1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
;;
;; Copyright (c) 2018-2024, Intel Corporation
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are met:
;;
;; * Redistributions of source code must retain the above copyright notice,
;; this list of conditions and the following disclaimer.
;; * Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;; * Neither the name of Intel Corporation nor the names of its contributors
;; may be used to endorse or promote products derived from this software
;; without specific prior written permission.
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
;; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
;; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
;; DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
;; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
;; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
;; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
;; CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
;; OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
;; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;
%ifndef MB_MGR_AES_CMAC_SUBMIT_FLUSH_SSE_INC
%define MB_MGR_AES_CMAC_SUBMIT_FLUSH_SSE_INC
%include "include/os.inc"
%include "include/imb_job.inc"
%include "include/mb_mgr_datastruct.inc"
%include "include/reg_sizes.inc"
%include "include/memcpy.inc"
%include "include/const.inc"
;%define DO_DBGPRINT
%include "include/dbgprint.inc"
%define NUM_LANES 8
%define APPEND(a,b) a %+ b
%ifdef LINUX
%define arg1 rdi
%define arg2 rsi
%else
%define arg1 rcx
%define arg2 rdx
%endif
%define state arg1
%define job arg2
%define len2 arg2
%define job_rax rax
; idx needs to be in rbp
%define len rbp
%define idx rbp
%define tmp rbp
%define lane r8
%define iv r9
%define m_last r10
%define n r11
%define unused_lanes rbx
%define r rbx
%define tmp3 r12
%define tmp4 r13
%define tmp2 r14
%define good_lane r15
%define rbits r15
; STACK_SPACE needs to be an odd multiple of 8
; This routine and its callee clobbers all GPRs
struc STACK
_gpr_save: resq 8
_rsp_save: resq 1
endstruc
;;; ===========================================================================
;;; ===========================================================================
;;; MACROS
;;; ===========================================================================
;;; ===========================================================================
;;; ===========================================================================
;;; AES CMAC job submit & flush
;;; ===========================================================================
;;; SUBMIT_FLUSH [in] - SUBMIT, FLUSH job selection
%macro GENERIC_SUBMIT_FLUSH_JOB_AES_CMAC_SSE 2
%define %%SUBMIT_FLUSH %1 ;; [in] "SUBMIT" or "FLUSH" selection
%define %%AES_CBC_MAC %2 ;; [in] function to process CBC MAC algorithm on all lanes
mov rax, rsp
sub rsp, STACK_size
and rsp, -16
mov [rsp + _gpr_save + 8*0], rbx
mov [rsp + _gpr_save + 8*1], rbp
mov [rsp + _gpr_save + 8*2], r12
mov [rsp + _gpr_save + 8*3], r13
mov [rsp + _gpr_save + 8*4], r14
mov [rsp + _gpr_save + 8*5], r15
%ifndef LINUX
mov [rsp + _gpr_save + 8*6], rsi
mov [rsp + _gpr_save + 8*7], rdi
%endif
mov [rsp + _rsp_save], rax ; original SP
;; Find free lane
mov unused_lanes, [state + _aes_cmac_unused_lanes]
%ifidn %%SUBMIT_FLUSH, SUBMIT
mov lane, unused_lanes
and lane, 0xF
shr unused_lanes, 4
mov [state + _aes_cmac_unused_lanes], unused_lanes
;; Copy job info into lane
mov [state + _aes_cmac_job_in_lane + lane*8], job
;; Copy keys into lane args
mov tmp, [job + _key_expanded]
mov [state + _aes_cmac_args_keys + lane*8], tmp
mov tmp, lane
shl tmp, 4 ; lane*16
;; Zero IV to store digest
pxor xmm0, xmm0
movdqa [state + _aes_cmac_args_IV + tmp], xmm0
lea m_last, [state + _aes_cmac_scratch + tmp]
;; calculate len
;; convert bits to bytes (message length in bits for CMAC)
mov len, [job + _msg_len_to_hash_in_bits]
mov rbits, len
add len, 7 ; inc len if there are remainder bits
shr len, 3
and rbits, 7
;; Check at least 1 or more blocks (get n)
mov n, len
add n, 0xf
shr n, 4
;; Check for partial block
mov r, len
and r, 0xf
or n, n ; check one or more blocks?
