1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
;;
;; Copyright (c) 2020-2022, Intel Corporation
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are met:
;;
;; * Redistributions of source code must retain the above copyright notice,
;; this list of conditions and the following disclaimer.
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;; * Neither the name of Intel Corporation nor the names of its contributors
;; may be used to endorse or promote products derived from this software
;; without specific prior written permission.
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
;; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
;; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
;; DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
;; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
;; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
;; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
;; CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
;; OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
;; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;
;; Authors of original CRC implementation:
;; Erdinc Ozturk
;; Vinodh Gopal
;; James Guilford
;; Greg Tucker
;;
;; Reference paper titled:
;; "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
;; URL: http://download.intel.com/design/intarch/papers/323102.pdf
%include "include/os.asm"
%include "include/memcpy.asm"
%include "include/reg_sizes.asm"
%include "include/crc32_refl.inc"
%include "include/clear_regs.asm"
%ifndef CRC32_REFL_FN
%define CRC32_REFL_FN crc32_refl_by8_sse
%endif
[bits 64]
default rel
%ifdef LINUX
%define arg1 rdi
%define arg2 rsi
%define arg3 rdx
%define arg4 rcx
%else
%define arg1 rcx
%define arg2 rdx
%define arg3 r8
%define arg4 r9
%endif
mksection .text
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; arg1 - initial CRC value
;; arg2 - buffer pointer
;; arg3 - buffer size
;; arg4 - pointer to CRC constants
;; Returns CRC value through EAX
align 32
MKGLOBAL(CRC32_REFL_FN,function,internal)
CRC32_REFL_FN:
not DWORD(arg1)
;; check if smaller than 256B
cmp arg3, 256
jl .less_than_256
;; load the initial crc value
movd xmm10, DWORD(arg1) ; initial crc
;; load initial 128B data, xor the initial crc value
movdqu xmm0, [arg2 + 16 * 0]
movdqu xmm1, [arg2 + 16 * 1]
movdqu xmm2, [arg2 + 16 * 2]
movdqu xmm3, [arg2 + 16 * 3]
movdqu xmm4, [arg2 + 16 * 4]
movdqu xmm5, [arg2 + 16 * 5]
movdqu xmm6, [arg2 + 16 * 6]
movdqu xmm7, [arg2 + 16 * 7]
;; XOR the initial_crc value
pxor xmm0, xmm10
movdqa xmm10, [arg4 + crc32_const_fold_8x128b]
;; subtract 256 instead of 128 to save one instruction from the loop
sub arg3, 256
;; In this section of the code, there is ((128 * x) + y) bytes of buffer
;; where, 0 <= y < 128.
;; The fold_128_B_loop loop will fold 128 bytes at a time until
;; there is (128 + y) bytes of buffer left
;; Fold 128 bytes at a time.
;; This section of the code folds 8 xmm registers in parallel
.fold_128_B_loop:
add arg2, 128
movdqu xmm9, [arg2 + 16 * 0]
movdqu xmm12, [arg2 + 16 * 1]
movdqa xmm8, xmm0
pclmulqdq xmm8, xmm10, 0x10
pclmulqdq xmm0, xmm10 , 0x1
movdqa xmm13, xmm1
pclmulqdq xmm13, xmm10, 0x10
pclmulqdq xmm1, xmm10 , 0x1
pxor xmm0, xmm9
xorps xmm0, xmm8
pxor xmm1, xmm12
xorps xmm1, xmm13
movdqu xmm9, [arg2 + 16 * 2]
movdqu xmm12, [arg2 + 16 * 3]
movdqa xmm8, xmm2
pclmulqdq xmm8, xmm10, 0x10
pclmulqdq xmm2, xmm10 , 0x1
movdqa xmm13, xmm3
pclmulqdq xmm13, xmm10, 0x10
pclmulqdq xmm3, xmm10 , 0x1
pxor xmm2, xmm9
xorps xmm2, xmm8
pxor xmm3, xmm12
xorps xmm3, xmm13
movdqu xmm9, [arg2 + 16 * 4]
movdqu xmm12, [arg2 + 16 * 5]
movdqa xmm8, xmm4
pclmulqdq xmm8, xmm10, 0x10
pclmulqdq xmm4, xmm10 , 0x1
movdqa xmm13, xmm5
pclmulqdq xmm13, xmm10, 0x10
pclmulqdq xmm5, xmm10 , 0x1
pxor xmm4, xmm9
xorps xmm4, xmm8
pxor xmm5, xmm12
xorps xmm5, xmm13
movdqu xmm9, [arg2 + 16 * 6]
movdqu xmm12, [arg2 + 16 * 7]
movdqa xmm8, xmm6
pclmulqdq xmm8, xmm10, 0x10
pclmulqdq xmm6, xmm10 , 0x1
movdqa xmm13, xmm7
pclmulqdq xmm13, xmm10, 0x10
pclmulqdq xmm7, xmm10 , 0x1
pxor xmm6, xmm9
xorps xmm6, xmm8
pxor xmm7, xmm12
xorps xmm7, xmm13
sub arg3, 128
jge .fold_128_B_loop
add arg2, 128
;; At this point, the buffer pointer is pointing at the last
;; y bytes of the buffer, where 0 <= y < 128.
