of keystream
mov tmp3, remain_ks
or tmp3, tmp3
jz no_remain_ks_bytes
mov tmp4, 64
sub tmp4, tmp3
; Adjust pointer of previous KS to point at start of unused KS
add prev_ks, tmp4
; Set remaining bytes to length of input segment, if lower
cmp len, tmp3
cmovbe tmp3, len
mov tmp5, tmp3
; Read up to 63 bytes of KS and XOR the first bytes of message
; with the previous unused bytes of keystream
ENCRYPT_1B_64B src, dst, tmp3, off, 0, xmm9, xmm10, xmm11, xmm12, \
xmm0, xmm1, xmm2, xmm3, tmp, tmp2, prev_ks
; Update remain bytes of KS
sub [ctx + RemainKsBytes], tmp5
; Restore pointer to previous KS
sub prev_ks, tmp4
sub len, tmp5
jz no_partial_block_ks
no_remain_ks_bytes:
; Reset remaining number of KS bytes
mov qword [ctx + RemainKsBytes], 0
lea iv, [ctx + IV]
; If less than or equal to 64*2 bytes, prepare directly states for
; up to 2 blocks
cmp len, 64*2
jbe check_1_or_2_blocks_left_ks
; Prepare first 4 chacha states
movdqa xmm0, [rel constants0]
movdqa xmm1, [rel constants1]
movdqa xmm2, [rel constants2]
movdqa xmm3, [rel constants3]
; Broadcast 8 dwords from key into XMM4-11
movdqu xmm12, [keys]
movdqu xmm15, [keys + 16]
pshufd xmm4, xmm12, 0x0
pshufd xmm5, xmm12, 0x55
pshufd xmm6, xmm12, 0xAA
pshufd xmm7, xmm12, 0xFF
pshufd xmm8, xmm15, 0x0
pshufd xmm9, xmm15, 0x55
pshufd xmm10, xmm15, 0xAA
pshufd xmm11, xmm15, 0xFF
; Broadcast 3 dwords from IV into XMM13-15
movd xmm13, [iv]
movd xmm14, [iv + 4]
pshufd xmm13, xmm13, 0
pshufd xmm14, xmm14, 0
movd xmm15, [iv + 8]
pshufd xmm15, xmm15, 0
; Set block counters for next 4 Chacha20 states
movd xmm12, DWORD(blk_cnt)
pshufd xmm12, xmm12, 0
paddd xmm12, [rel dword_1_4]
%assign i 0
%rep 16
movdqa [rsp + _STATE + 16*i], xmm %+ i
%assign i (i + 1)
%endrep
; 64*2 < length < 64*4
cmp len, 64*4
jb more_than_2_blocks_left_ks
align 32
start_loop_ks:
; Generate 256 bytes of keystream
GENERATE_256_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, tmp4
;; Transpose state to get keystream and XOR with plaintext
;; to get ciphertext
; Save registers to be used as temp registers
movdqa [rsp + _XMM_SAVE], xmm14
movdqa [rsp + _XMM_SAVE + 16], xmm15
; Transpose to get 16-31, 80-95, 144-159, 208-223 bytes of KS
TRANSPOSE4_U32 xmm0, xmm1, xmm2, xmm3, xmm14, xmm15
; xmm14, xmm1, xmm0, xmm3
; xmm2, xmm15 free to use
movdqu xmm2, [src + off]
movdqu xmm15, [src + off + 16*4]
pxor xmm14, xmm2
pxor xmm1, xmm15
movdqu [dst + off], xmm14
movdqu [dst + off + 16*4], xmm1
movdqu xmm2, [src + off + 16*8]
movdqu xmm15, [src + off + 16*12]
pxor xmm0, xmm2
pxor xmm3, xmm15
movdqu [dst + off + 16*8], xmm0
movdqu [dst + off + 16*12], xmm3
; Restore registers and use xmm0, xmm1 now that they are free
movdqa xmm14, [rsp + _XMM_SAVE]
movdqa xmm15, [rsp + _XMM_SAVE + 16]
; Transpose to get bytes 64-127 of KS
TRANSPOSE4_U32 xmm4, xmm5, xmm6, xmm7, xmm0, xmm1
; xmm0, xmm5, xmm4, xmm7
; xmm6, xmm1 free to use
movdqu xmm6, [src + off + 16]
movdqu xmm1, [src + off + 16*5]
pxor xmm0, xmm6
pxor xmm5, xmm1
movdqu [dst + off + 16], xmm0
movdqu [dst + off + 16*5], xmm5
movdqu xmm6, [src + off + 16*9]
movdqu xmm1, [src + off + 16*13]
pxor xmm4, xmm6
pxor xmm7, xmm1
movdqu [dst + off + 16*9], xmm4
movdqu [dst + off + 16*13], xmm7
; Transpose to get 32-47, 96-111, 160-175, 224-239 bytes of KS
TRANSPOSE4_U32 xmm8, xmm9, xmm10, xmm11, xmm0, xmm1
; xmm0, xmm9, xmm8, xmm11
; xmm10, xmm1 free to use
movdqu xmm10, [src + off + 16*2]
movdqu xmm1, [src + off + 16*6]
pxor xmm0, xmm10
pxor xmm9, xmm1
movdqu [dst + off + 16*2], xmm0
movdqu [dst + off + 16*6], xmm9
movdqu xmm10, [src + off + 16*10]
movdqu xmm1, [src + off + 16*14]
pxor xmm8, xmm10
pxor xmm11, xmm1
movdqu [dst + off + 16*10], xmm8
movdqu [dst + off + 16*14], xmm11
; Transpose to get 48-63, 112-127, 176-191, 240-255 bytes of KS
TRANSPOSE4_U32 xmm12, xmm13, xmm14, xmm15, xmm0, xmm1
; xmm0, xmm13, xmm12, xmm15
; xmm14, xmm1 free to use
movdqu xmm14, [src + off + 16*3]
movdqu xmm1, [src + off + 16*7]
pxor xmm0, xmm14
pxor xmm13, xmm1
movdqu [dst + off + 16*3], xmm0
movdqu [dst + off + 16*7], xmm13
movdqu xmm14, [src + off + 16*11]
movdqu xmm1, [src + off + 16*15]
pxor xmm12, xmm14
pxor xmm15, xmm1
movdqu [dst + off + 16*11], xmm12
movdqu [dst + off + 16*15], xmm15
; Update remaining length
sub len, 64*4
add off, 64*4
add blk_cnt, 4
; Update counter values
movdqa xmm12, [rsp + _STATE + 16*12]
paddd xmm12, [rel dword_4]
movdqa [rsp + _STATE + 16*12], xmm12
cmp len, 64*4
jae start_loop_ks
exit_loop_ks:
; Check if there are no more bytes to encrypt
or len, len
jz no_partial_block_ks
cmp len, 64*2
ja more_than_2_blocks_left_ks
check_1_or_2_blocks_left_ks:
cmp len, 64
ja two_blocks_left_ks
;; 1 block left
; Prepare next chacha state from IV, key
movdqu xmm1, [keys] ; Load key bytes 0-15
movdqu xmm2, [keys + 16] ; Load key bytes 16-31
; Read nonce (12 bytes)
movq xmm3, [iv]
pinsrd xmm3, [iv + 8], 2
pslldq xmm3, 4
pinsrd xmm3, DWORD(blk_cnt), 0
movdqa xmm0, [rel constants]
; Increase block counter
paddd xmm3, [rel dword_1]
; Generate 64 bytes of keystream
GENERATE_64_128_KS xmm0, xmm1, xmm2, xmm3, xmm9, xmm10, xmm11, \
xmm12, xmm13
cmp len, 64
jne less_than_64_ks
;; Exactly 64 bytes left
; Load plaintext, XOR with KS and store ciphertext