jz %%_lt_one_block
;; One or more blocks, potentially partial
mov word [state + _aes_cmac_init_done + lane*2], 0
mov tmp2, [job + _src]
add tmp2, [job + _hash_start_src_offset_in_bytes]
mov [state + _aes_cmac_args_in + lane*8], tmp2
;; len = (n-1)*16
lea tmp2, [n - 1]
shl tmp2, 4
movdqa xmm0, [state + _aes_cmac_lens]
XPINSRW xmm0, xmm1, tmp, lane, tmp2, scale_x16
movdqa [state + _aes_cmac_lens], xmm0
;; check remainder bits
or rbits, rbits
jnz %%_not_complete_block_3gpp
;; check if complete block
or r, r
jz %%_complete_block
%%_not_complete_block:
;; M_last = padding(M_n) XOR K2
lea tmp, [rel padding_0x80_tab16 + 16]
sub tmp, r
movdqu xmm0, [tmp]
movdqa [m_last], xmm0
mov tmp, [job + _src]
add tmp, [job + _hash_start_src_offset_in_bytes]
lea tmp3, [n - 1]
shl tmp3, 4
add tmp, tmp3
memcpy_sse_16 m_last, tmp, r, tmp4, tmp3
;; src + n + r
mov tmp3, [job + _skey2]
movdqa xmm1, [m_last]
movdqu xmm0, [tmp3]
pxor xmm0, xmm1
movdqa [m_last], xmm0
%%_step_5:
;; Find min length
movdqa xmm0, [state + _aes_cmac_lens]
phminposuw xmm1, xmm0
cmp byte [state + _aes_cmac_unused_lanes], 0xf
jne %%_return_null
%else ; end SUBMIT
;; Check at least one job
bt unused_lanes, ((NUM_LANES * 4) + 3)
jc %%_return_null
;; Find a lane with a non-null job
xor good_lane, good_lane
cmp qword [state + _aes_cmac_job_in_lane + 1*8], 0
cmovne good_lane, [rel one]
cmp qword [state + _aes_cmac_job_in_lane + 2*8], 0
cmovne good_lane, [rel two]
cmp qword [state + _aes_cmac_job_in_lane + 3*8], 0
cmovne good_lane, [rel three]
cmp qword [state + _aes_cmac_job_in_lane + 4*8], 0
cmovne good_lane, [rel four]
cmp qword [state + _aes_cmac_job_in_lane + 5*8], 0
cmovne good_lane, [rel five]
cmp qword [state + _aes_cmac_job_in_lane + 6*8], 0
cmovne good_lane, [rel six]
cmp qword [state + _aes_cmac_job_in_lane + 7*8], 0
cmovne good_lane, [rel seven]
; Copy good_lane to empty lanes
mov tmp2, [state + _aes_cmac_args_in + good_lane*8]
mov tmp3, [state + _aes_cmac_args_keys + good_lane*8]
shl good_lane, 4 ; multiply by 16
movdqa xmm2, [state + _aes_cmac_args_IV + good_lane]
movdqa xmm0, [state + _aes_cmac_lens]
%assign I 0
%rep NUM_LANES
cmp qword [state + _aes_cmac_job_in_lane + I*8], 0
jne APPEND(%%_skip_,I)
mov [state + _aes_cmac_args_in + I*8], tmp2
mov [state + _aes_cmac_args_keys + I*8], tmp3
movdqa [state + _aes_cmac_args_IV + I*16], xmm2
por xmm0, [rel len_masks + 16*I]
APPEND(%%_skip_,I):
%assign I (I+1)
%endrep
;; Find min length
phminposuw xmm1, xmm0
jmp %%_cmac_round
%%_cmac_round_flush:
;; - good lane already known