;; The 128B of folded data is in 8 of the xmm registers:
;; xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
;; fold the 8 xmm registers into 1 xmm register with different constants
movdqa xmm10, [arg4 + crc32_const_fold_7x128b]
movdqa xmm8, xmm0
pclmulqdq xmm8, xmm10, 0x1
pclmulqdq xmm0, xmm10, 0x10
pxor xmm7, xmm8
xorps xmm7, xmm0
movdqa xmm10, [arg4 + crc32_const_fold_6x128b]
movdqa xmm8, xmm1
pclmulqdq xmm8, xmm10, 0x1
pclmulqdq xmm1, xmm10, 0x10
pxor xmm7, xmm8
xorps xmm7, xmm1
movdqa xmm10, [arg4 + crc32_const_fold_5x128b]
movdqa xmm8, xmm2
pclmulqdq xmm8, xmm10, 0x1
pclmulqdq xmm2, xmm10, 0x10
pxor xmm7, xmm8
pxor xmm7, xmm2
movdqa xmm10, [arg4 + crc32_const_fold_4x128b]
movdqa xmm8, xmm3
pclmulqdq xmm8, xmm10, 0x1
pclmulqdq xmm3, xmm10, 0x10
pxor xmm7, xmm8
xorps xmm7, xmm3
movdqa xmm10, [arg4 + crc32_const_fold_3x128b]
movdqa xmm8, xmm4
pclmulqdq xmm8, xmm10, 0x1
pclmulqdq xmm4, xmm10, 0x10
pxor xmm7, xmm8
pxor xmm7, xmm4
movdqa xmm10, [arg4 + crc32_const_fold_2x128b]
movdqa xmm8, xmm5
pclmulqdq xmm8, xmm10, 0x1
pclmulqdq xmm5, xmm10, 0x10
pxor xmm7, xmm8
xorps xmm7, xmm5
movdqa xmm10, [arg4 + crc32_const_fold_1x128b]
movdqa xmm8, xmm6
pclmulqdq xmm8, xmm10, 0x1
pclmulqdq xmm6, xmm10, 0x10
pxor xmm7, xmm8
pxor xmm7, xmm6
;; Instead of 128, we add 128-16 to the loop counter to save 1
;; instruction from the loop below.
;; Instead of a cmp instruction, we use the negative flag with the jl instruction
add arg3, 128 - 16
jl .final_reduction_for_128
;; There are 16 + y bytes left to reduce.
;; 16 bytes is in register xmm7 and the rest is in memory
;; we can fold 16 bytes at a time if y>=16
;; continue folding 16B at a time
.16B_reduction_loop:
movdqa xmm8, xmm7
pclmulqdq xmm8, xmm10, 0x1
pclmulqdq xmm7, xmm10, 0x10
pxor xmm7, xmm8
movdqu xmm0, [arg2]
pxor xmm7, xmm0
add arg2, 16
sub arg3, 16
;; Instead of a cmp instruction, we utilize the flags with the jge instruction.
;; Equivalent of check if there is any more 16B in the buffer to be folded.
jge .16B_reduction_loop
;; Now we have 16+z bytes left to reduce, where 0<= z < 16.
;; First, we reduce the data in the xmm7 register
.final_reduction_for_128:
add arg3, 16
je .128_done
;; Here we are getting data that is less than 16 bytes.