ENCRYPT_64B src, dst, off, 0, xmm9, xmm10, xmm11, xmm12, \
xmm14, xmm15
inc blk_cnt
jmp no_partial_block_ks
less_than_64_ks:
; Preserve len
mov tmp5, len
ENCRYPT_1B_64B src, dst, len, off, 0, xmm9, xmm10, xmm11, xmm12, \
xmm0, xmm1, xmm2, xmm3, src, off
inc blk_cnt
; Save last 64-byte block of keystream,
; in case it is needed in next segments
movdqu [prev_ks], xmm9
movdqu [prev_ks + 16], xmm10
movdqu [prev_ks + 32], xmm11
movdqu [prev_ks + 48], xmm12
; Update remain number of KS bytes
mov tmp, 64
sub tmp, tmp5
mov [ctx + RemainKsBytes], tmp
jmp no_partial_block_ks
two_blocks_left_ks:
; Prepare next 2 chacha states from IV, key
movdqu xmm1, [keys] ; Load key bytes 0-15
movdqu xmm2, [keys + 16] ; Load key bytes 16-31
; Read nonce (12 bytes)
movq xmm3, [iv]
pinsrd xmm3, [iv + 8], 2
pslldq xmm3, 4
pinsrd xmm3, DWORD(blk_cnt), 0
movdqa xmm0, [rel constants]
movdqa xmm8, xmm3
; Increase block counters
paddd xmm3, [rel dword_1]
paddd xmm8, [rel dword_2]
; Generate 128 bytes of keystream
GENERATE_64_128_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm13, xmm8, xmm9, xmm10, xmm11, xmm12
cmp len, 128
jb between_64_127_ks
; Encrypt first 128 bytes of plaintext (there are at least two 64 byte blocks to process)
ENCRYPT_64B src, dst, off, 0, xmm4, xmm5, xmm6, xmm7, \
xmm14, xmm15
ENCRYPT_64B src, dst, off, 64, xmm9, xmm10, xmm11, xmm12, \
xmm14, xmm15
add blk_cnt, 2
jmp no_partial_block_ks
between_64_127_ks:
; Load plaintext, XOR with KS and store ciphertext for first 64 bytes
ENCRYPT_64B src, dst, off, 0, xmm4, xmm5, xmm6, xmm7, \
xmm14, xmm15
sub len, 64
add off, 64
add blk_cnt, 1
; Handle rest up to 63 bytes in "less_than_64"
jmp less_than_64_ks
more_than_2_blocks_left_ks:
; Generate 256 bytes of keystream
GENERATE_256_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, tmp4
;; Transpose state to get keystream and XOR with plaintext
;; to get ciphertext
; Save registers to be used as temp registers
movdqa [rsp + _XMM_SAVE], xmm14
movdqa [rsp + _XMM_SAVE + 16], xmm15
; Transpose to get 0-15, 64-79, 128-143, 192-207 bytes of KS
TRANSPOSE4_U32 xmm0, xmm1, xmm2, xmm3, xmm14, xmm15
; xmm14, xmm1, xmm0, xmm3
movdqa xmm2, xmm0
movdqa xmm0, xmm14
; xmm0-3 containing [64*I : 64*I + 15] (I = 0-3) bytes of KS
; Restore registers and save xmm0,xmm1 and use them instead
movdqa xmm14, [rsp + _XMM_SAVE]
movdqa xmm15, [rsp + _XMM_SAVE + 16]
movdqa [rsp + _XMM_SAVE], xmm2
movdqa [rsp + _XMM_SAVE + 16], xmm3
; Transpose to get 16-31, 80-95, 144-159, 208-223 bytes of KS
TRANSPOSE4_U32 xmm4, xmm5, xmm6, xmm7, xmm2, xmm3
; xmm2, xmm5, xmm4, xmm7
movdqa xmm6, xmm4
movdqa xmm4, xmm2
; xmm4-7 containing [64*I + 16 : 64*I + 31] (I = 0-3) bytes of KS
; Transpose to get 32-47, 96-111, 160-175, 224-239 bytes of KS
TRANSPOSE4_U32 xmm8, xmm9, xmm10, xmm11, xmm2, xmm3
; xmm2, xmm9, xmm8, xmm11
movdqa xmm10, xmm8
movdqa xmm8, xmm2
; xmm8-11 containing [64*I + 32 : 64*I + 47] (I = 0-3) bytes of KS
; Transpose to get 48-63, 112-127, 176-191, 240-255 bytes of KS
TRANSPOSE4_U32 xmm12, xmm13, xmm14, xmm15, xmm2, xmm3
; xmm2, xmm13, xmm12, xmm15
movdqa xmm14, xmm12
movdqa xmm12, xmm2
; xmm12-15 containing [64*I + 48 : 64*I + 63] (I = 0-3) bytes of KS
; Encrypt first 128 bytes of plaintext (there are at least two 64 byte blocks to process)
ENCRYPT_64B src, dst, off, 0, xmm0, xmm4, xmm8, xmm12, \
xmm2, xmm3
ENCRYPT_64B src, dst, off, 64, xmm1, xmm5, xmm9, xmm13, \
xmm2, xmm3
; Restore xmm2,xmm3
movdqa xmm2, [rsp + _XMM_SAVE]
movdqa xmm3, [rsp + _XMM_SAVE + 16]
sub len, 128
add off, 128
add blk_cnt, 2
; Use now xmm0,xmm1 as scratch registers
; Check if there is at least 64 bytes more to process
cmp len, 64
jb between_129_191_ks
; Encrypt next 64 bytes (128-191)
ENCRYPT_64B src, dst, off, 0, xmm2, xmm6, xmm10, xmm14, \
xmm0, xmm1
add off, 64
sub len, 64
add blk_cnt, 1
; Check if there are remaining bytes to process
or len, len
jz no_partial_block_ks
; move last 64 bytes of KS to xmm9-12 (used in less_than_64)
movdqa xmm9, xmm3
movdqa xmm10, xmm7
; xmm11 is OK
movdqa xmm12, xmm15
jmp less_than_64_ks
between_129_191_ks:
; move bytes 128-191 of KS to xmm9-12 (used in less_than_64)
movdqa xmm9, xmm2
movdqa xmm11, xmm10
movdqa xmm10, xmm6
movdqa xmm12, xmm14
jmp less_than_64_ks
no_partial_block_ks:
mov [ctx + LastBlkCount], blk_cnt
%ifdef SAFE_DATA
clear_all_xmms_sse_asm
; Clear stack frame
%assign i 0
%rep 16
movdqa [rsp + _STATE + 16*i], xmm0
%assign i (i + 1)
%endrep
movdqa [rsp + _XMM_SAVE], xmm0
movdqa [rsp + _XMM_SAVE + 16], xmm0
%endif
exit_ks:
mov r12, [rsp + _GP_SAVE]
mov r13, [rsp + _GP_SAVE + 8]
mov r14, [rsp + _GP_SAVE + 16]
mov r15, [rsp + _GP_SAVE + 24]
mov rbx, [rsp + _GP_SAVE + 32]
mov rbp, [rsp + _GP_SAVE + 40]
%ifndef LINUX
mov rdi, [rsp + _GP_SAVE + 48]
%assign i 0
%assign j 6
%rep 10
movdqa APPEND(xmm, j), [rsp + _XMM_WIN_SAVE + i*16]
%assign i (i + 1)
%assign j (j + 1)
%endrep
%endif
mov rsp, [rsp + _RSP_SAVE]; restore RSP
ret
;;
;; void poly1305_key_gen_sse(const void *key, const void *iv, void *poly_key)
align 32
MKGLOBAL(poly1305_key_gen_sse,function,internal)
poly1305_key_gen_sse:
%ifndef LINUX
mov rax, rsp
sub rsp, 3*16 + 8
and rsp, -16