;; - copy good_lane input pointer to empty lanes
;; - lens updated and vphminposuw executed
mov tmp2, [state + _aes_cmac_args_in + good_lane*8]
xor tmp3, tmp3
%assign I 0
%rep NUM_LANES
cmp qword [state + _aes_cmac_job_in_lane + I*8], tmp3
jne APPEND(%%_skip2_,I)
mov [state + _aes_cmac_args_in + I*8], tmp2
APPEND(%%_skip2_,I):
%assign I (I+1)
%endrep
%endif ; end FLUSH
%%_cmac_round:
pextrw len2, xmm1, 0 ; min value
pextrw idx, xmm1, 1 ; min index (0...3)
or len2, len2
je %%_len_is_0
pshufb xmm1, [rel dupw] ; duplicate words across all lanes
psubw xmm0, xmm1
movdqa [state + _aes_cmac_lens], xmm0
; "state" and "args" are the same address, arg1
; len2 is arg2
call %%AES_CBC_MAC
; state and idx are intact
movdqa xmm0, [state + _aes_cmac_lens] ; preload lens
%%_len_is_0:
; Check if job complete
test word [state + _aes_cmac_init_done + idx*2], 0xffff
jnz %%_copy_complete_digest
; Finish step 6
mov word [state + _aes_cmac_init_done + idx*2], 1
; Reset NULL lane lens to UINT16_MAX
%ifidn %%SUBMIT_FLUSH, FLUSH
pxor xmm1, xmm1
pcmpeqq xmm1, [state + _aes_cmac_job_in_lane + 0]
pshufb xmm1, [rel len_shuf_masks + 0]
pxor xmm2, xmm2
pcmpeqq xmm2, [state + _aes_cmac_job_in_lane + 16]
pshufb xmm2, [rel len_shuf_masks + 16]
por xmm1, xmm2
por xmm0, xmm1
pxor xmm3, xmm3
pcmpeqq xmm3, [state + _aes_cmac_job_in_lane + 32]
pshufb xmm3, [rel len_shuf_masks + 32]
pxor xmm4, xmm4
pcmpeqq xmm4, [state + _aes_cmac_job_in_lane + 48]
pshufb xmm4, [rel len_shuf_masks + 48]
por xmm3, xmm4
por xmm0, xmm3
%endif ; %%SUBMIT_FLUSH == FLUSH
XPINSRW xmm0, xmm1, tmp3, idx, 16, scale_x16
movdqa [state + _aes_cmac_lens], xmm0
phminposuw xmm1, xmm0 ; find min length
mov tmp3, idx
shl tmp3, 4 ; idx*16
lea m_last, [state + _aes_cmac_scratch + tmp3]
mov [state + _aes_cmac_args_in + idx*8], m_last
%ifidn %%SUBMIT_FLUSH, SUBMIT
jmp %%_cmac_round
%else
mov good_lane, idx
jmp %%_cmac_round_flush
%endif
%%_copy_complete_digest:
; Job complete, copy digest to AT output
mov job_rax, [state + _aes_cmac_job_in_lane + idx*8]
mov tmp4, idx
shl tmp4, 4
lea tmp3, [state + _aes_cmac_args_IV + tmp4]
mov tmp4, [job_rax + _auth_tag_output_len_in_bytes]
mov tmp2, [job_rax + _auth_tag_output]
cmp tmp4, 16
jne %%_ne_16_copy
;; 16 byte AT copy
movdqu xmm0, [tmp3]
movdqu [tmp2], xmm0
jmp %%_update_lanes
%%_ne_16_copy:
memcpy_sse_16 tmp2, tmp3, tmp4, lane, iv
%%_update_lanes:
; Update unused lanes
mov unused_lanes, [state + _aes_cmac_unused_lanes]
shl unused_lanes, 4
or unused_lanes, idx
mov [state + _aes_cmac_unused_lanes], unused_lanes
; Set return job
mov job_rax, [state + _aes_cmac_job_in_lane + idx*8]