;; Since we know that there was data before the pointer, we can offset
;; the input pointer before the actual point, to receive exactly 16 bytes.
;; After that the registers need to be adjusted.
.get_last_two_xmms:
movdqa xmm2, xmm7
movdqu xmm1, [arg2 - 16 + arg3]
;; Get rid of the extra data that was loaded before.
;; Load the shift constant.
lea rax, [rel pshufb_shf_table]
movdqu xmm0, [rax + arg3]
pshufb xmm7, xmm0
pxor xmm0, [rel mask3]
pshufb xmm2, xmm0
pblendvb xmm2, xmm1 ; xmm0 is implicit
movdqa xmm8, xmm7
pclmulqdq xmm8, xmm10, 0x1
pclmulqdq xmm7, xmm10, 0x10
pxor xmm7, xmm8
pxor xmm7, xmm2
.128_done:
;; compute crc of a 128-bit value
movdqa xmm10, [arg4 + crc32_const_fold_128b_to_64b]
movdqa xmm0, xmm7
;; 64b fold
pclmulqdq xmm7, xmm10, 0
psrldq xmm0, 8
pxor xmm7, xmm0
;; 32b fold
movdqa xmm0, xmm7
pslldq xmm7, 4
pclmulqdq xmm7, xmm10, 0x10
pxor xmm7, xmm0
;; barrett reduction
.barrett:
pand xmm7, [rel mask2]
movdqa xmm1, xmm7
movdqa xmm2, xmm7
movdqa xmm10, [arg4 + crc32_const_reduce_64b_to_32b]
pclmulqdq xmm7, xmm10, 0
pxor xmm7, xmm2
pand xmm7, [rel mask]
movdqa xmm2, xmm7
pclmulqdq xmm7, xmm10, 0x10
pxor xmm7, xmm2
pxor xmm7, xmm1
pextrd eax, xmm7, 2
.cleanup:
%ifdef SAFE_DATA
clear_all_xmms_sse_asm
%endif
not eax
ret
align 32
.less_than_256:
;; check if there is enough buffer to be able to fold 16B at a time
cmp arg3, 32
jl .less_than_32
;; if there is, load the constants
movdqa xmm10, [arg4 + crc32_const_fold_1x128b]
movd xmm0, DWORD(arg1) ; get the initial crc value
movdqu xmm7, [arg2] ; load the plaintext
pxor xmm7, xmm0
;; update the buffer pointer
add arg2, 16
;; update the counter
;; - subtract 32 instead of 16 to save one instruction from the loop
sub arg3, 32
jmp .16B_reduction_loop
align 32
.less_than_32:
;; Move initial crc to the return value.
;; This is necessary for zero-length buffers.
mov eax, DWORD(arg1)
test arg3, arg3
je .cleanup
movd xmm0, DWORD(arg1) ; get the initial crc value
cmp arg3, 16
je .exact_16_left
jl .less_than_16_left
movdqu xmm7, [arg2] ; load the plaintext
pxor xmm7, xmm0 ; xor the initial crc value
add arg2, 16
sub arg3, 16
movdqa xmm10, [arg4 + crc32_const_fold_1x128b]
jmp .get_last_two_xmms
align 32
.less_than_16_left:
simd_load_sse_15_1 xmm7, arg2, arg3
pxor xmm7, xmm0 ; xor the initial crc value
cmp arg3, 4
jl .only_less_than_4
lea rax, [rel pshufb_shf_table]
movdqu xmm0, [rax + arg3]
pshufb xmm7,xmm0
jmp .128_done
align 32
.exact_16_left:
movdqu xmm7, [arg2]
pxor xmm7, xmm0 ; xor the initial crc value
jmp .128_done
.only_less_than_4:
cmp arg3, 3
jl .only_less_than_3
pslldq xmm7, 5
jmp .barrett
.only_less_than_3:
cmp arg3, 2
jl .only_less_than_2
pslldq xmm7, 6
jmp .barrett
.only_less_than_2:
pslldq xmm7, 7
jmp .barrett
mksection .rodata
align 16
mask:
dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000
align 16
mask2:
dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
align 16
mask3:
dq 0x8080808080808080, 0x8080808080808080
align 16
pshufb_shf_table:
;; use these values for shift constants for the pshufb instruction
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
dq 0x0706050403020100, 0x000e0d0c0b0a0908
mksection stack-noexec
|