movdqa [rsp], xmm6
movdqa [rsp + 16], xmm7
movdqa [rsp + 16*2], xmm8
mov [rsp + 16*3], rax
%endif
;; prepare chacha state from IV, key
movdqa xmm0, [rel constants]
movdqu xmm1, [arg1] ; Load key bytes 0-15
movdqu xmm2, [arg1 + 16] ; Load key bytes 16-31
;; copy nonce (12 bytes)
movq xmm3, [arg2]
pinsrd xmm3, [arg2 + 8], 2
pslldq xmm3, 4
;; run one round of chacha20
GENERATE_64_128_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8
;; clamp R and store poly1305 key
;; R = KEY[0..15] & 0xffffffc0ffffffc0ffffffc0fffffff
pand xmm4, [rel poly_clamp_r]
movdqu [arg3 + 0 * 16], xmm4
movdqu [arg3 + 1 * 16], xmm5
%ifdef SAFE_DATA
clear_all_xmms_sse_asm
%endif
%ifndef LINUX
movdqa xmm6, [rsp]
movdqa xmm7, [rsp + 16]
movdqa xmm8, [rsp + 16*2]
mov rsp, [rsp + 16*3]
%endif
ret
align 32
MKGLOBAL(submit_job_chacha20_poly_enc_sse,function,internal)
submit_job_chacha20_poly_enc_sse:
%define src r8
%define dst r9
%define len r10
%define iv r11
%define keys r13
%define off rax
%define tmp iv
%define tmp2 keys
mov rax, rsp
sub rsp, STACK_SIZE
and rsp, -16
mov [rsp + _GP_SAVE], r12
mov [rsp + _GP_SAVE + 8], r13
mov [rsp + _GP_SAVE + 16], r14
;%ifndef LINUX
%assign i 0
%assign j 6
%rep 10
movdqa [rsp + _XMM_WIN_SAVE + i*16], APPEND(xmm, j)
%assign i (i + 1)
%assign j (j + 1)
%endrep
;%endif
mov [rsp + _RSP_SAVE], rax ; save RSP
mov added_len, 64
xor off, off
; Read pointers and length
mov len, [job + _msg_len_to_cipher_in_bytes]
add len, 64 ; 64 bytes more to generate Poly key
mov keys, [job + _enc_keys]
mov iv, [job + _iv]
mov src, [job + _src]
add src, [job + _cipher_start_src_offset_in_bytes]
mov dst, [job + _dst]
; If less than or equal to 64*2 bytes, prepare directly states for
; up to 2 blocks
cmp len, 64*2
jbe check_1_or_2_blocks_left_poly
; Prepare first 4 chacha states
movdqa xmm0, [rel constants0]
movdqa xmm1, [rel constants1]
movdqa xmm2, [rel constants2]
movdqa xmm3, [rel constants3]
; Broadcast 8 dwords from key into XMM4-11
movdqu xmm12, [keys]
movdqu xmm15, [keys + 16]
pshufd xmm4, xmm12, 0x0
pshufd xmm5, xmm12, 0x55
pshufd xmm6, xmm12, 0xAA
pshufd xmm7, xmm12, 0xFF
pshufd xmm8, xmm15, 0x0
pshufd xmm9, xmm15, 0x55
pshufd xmm10, xmm15, 0xAA
pshufd xmm11, xmm15, 0xFF
; Broadcast 3 dwords from IV into XMM13-15
movd xmm13, [iv]
movd xmm14, [iv + 4]
pshufd xmm13, xmm13, 0
pshufd xmm14, xmm14, 0
movd xmm15, [iv + 8]
pshufd xmm15, xmm15, 0
; Set block counters for first 4 Chacha20 states
movdqa xmm12, [rel dword_0_3]
%assign i 0
%rep 16
movdqa [rsp + _STATE + 16*i], xmm %+ i
%assign i (i + 1)
%endrep
; 64*2 < length < 64*4
cmp len, 64*4
jb more_than_2_blocks_left_poly
; Generate Poly key and encrypt 192 bytes of keystream
GENERATE_256_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, r14
;; Transpose state to get keystream and XOR with plaintext
;; to get ciphertext
; Save registers to be used as temp registers
movdqa [rsp + _XMM_SAVE], xmm14
movdqa [rsp + _XMM_SAVE + 16], xmm15
; Transpose to get 0-15, 64-79, 128-143, 192-207 bytes of KS
TRANSPOSE4_U32 xmm0, xmm1, xmm2, xmm3, xmm14, xmm15
; xmm14, xmm1, xmm0, xmm3
; xmm2, xmm15 free to use
movdqu xmm15, [src + off]
pxor xmm1, xmm15
movdqu [dst + off], xmm1
; xmm14 contains first 16 bytes of KS, which are clamped to be
; the first 16 bytes of the Poly key
pand xmm14, [rel poly_clamp_r]
movdqu [arg2], xmm14
movdqu xmm2, [src + off + 16*4]
movdqu xmm15, [src + off + 16*8]
pxor xmm0, xmm2
pxor xmm3, xmm15
movdqu [dst + off + 16*4], xmm0
movdqu [dst + off + 16*8], xmm3
; Restore registers and use xmm0, xmm1 now that they are free
movdqa xmm14, [rsp + _XMM_SAVE]
movdqa xmm15, [rsp + _XMM_SAVE + 16]
; Transpose to get 16-31, 80-95, 144-159, 208-223 bytes of KS
TRANSPOSE4_U32 xmm4, xmm5, xmm6, xmm7, xmm0, xmm1
; xmm0, xmm5, xmm4, xmm7
; xmm6, xmm1 free to use
movdqu xmm1, [src + off + 16]
pxor xmm5, xmm1
movdqu [dst + off + 16], xmm5
; xmm0 contains the second 16 bytes of KS, which are the
; second 16 bytes of the Poly key
movdqa [arg2 + 16], xmm0
movdqu xmm6, [src + off + 16*5]
movdqu xmm1, [src + off + 16*9]
pxor xmm4, xmm6
pxor xmm7, xmm1
movdqu [dst + off + 16*5], xmm4
movdqu [dst + off + 16*9], xmm7
; Transpose to get 32-47, 96-111, 160-175, 224-239 bytes of KS
TRANSPOSE4_U32 xmm8, xmm9, xmm10, xmm11, xmm0, xmm1
; xmm0, xmm9, xmm8, xmm11
; xmm10, xmm1 free to use
movdqu xmm1, [src + off + 16*2]
pxor xmm9, xmm1
movdqu [dst + off + 16*2], xmm9
movdqu xmm10, [src + off + 16*6]
movdqu xmm1, [src + off + 16*10]
pxor xmm8, xmm10
pxor xmm11, xmm1
movdqu [dst + off + 16*6], xmm8
movdqu [dst + off + 16*10], xmm11
; Transpose to get 48-63, 112-127, 176-191, 240-255 bytes of KS
TRANSPOSE4_U32 xmm12, xmm13, xmm14, xmm15, xmm0, xmm1
; xmm0, xmm13, xmm12, xmm15
; xmm14, xmm1 free to use
movdqu xmm1, [src + off + 16*3]
pxor xmm13, xmm1
movdqu [dst + off + 16*3], xmm13
movdqu xmm14, [src + off + 16*7]
movdqu xmm1, [src + off + 16*11]
pxor xmm12, xmm14
pxor xmm15, xmm1
movdqu [dst + off + 16*7], xmm12
movdqu [dst + off + 16*11], xmm15
; Update remaining length
sub len, 64*4
add off, 64*3
; Update counter values
movdqa xmm12, [rsp + _STATE + 16*12]
paddd xmm12, [rel dword_4]
movdqa [rsp + _STATE + 16*12], xmm12
; Clear added_len, indicating that Poly key has been generated
xor added_len, added_len
cmp len, 64*4
jb exit_loop_poly
align 32
start_loop_poly:
; Generate 256 bytes of keystream
GENERATE_256_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, r14
;; Transpose state to get keystream and XOR with plaintext
;; to get ciphertext
; Save registers to be used as temp registers
movdqa [rsp + _XMM_SAVE], xmm14
movdqa [rsp + _XMM_SAVE + 16], xmm15
; Transpose to get 16-31, 80-95, 144-159, 208-223 bytes of KS
TRANSPOSE4_U32 xmm0, xmm1, xmm2, xmm3, xmm14, xmm15
; xmm14, xmm1, xmm0, xmm3
; xmm2, xmm15 free to use
movdqu xmm2, [src + off]
movdqu xmm15, [src + off + 16*4]
pxor xmm14, xmm2
pxor xmm1, xmm15
movdqu [dst + off], xmm14
movdqu [dst + off + 16*4], xmm1
movdqu xmm2, [src + off + 16*8]
movdqu xmm15, [src + off + 16*12]
pxor xmm0, xmm2
pxor xmm3, xmm15
movdqu [dst + off + 16*8], xmm0
movdqu [dst + off + 16*12], xmm3
; Restore registers and use xmm0, xmm1 now that they are free
movdqa xmm14, [rsp + _XMM_SAVE]
movdqa xmm15, [rsp + _XMM_SAVE + 16]
; Transpose to get bytes 64-127 of KS
TRANSPOSE4_U32 xmm4, xmm5, xmm6, xmm7, xmm0, xmm1
; xmm0, xmm5, xmm4, xmm7
; xmm6, xmm1 free to use
movdqu xmm6, [src + off + 16]
movdqu xmm1, [src + off + 16*5]
pxor xmm0, xmm6
pxor xmm5, xmm1
movdqu [dst + off + 16], xmm0
movdqu [dst + off + 16*5], xmm5
movdqu xmm6, [src + off + 16*9]
movdqu xmm1, [src + off + 16*13]
pxor xmm4, xmm6
pxor xmm7, xmm1
movdqu [dst + off + 16*9], xmm4
movdqu [dst + off + 16*13], xmm7
; Transpose to get 32-47, 96-111, 160-175, 224-239 bytes of KS
TRANSPOSE4_U32 xmm8, xmm9, xmm10, xmm11, xmm0, xmm1
; xmm0, xmm9, xmm8, xmm11
; xmm10, xmm1 free to use
movdqu xmm10, [src + off + 16*2]
movdqu xmm1, [src + off + 16*6]
pxor xmm0, xmm10
pxor xmm9, xmm1
movdqu [dst + off + 16*2], xmm0
movdqu [dst + off + 16*6], xmm9
movdqu xmm10, [src + off + 16*10]
movdqu xmm1, [src + off + 16*14]
pxor xmm8, xmm10
pxor xmm11, xmm1
movdqu [dst + off + 16*10], xmm8
movdqu [dst + off + 16*14], xmm11
; Transpose to get 48-63, 112-127, 176-191, 240-255 bytes of KS
TRANSPOSE4_U32 xmm12, xmm13, xmm14, xmm15, xmm0, xmm1
; xmm0, xmm13, xmm12, xmm15
; xmm14, xmm1 free to use
movdqu xmm14, [src + off + 16*3]
movdqu xmm1, [src + off + 16*7]
pxor xmm0, xmm14
pxor xmm13, xmm1
movdqu [dst + off + 16*3], xmm0
movdqu [dst + off + 16*7], xmm13
movdqu xmm14, [src + off + 16*11]
movdqu xmm1, [src + off + 16*15]
pxor xmm12, xmm14
pxor xmm15, xmm1
movdqu [dst + off + 16*11], xmm12
movdqu [dst + off + 16*15], xmm15
; Update remaining length
sub len, 64*4
add off, 64*4
; Update counter values
movdqa xmm12, [rsp + _STATE + 16*12]
paddd xmm12, [rel dword_4]
movdqa [rsp + _STATE + 16*12], xmm12
cmp len, 64*4
jae start_loop_poly
exit_loop_poly:
; Check if there are no more bytes to encrypt
or len, len
jz no_partial_block_poly
cmp len, 64*2
ja more_than_2_blocks_left_poly
check_1_or_2_blocks_left_poly:
cmp len, 64
ja two_blocks_left_poly
;; 1 block left
; Prepare next chacha state from IV, key
movdqu xmm1, [keys] ; Load key bytes 0-15
movdqu xmm2, [keys + 16] ; Load key bytes 16-31
; Read nonce (12 bytes)
movq xmm3, [iv]
pinsrd xmm3, [iv + 8], 2
movdqa xmm0, [rel constants]
pslldq xmm3, 4
; Get last block counter dividing offset by 64
shr off, 6
jz gen_poly_key
pinsrd xmm3, DWORD(off), 0
; Increase block counter
paddd xmm3, [rel dword_1]
shl off, 6 ; Restore offset
; Generate 64 bytes of keystream
GENERATE_64_128_KS xmm0, xmm1, xmm2, xmm3, xmm9, xmm10, xmm11, \
xmm12, xmm13
cmp len, 64
jne less_than_64_poly
;; Exactly 64 bytes left
; Load plaintext, XOR with KS and store ciphertext
ENCRYPT_64B src, dst, off, 0, xmm9, xmm10, xmm11, xmm12, \
xmm14, xmm15
jmp no_partial_block_poly
gen_poly_key:
; Generate 64 bytes of keystream
GENERATE_64_128_KS xmm0, xmm1, xmm2, xmm3, xmm9, xmm10, xmm11, \
xmm12, xmm13
; Write out 32-byte Poly key
pand xmm9, [rel poly_clamp_r]
movdqu [arg2], xmm9
movdqu [arg2 + 16], xmm10
jmp no_partial_block_poly
less_than_64_poly:
ENCRYPT_1B_64B src, dst, len, off, 0, xmm9, xmm10, xmm11, xmm12, \
xmm0, xmm1, xmm2, xmm3, off, src
jmp no_partial_block_poly
two_blocks_left_poly:
; Prepare next 2 chacha states from IV, key
movdqu xmm1, [keys] ; Load key bytes 0-15
movdqu xmm2, [keys + 16] ; Load key bytes 16-31
; Read nonce (12 bytes)
movq xmm3, [iv]
pinsrd xmm3, [iv + 8], 2
movdqa xmm0, [rel constants]
pslldq xmm3, 4
; Get last block counter dividing offset by 64
shr off, 6
jz gen_poly_key_two_blocks
pinsrd xmm3, DWORD(off), 0
movdqa xmm8, xmm3
; Increase block counters
paddd xmm3, [rel dword_1]
paddd xmm8, [rel dword_2]
shl off, 6 ; Restore offset
; Generate 128 bytes of keystream
GENERATE_64_128_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm13, xmm8, xmm9, xmm10, xmm11, xmm12
cmp len, 128
jb between_64_127_poly
; Load plaintext, XOR with KS and store ciphertext
ENCRYPT_64B src, dst, off, 0, xmm4, xmm5, xmm6, xmm7, \
xmm14, xmm15
ENCRYPT_64B src, dst, off, 64, xmm9, xmm10, xmm11, xmm12, \
xmm14, xmm15
jmp no_partial_block_poly
gen_poly_key_two_blocks:
movdqa xmm8, xmm3
; Increase block counters
paddd xmm8, [rel dword_1]
shl off, 6 ; Restore offset
; Generate 128 bytes of keystream
GENERATE_64_128_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm13, xmm8, xmm9, xmm10, xmm11, xmm12
; Write out 32-byte Poly key
pand xmm4, [rel poly_clamp_r]
movdqu [arg2], xmm4
movdqu [arg2 + 16], xmm5
sub len, 64
; Write up to 64 bytes of ciphertext
ENCRYPT_1B_64B src, dst, len, off, 0, xmm9, xmm10, xmm11, xmm12, \
xmm0, xmm1, xmm2, xmm3, off, src
jmp no_partial_block_poly
between_64_127_poly:
; Load plaintext, XOR with KS and store ciphertext for first 64 bytes
ENCRYPT_64B src, dst, off, 0, xmm4, xmm5, xmm6, xmm7, \
xmm14, xmm15
sub len, 64
ENCRYPT_1B_64B src, dst, len, off, 64, xmm9, xmm10, xmm11, xmm12, \
xmm0, xmm1, xmm2, xmm3, off, src
jmp no_partial_block_poly
more_than_2_blocks_left_poly:
; Generate 256 bytes of keystream
GENERATE_256_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, r14
;; Transpose state to get keystream and XOR with plaintext
;; to get ciphertext
; Save registers to be used as temp registers
movdqa [rsp + _XMM_SAVE], xmm14
movdqa [rsp + _XMM_SAVE + 16], xmm15
; Transpose to get 0-15, 64-79, 128-143, 192-207 bytes of KS
TRANSPOSE4_U32 xmm0, xmm1, xmm2, xmm3, xmm14, xmm15
; xmm14, xmm1, xmm0, xmm3
movdqa xmm2, xmm0
movdqa xmm0, xmm14
; xmm0-3 containing [64*I : 64*I + 15] (I = 0-3) bytes of KS
; Restore registers and save xmm0,xmm1 and use them instead
movdqa xmm14, [rsp + _XMM_SAVE]
movdqa xmm15, [rsp + _XMM_SAVE + 16]
movdqa [rsp + _XMM_SAVE], xmm2
movdqa [rsp + _XMM_SAVE + 16], xmm3
; Transpose to get 16-31, 80-95, 144-159, 208-223 bytes of KS
TRANSPOSE4_U32 xmm4, xmm5, xmm6, xmm7, xmm2, xmm3
; xmm2, xmm5, xmm4, xmm7
movdqa xmm6, xmm4
movdqa xmm4, xmm2
; xmm4-7 containing [64*I + 16 : 64*I + 31] (I = 0-3) bytes of KS
; Transpose to get 32-47, 96-111, 160-175, 224-239 bytes of KS
TRANSPOSE4_U32 xmm8, xmm9, xmm10, xmm11, xmm2, xmm3
; xmm2, xmm9, xmm8, xmm11
movdqa xmm10, xmm8
movdqa xmm8, xmm2
; xmm8-11 containing [64*I + 32 : 64*I + 47] (I = 0-3) bytes of KS
; Transpose to get 48-63, 112-127, 176-191, 240-255 bytes of KS
TRANSPOSE4_U32 xmm12, xmm13, xmm14, xmm15, xmm2, xmm3
; xmm2, xmm13, xmm12, xmm15
movdqa xmm14, xmm12
movdqa xmm12, xmm2
; xmm12-15 containing [64*I + 48 : 64*I + 63] (I = 0-3) bytes of KS
or off, off
jz gen_poly_key_up_to_four_blocks
; Encrypt first 128 bytes of plaintext (there are at least two 64 byte blocks to process)
ENCRYPT_64B src, dst, off, 0, xmm0, xmm4, xmm8, xmm12, \
xmm2, xmm3
ENCRYPT_64B src, dst, off, 64, xmm1, xmm5, xmm9, xmm13, \
xmm2, xmm3
; Restore xmm2,xmm3
movdqa xmm2, [rsp + _XMM_SAVE]
movdqa xmm3, [rsp + _XMM_SAVE + 16]
sub len, 128
add off, 128
; Use now xmm0,xmm1 as scratch registers
; Check if there is at least 64 bytes more to process
cmp len, 64
jb between_129_191_poly
; Encrypt next 64 bytes (128-191)
ENCRYPT_64B src, dst, off, 0, xmm2, xmm6, xmm10, xmm14, \
xmm0, xmm1
sub len, 64
; Check if there are remaining bytes to process
or len, len
jz no_partial_block_poly
ENCRYPT_1B_64B src, dst, len, off, 64, xmm3, xmm7, xmm11, xmm15, \
xmm0, xmm1, xmm2, xmm4, off, src
jmp no_partial_block_poly
gen_poly_key_up_to_four_blocks:
; Restore xmm2,xmm3
movdqa xmm2, [rsp + _XMM_SAVE]
movdqa xmm3, [rsp + _XMM_SAVE + 16]
; Write out 32-byte Poly key
pand xmm0, [rel poly_clamp_r]
movdqu [arg2], xmm0
movdqu [arg2 + 16], xmm4
sub len, 64
; Write first 64 bytes of ciphertext
ENCRYPT_64B src, dst, off, 0, xmm1, xmm5, xmm9, xmm13, \
xmm0, xmm4
add off, 64
sub len, 64
; Check if there is at least 64 bytes more to process
cmp len, 64
jb between_129_191_poly
; Encrypt next 64 bytes (128-191)
ENCRYPT_64B src, dst, off, 0, xmm2, xmm6, xmm10, xmm14, \
xmm0, xmm1
sub len, 64
; Check if there are remaining bytes to process
or len, len
jz no_partial_block_poly
ENCRYPT_1B_64B src, dst, len, off, 64, xmm3, xmm7, xmm11, xmm15, \
xmm0, xmm1, xmm2, xmm4, off, src
jmp no_partial_block_poly
between_129_191_poly:
ENCRYPT_1B_64B src, dst, len, off, 0, xmm2, xmm6, xmm10, xmm14, \
xmm0, xmm1, xmm3, xmm4, off, src
no_partial_block_poly:
%ifdef SAFE_DATA
clear_all_xmms_sse_asm
; Clear stack frame
%assign i 0
%rep 16
movdqa [rsp + _STATE + 16*i], xmm0
%assign i (i + 1)
%endrep
movdqa [rsp + _XMM_SAVE], xmm0
movdqa [rsp + _XMM_SAVE + 16], xmm0
%endif
mov r12, [rsp + _GP_SAVE]
mov r13, [rsp + _GP_SAVE + 8]
mov r14, [rsp + _GP_SAVE + 16]
%ifndef LINUX
%assign i 0
%assign j 6
%rep 10
movdqa APPEND(xmm, j), [rsp + _XMM_WIN_SAVE + i*16]
%assign i (i + 1)
%assign j (j + 1)
%endrep
%endif
mov rsp, [rsp + _RSP_SAVE]
mov rax, job
or dword [rax + _status], IMB_STATUS_COMPLETED_CIPHER
ret
align 32
MKGLOBAL(submit_job_chacha20_poly_dec_sse,function,internal)
submit_job_chacha20_poly_dec_sse:
%define src r8
%define dst r9
%define len r10
%define iv r11
%ifdef LINUX
%define keys rdx
%else
%define keys rsi
%endif
%define tmp keys
%define off rax
%define ks arg2
%define len_xor iv
mov rax, rsp
sub rsp, STACK_SIZE
and rsp, -16
mov [rsp + _GP_SAVE], r12
mov [rsp + _GP_SAVE + 8], r13
%ifndef LINUX
mov [rsp + _GP_SAVE + 16], rsi
%assign i 0
%assign j 6
%rep 10
movdqa [rsp + _XMM_WIN_SAVE + i*16], APPEND(xmm, j)
%assign i (i + 1)
%assign j (j + 1)
%endrep
%endif
mov [rsp + _RSP_SAVE], rax ; save RSP
mov len_xor, arg3
; Check if there is ciphertext to decrypt
or len_xor, len_xor
jz no_partial_block_dec
; XOR ciphertext with existing keystream, generated previously
mov src, [job + _src]
add src, [job + _cipher_start_src_offset_in_bytes]
mov dst, [job + _dst]
xor off, off
; Calculate number of initial blocks (1-3)
mov tmp, len_xor
add tmp, 63
shr tmp, 6
cmp tmp, 2
ja initial_dec_num_blocks_is_3
je initial_dec_num_blocks_is_2
; 1 initial block
ENCRYPT_1B_64B src, dst, len_xor, off, 0, xmm0, xmm1, xmm2, xmm3, \
xmm4, xmm5, xmm6, xmm7, off, src, ks
jmp no_partial_block_dec
initial_dec_num_blocks_is_2:
; 2 initial blocks
ENCRYPT_64B src, dst, off, 0, xmm0, xmm1, xmm2, xmm3, \
xmm4, xmm5, ks
add ks, 64
sub len_xor, 64
ENCRYPT_1B_64B src, dst, len_xor, off, 64, xmm0, xmm1, xmm2, xmm3, \
xmm4, xmm5, xmm6, xmm7, off, src, ks
jmp no_partial_block_dec
initial_dec_num_blocks_is_3:
; 3 initial blocks
ENCRYPT_64B src, dst, off, 0, xmm0, xmm1, xmm2, xmm3, \
xmm4, xmm5, ks
add ks, 64
ENCRYPT_64B src, dst, off, 64, xmm0, xmm1, xmm2, xmm3, \
xmm4, xmm5, ks
add ks, 64
sub len_xor, 128
ENCRYPT_1B_64B src, dst, len_xor, off, 128, xmm2, xmm6, xmm10, xmm14, \
xmm0, xmm1, xmm3, xmm4, off, src, ks
; If len_xor == 64, it means that there might be more bytes to encrypt
cmp len_xor, 64
jnz no_partial_block_dec
;; More bytes to encrypt
mov len, [job + _msg_len_to_cipher_in_bytes]
mov off, 192 ; 192 bytes already decrypted
sub len, 192
jz no_partial_block_dec
mov keys, [job + _enc_keys]
mov iv, [job + _iv]
mov src, [job + _src]
add src, [job + _cipher_start_src_offset_in_bytes]
mov dst, [job + _dst]
; If less than or equal to 64*2 bytes, prepare directly states for
; up to 2 blocks
cmp len, 64*2
jbe check_1_or_2_blocks_left_dec
; Prepare first 4 chacha states
movdqa xmm0, [rel constants0]
movdqa xmm1, [rel constants1]
movdqa xmm2, [rel constants2]
movdqa xmm3, [rel constants3]
; Broadcast 8 dwords from key into XMM4-11
movdqu xmm12, [keys]
movdqu xmm15, [keys + 16]
pshufd xmm4, xmm12, 0x0
pshufd xmm5, xmm12, 0x55
pshufd xmm6, xmm12, 0xAA
pshufd xmm7, xmm12, 0xFF
pshufd xmm8, xmm15, 0x0
pshufd xmm9, xmm15, 0x55
pshufd xmm10, xmm15, 0xAA
pshufd xmm11, xmm15, 0xFF
; Broadcast 3 dwords from IV into XMM13-15
movd xmm13, [iv]
movd xmm14, [iv + 4]
pshufd xmm13, xmm13, 0
pshufd xmm14, xmm14, 0
movd xmm15, [iv + 8]
pshufd xmm15, xmm15, 0
; Set block counters for next 4 Chacha20 states
; (4-7, since the first 4 states are generated already)
movdqa xmm12, [rel dword_4_7]
%assign i 0
%rep 16
movdqa [rsp + _STATE + 16*i], xmm %+ i
%assign i (i + 1)
%endrep
; 64*2 < length < 64*4
cmp len, 64*4
jb more_than_2_blocks_left_dec
align 32
start_loop_dec:
; Generate 256 bytes of keystream
GENERATE_256_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, r13
;; Transpose state to get keystream and XOR with plaintext
;; to get ciphertext
; Save registers to be used as temp registers
movdqa [rsp + _XMM_SAVE], xmm14
movdqa [rsp + _XMM_SAVE + 16], xmm15
; Transpose to get 16-31, 80-95, 144-159, 208-223 bytes of KS
TRANSPOSE4_U32 xmm0, xmm1, xmm2, xmm3, xmm14, xmm15
; xmm14, xmm1, xmm0, xmm3
; xmm2, xmm15 free to use
movdqu xmm2, [src + off]
movdqu xmm15, [src + off + 16*4]
pxor xmm14, xmm2
pxor xmm1, xmm15
movdqu [dst + off], xmm14
movdqu [dst + off + 16*4], xmm1
movdqu xmm2, [src + off + 16*8]
movdqu xmm15, [src + off + 16*12]
pxor xmm0, xmm2
pxor xmm3, xmm15
movdqu [dst + off + 16*8], xmm0
movdqu [dst + off + 16*12], xmm3
; Restore registers and use xmm0, xmm1 now that they are free
movdqa xmm14, [rsp + _XMM_SAVE]
movdqa xmm15, [rsp + _XMM_SAVE + 16]
; Transpose to get bytes 64-127 of KS
TRANSPOSE4_U32 xmm4, xmm5, xmm6, xmm7, xmm0, xmm1
; xmm0, xmm5, xmm4, xmm7
; xmm6, xmm1 free to use
movdqu xmm6, [src + off + 16]
movdqu xmm1, [src + off + 16*5]
pxor xmm0, xmm6
pxor xmm5, xmm1
movdqu [dst + off + 16], xmm0
movdqu [dst + off + 16*5], xmm5
movdqu xmm6, [src + off + 16*9]
movdqu xmm1, [src + off + 16*13]
pxor xmm4, xmm6
pxor xmm7, xmm1
movdqu [dst + off + 16*9], xmm4
movdqu [dst + off + 16*13], xmm7
; Transpose to get 32-47, 96-111, 160-175, 224-239 bytes of KS
TRANSPOSE4_U32 xmm8, xmm9, xmm10, xmm11, xmm0, xmm1
; xmm0, xmm9, xmm8, xmm11
; xmm10, xmm1 free to use
movdqu xmm10, [src + off + 16*2]
movdqu xmm1, [src + off + 16*6]
pxor xmm0, xmm10
pxor xmm9, xmm1
movdqu [dst + off + 16*2], xmm0
movdqu [dst + off + 16*6], xmm9
movdqu xmm10, [src + off + 16*10]
movdqu xmm1, [src + off + 16*14]
pxor xmm8, xmm10
pxor xmm11, xmm1
movdqu [dst + off + 16*10], xmm8
movdqu [dst + off + 16*14], xmm11
; Transpose to get 48-63, 112-127, 176-191, 240-255 bytes of KS
TRANSPOSE4_U32 xmm12, xmm13, xmm14, xmm15, xmm0, xmm1
; xmm0, xmm13, xmm12, xmm15
; xmm14, xmm1 free to use
movdqu xmm14, [src + off + 16*3]
movdqu xmm1, [src + off + 16*7]
pxor xmm0, xmm14
pxor xmm13, xmm1
movdqu [dst + off + 16*3], xmm0
movdqu [dst + off + 16*7], xmm13
movdqu xmm14, [src + off + 16*11]
movdqu xmm1, [src + off + 16*15]
pxor xmm12, xmm14
pxor xmm15, xmm1
movdqu [dst + off + 16*11], xmm12
movdqu [dst + off + 16*15], xmm15
; Update remaining length
sub len, 64*4
add off, 64*4
; Update counter values
movdqa xmm12, [rsp + _STATE + 16*12]
paddd xmm12, [rel dword_4]
movdqa [rsp + _STATE + 16*12], xmm12
cmp len, 64*4
jae start_loop_dec
exit_loop_dec:
; Check if there are no more bytes to encrypt
or len, len
jz no_partial_block_dec
cmp len, 64*2
ja more_than_2_blocks_left_dec
check_1_or_2_blocks_left_dec:
cmp len, 64
ja two_blocks_left_dec
;; 1 block left
; Get last block counter dividing offset by 64
shr off, 6
; Prepare next chacha state from IV, key
movdqu xmm1, [keys] ; Load key bytes 0-15
movdqu xmm2, [keys + 16] ; Load key bytes 16-31
; Read nonce (12 bytes)
movq xmm3, [iv]
pinsrd xmm3, [iv + 8], 2
pslldq xmm3, 4
pinsrd xmm3, DWORD(off), 0
movdqa xmm0, [rel constants]
; Increase block counter
paddd xmm3, [rel dword_1]
shl off, 6 ; Restore offset
; Generate 64 bytes of keystream
GENERATE_64_128_KS xmm0, xmm1, xmm2, xmm3, xmm9, xmm10, xmm11, \
xmm12, xmm13
cmp len, 64
jne less_than_64_dec
;; Exactly 64 bytes left
ENCRYPT_64B src, dst, off, 0, xmm9, xmm10, xmm11, xmm12, \
xmm5, xmm6
jmp no_partial_block_dec
less_than_64_dec:
ENCRYPT_1B_64B src, dst, len, off, 0, xmm9, xmm10, xmm11, xmm12, \
xmm0, xmm1, xmm2, xmm3, off, src
jmp no_partial_block_dec
two_blocks_left_dec:
; Get last block counter dividing offset by 64
shr off, 6
; Prepare next 2 chacha states from IV, key
movdqu xmm1, [keys] ; Load key bytes 0-15
movdqu xmm2, [keys + 16] ; Load key bytes 16-31
; Read nonce (12 bytes)
movq xmm3, [iv]
pinsrd xmm3, [iv + 8], 2
pslldq xmm3, 4
pinsrd xmm3, DWORD(off), 0
movdqa xmm0, [rel constants]
movdqa xmm8, xmm3
; Increase block counters
paddd xmm3, [rel dword_1]
paddd xmm8, [rel dword_2]
shl off, 6 ; Restore offset
; Generate 128 bytes of keystream
GENERATE_64_128_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm13, xmm8, xmm9, xmm10, xmm11, xmm12
cmp len, 128
jb between_64_127_dec
; Load 128 bytes of plaintext, XOR with KS and store ciphertext
ENCRYPT_64B src, dst, off, 0, xmm4, xmm5, xmm6, xmm7, \
xmm0, xmm1
ENCRYPT_64B src, dst, off, 64, xmm9, xmm10, xmm11, xmm12, \
xmm0, xmm1
jmp no_partial_block_dec
between_64_127_dec:
; Load plaintext, XOR with KS and store ciphertext for first 64 bytes
ENCRYPT_64B src, dst, off, 0, xmm4, xmm5, xmm6, xmm7, \
xmm0, xmm1
sub len, 64
; Handle rest up to 63 bytes
ENCRYPT_1B_64B src, dst, len, off, 64, xmm9, xmm10, xmm11, xmm12, \
xmm0, xmm1, xmm2, xmm3, off, src
jmp no_partial_block_dec
more_than_2_blocks_left_dec:
; Generate 256 bytes of keystream
GENERATE_256_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, r13
;; Transpose state to get keystream and XOR with plaintext
;; to get ciphertext
; Save registers to be used as temp registers
movdqa [rsp + _XMM_SAVE], xmm14
movdqa [rsp + _XMM_SAVE + 16], xmm15
; Transpose to get 0-15, 64-79, 128-143, 192-207 bytes of KS
TRANSPOSE4_U32 xmm0, xmm1, xmm2, xmm3, xmm14, xmm15
; xmm14, xmm1, xmm0, xmm3
movdqa xmm2, xmm0
movdqa xmm0, xmm14
; xmm0-3 containing [64*I : 64*I + 15] (I = 0-3) bytes of KS
; Restore registers and save xmm0,xmm1 and use them instead
movdqa xmm14, [rsp + _XMM_SAVE]
movdqa xmm15, [rsp + _XMM_SAVE + 16]
movdqa [rsp + _XMM_SAVE], xmm2
movdqa [rsp + _XMM_SAVE + 16], xmm3
; Transpose to get 16-31, 80-95, 144-159, 208-223 bytes of KS
TRANSPOSE4_U32 xmm4, xmm5, xmm6, xmm7, xmm2, xmm3
; xmm2, xmm5, xmm4, xmm7
movdqa xmm6, xmm4
movdqa xmm4, xmm2
; xmm4-7 containing [64*I + 16 : 64*I + 31] (I = 0-3) bytes of KS
; Transpose to get 32-47, 96-111, 160-175, 224-239 bytes of KS
TRANSPOSE4_U32 xmm8, xmm9, xmm10, xmm11, xmm2, xmm3
; xmm2, xmm9, xmm8, xmm11
movdqa xmm10, xmm8
movdqa xmm8, xmm2
; xmm8-11 containing [64*I + 32 : 64*I + 47] (I = 0-3) bytes of KS
; Transpose to get 48-63, 112-127, 176-191, 240-255 bytes of KS
TRANSPOSE4_U32 xmm12, xmm13, xmm14, xmm15, xmm2, xmm3
; xmm2, xmm13, xmm12, xmm15
movdqa xmm14, xmm12
movdqa xmm12, xmm2
; xmm12-15 containing [64*I + 48 : 64*I + 63] (I = 0-3) bytes of KS
; Encrypt first 128 bytes of plaintext (there are at least two 64 byte blocks to process)
ENCRYPT_64B src, dst, off, 0, xmm0, xmm4, xmm8, xmm12, \
xmm2, xmm3
ENCRYPT_64B src, dst, off, 64, xmm1, xmm5, xmm9, xmm13, \
xmm2, xmm3
; Restore xmm2,xmm3
movdqa xmm2, [rsp + _XMM_SAVE]
movdqa xmm3, [rsp + _XMM_SAVE + 16]
sub len, 128
add off, 128
; Use now xmm0,xmm1 as scratch registers
; Check if there is at least 64 bytes more to process
cmp len, 64
jb between_129_191_dec
; Encrypt next 64 bytes (128-191)
ENCRYPT_64B src, dst, off, 0, xmm2, xmm6, xmm10, xmm14, \
xmm0, xmm1
sub len, 64
; Check if there are remaining bytes to process
jz no_partial_block_dec
ENCRYPT_1B_64B src, dst, len, off, 64, xmm3, xmm7, xmm11, xmm15, \
xmm0, xmm1, xmm2, xmm4, off, src
jmp no_partial_block_dec
between_129_191_dec:
ENCRYPT_1B_64B src, dst, len, off, 0, xmm2, xmm6, xmm10, xmm14, \
xmm0, xmm1, xmm4, xmm3, off, src
no_partial_block_dec:
%ifdef SAFE_DATA
clear_all_xmms_sse_asm
; Clear stack frame
%assign i 0
%rep 16
movdqa [rsp + _STATE + 16*i], xmm0
%assign i (i + 1)
%endrep
movdqa [rsp + _XMM_SAVE], xmm0
movdqa [rsp + _XMM_SAVE + 16], xmm0
%endif
mov r12, [rsp + _GP_SAVE]
mov r13, [rsp + _GP_SAVE + 8]
%ifndef LINUX
mov rsi, [rsp + _GP_SAVE + 16]
%endif
%ifndef LINUX
%assign i 0
%assign j 6
%rep 10
movdqa APPEND(xmm, j), [rsp + _XMM_WIN_SAVE + i*16]
%assign i (i + 1)
%assign j (j + 1)
%endrep
%endif
mov rsp, [rsp + _RSP_SAVE]
ret
MKGLOBAL(gen_keystr_poly_key_sse,function,internal)
gen_keystr_poly_key_sse:
%define keys arg1
%define iv arg2
%define len arg3
%define ks arg4
mov rax, rsp
sub rsp, STACK_SIZE
and rsp, -16
%ifndef LINUX
%assign i 0
%assign j 6
%rep 10
movdqa [rsp + _XMM_WIN_SAVE + i*16], APPEND(xmm, j)
%assign i (i + 1)
%assign j (j + 1)
%endrep
%endif
mov [rsp + _RSP_SAVE], rax ; save RSP
; If less than or equal to 64*2 bytes, prepare directly states for
; up to 2 blocks
cmp len, 64*2
jbe check_1_or_2_blocks_left_gen
; Prepare first 4 chacha states
movdqa xmm0, [rel constants0]
movdqa xmm1, [rel constants1]
movdqa xmm2, [rel constants2]
movdqa xmm3, [rel constants3]
; Broadcast 8 dwords from key into XMM4-11
movdqu xmm12, [keys]
movdqu xmm15, [keys + 16]
pshufd xmm4, xmm12, 0x0
pshufd xmm5, xmm12, 0x55
pshufd xmm6, xmm12, 0xAA
pshufd xmm7, xmm12, 0xFF
pshufd xmm8, xmm15, 0x0
pshufd xmm9, xmm15, 0x55
pshufd xmm10, xmm15, 0xAA
pshufd xmm11, xmm15, 0xFF
; Broadcast 3 dwords from IV into XMM13-15
movd xmm13, [iv]
movd xmm14, [iv + 4]
pshufd xmm13, xmm13, 0
pshufd xmm14, xmm14, 0
movd xmm15, [iv + 8]
pshufd xmm15, xmm15, 0
; Set block counters for first 4 Chacha20 states
movdqa xmm12, [rel dword_0_3]
%assign i 0
%rep 16
movdqa [rsp + _STATE + 16*i], xmm %+ i
%assign i (i + 1)
%endrep
; Generate Poly key and encrypt 192 bytes of keystream
GENERATE_256_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, r11
;; Transpose state to get keystream and XOR with plaintext
;; to get ciphertext
; Save registers to be used as temp registers
movdqa [rsp + _XMM_SAVE], xmm14
movdqa [rsp + _XMM_SAVE + 16], xmm15
; Transpose to get 0-15, 64-79, 128-143, 192-207 bytes of KS
TRANSPOSE4_U32 xmm0, xmm1, xmm2, xmm3, xmm14, xmm15
; xmm14 contains first 16 bytes of KS, which are clamped to be
; the first 16 bytes of the Poly key
pand xmm14, [rel poly_clamp_r]
movdqu [ks], xmm14
; xmm14, xmm1, xmm0, xmm3
; xmm2, xmm15 free to use
movdqu [ks + 16*4], xmm1
movdqu [ks + 16*8], xmm0
movdqu [ks + 16*12], xmm3
; Restore registers and use xmm0, xmm1 now that they are free
movdqa xmm14, [rsp + _XMM_SAVE]
movdqa xmm15, [rsp + _XMM_SAVE + 16]
; Transpose to get 16-31, 80-95, 144-159, 208-223 bytes of KS
TRANSPOSE4_U32 xmm4, xmm5, xmm6, xmm7, xmm0, xmm1
; xmm0, xmm5, xmm4, xmm7
; xmm6, xmm1 free to use
; xmm0 contains the second 16 bytes of KS, which are the
; second 16 bytes of the Poly key
movdqu [ks + 16], xmm0
movdqu [ks + 16*5], xmm5
movdqu [ks + 16*9], xmm4
movdqu [ks + 16*13], xmm7
; Transpose to get 32-47, 96-111, 160-175, 224-239 bytes of KS
TRANSPOSE4_U32 xmm8, xmm9, xmm10, xmm11, xmm0, xmm1
movdqu [ks + 16*6], xmm9
movdqu [ks + 16*10], xmm8
movdqu [ks + 16*14], xmm11
; Transpose to get 48-63, 112-127, 176-191, 240-255 bytes of KS
TRANSPOSE4_U32 xmm12, xmm13, xmm14, xmm15, xmm0, xmm1
; xmm0, xmm13, xmm12, xmm15
; xmm14, xmm1 free to use
movdqu [ks + 16*7], xmm13
movdqu [ks + 16*11], xmm12
movdqu [ks + 16*15], xmm15
%ifdef SAFE_DATA
clear_all_xmms_sse_asm
; Clear stack frame
%assign i 0
%rep 16
movdqa [rsp + _STATE + 16*i], xmm0
%assign i (i + 1)
%endrep
movdqa [rsp + _XMM_SAVE], xmm0
movdqa [rsp + _XMM_SAVE + 16], xmm0
%endif
restore_gen_keystr:
%ifndef LINUX
%assign i 0
%assign j 6
%rep 10
movdqa APPEND(xmm, j), [rsp + _XMM_WIN_SAVE + i*16]
%assign i (i + 1)
%assign j (j + 1)
%endrep
%endif
mov rsp, [rsp + _RSP_SAVE]
ret
check_1_or_2_blocks_left_gen:
cmp len, 64
ja two_blocks_left_gen
;; 1 block only
; Prepare next chacha state from IV, key
movdqu xmm1, [keys] ; Load key bytes 0-15
movdqu xmm2, [keys + 16] ; Load key bytes 16-31
; Read nonce (12 bytes)
movq xmm3, [iv]
pinsrd xmm3, [iv + 8], 2
pslldq xmm3, 4
movdqa xmm0, [rel constants]
; Generate 64 bytes of keystream
GENERATE_64_128_KS xmm0, xmm1, xmm2, xmm3, xmm9, xmm10, xmm11, \
xmm12, xmm13
; xmm14 contains first 16 bytes of KS, which are clamped to be
; the first 16 bytes of the Poly key
pand xmm9, [rel poly_clamp_r]
movdqu [ks], xmm9
; xmm10 contains the second 16 bytes of KS, which are the
; second 16 bytes of the Poly key
movdqu [ks + 16], xmm10
jmp exit_gen
two_blocks_left_gen:
; Prepare next 2 chacha states from IV, key
movdqu xmm1, [keys] ; Load key bytes 0-15
movdqu xmm2, [keys + 16] ; Load key bytes 16-31
; Read nonce (12 bytes)
movq xmm3, [iv]
pinsrd xmm3, [iv + 8], 2
pslldq xmm3, 4
movdqa xmm0, [rel constants]
movdqa xmm8, xmm3
; Increase block counters
paddd xmm8, [rel dword_1]
; Generate 128 bytes of keystream
GENERATE_64_128_KS xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm13, xmm8, xmm9, xmm10, xmm11, xmm12
; xmm14 contains first 16 bytes of KS, which are clamped to be
; the first 16 bytes of the Poly key
pand xmm4, [rel poly_clamp_r]
movdqu [ks], xmm4
; xmm10 contains the second 16 bytes of KS, which are the
; second 16 bytes of the Poly key
movdqu [ks + 16], xmm5
; Store first 64 bytes of KS for first 64 bytes of ciphertext
movdqu [ks + 16*4], xmm9
movdqu [ks + 16*5], xmm10
movdqu [ks + 16*6], xmm11
movdqu [ks + 16*7], xmm12
exit_gen:
%ifdef SAFE_DATA
clear_all_xmms_sse_asm
%endif
jmp restore_gen_keystr
mksection stack-noexec
|