mov qword [state + _aes_cmac_job_in_lane + idx*8], 0
or dword [job_rax + _status], IMB_STATUS_COMPLETED_AUTH
%ifdef SAFE_DATA
pxor xmm0, xmm0
%ifidn %%SUBMIT_FLUSH, SUBMIT
;; Clear digest (in memory for IV) and scratch memory of returned job
movdqa [tmp3], xmm0
shl idx, 4
movdqa [state + _aes_cmac_scratch + idx], xmm0
%else
;; Clear digest and scratch memory of returned job and "NULL lanes"
%assign I 0
%rep NUM_LANES
cmp qword [state + _aes_cmac_job_in_lane + I*8], 0
jne APPEND(%%_skip_clear_,I)
movdqa [state + _aes_cmac_args_IV + I*16], xmm0
movdqa [state + _aes_cmac_scratch + I*16], xmm0
APPEND(%%_skip_clear_,I):
%assign I (I+1)
%endrep
%endif ;; SUBMIT
%endif ;; SAFE_DATA
%%_return:
mov rbx, [rsp + _gpr_save + 8*0]
mov rbp, [rsp + _gpr_save + 8*1]
mov r12, [rsp + _gpr_save + 8*2]
mov r13, [rsp + _gpr_save + 8*3]
mov r14, [rsp + _gpr_save + 8*4]
mov r15, [rsp + _gpr_save + 8*5]
%ifndef LINUX
mov rsi, [rsp + _gpr_save + 8*6]
mov rdi, [rsp + _gpr_save + 8*7]
%endif
mov rsp, [rsp + _rsp_save] ; original SP
ret
%%_return_null:
xor job_rax, job_rax
jmp %%_return
%ifidn %%SUBMIT_FLUSH, SUBMIT
%%_complete_block:
;; Block size aligned
mov tmp2, [job + _src]
add tmp2, [job + _hash_start_src_offset_in_bytes]
lea tmp3, [n - 1]
shl tmp3, 4
add tmp2, tmp3
;; M_last = M_n XOR K1
mov tmp3, [job + _skey1]
movdqu xmm0, [tmp3]
movdqu xmm1, [tmp2]
pxor xmm0, xmm1
movdqa [m_last], xmm0
jmp %%_step_5
%%_lt_one_block:
;; Single partial block
mov word [state + _aes_cmac_init_done + lane*2], 1
mov [state + _aes_cmac_args_in + lane*8], m_last
movdqa xmm0, [state + _aes_cmac_lens]
XPINSRW xmm0, xmm1, tmp2, lane, 16, scale_x16
movdqa [state + _aes_cmac_lens], xmm0
mov n, 1
jmp %%_not_complete_block
%%_not_complete_block_3gpp:
;; bit pad last block
;; xor with skey2
;; copy to m_last
;; load pointer to src
mov tmp, [job + _src]
add tmp, [job + _hash_start_src_offset_in_bytes]
lea tmp3, [n - 1]
shl tmp3, 4
add tmp, tmp3
;; check if partial block
or r, r
jz %%_load_full_block_3gpp
simd_load_sse_15_1 xmm0, tmp, r
dec r
%%_update_mlast_3gpp:
;; set last byte padding mask
;; shift into correct xmm idx
;; save and restore rcx on windows
%ifndef LINUX
mov tmp, rcx
%endif
mov rcx, rbits
mov tmp3, 0xff
shr tmp3, cl
movq xmm2, tmp3
XPSLLB xmm2, r, xmm1, tmp2
;; pad final byte
pandn xmm2, xmm0
%ifndef LINUX
mov rcx, tmp
%endif
;; set OR mask to pad final bit
mov tmp2, tmp3
shr tmp2, 1
xor tmp2, tmp3 ; XOR to get OR mask
movq xmm3, tmp2
;; xmm1 contains shift table from previous shift
pshufb xmm3, xmm1
;; load skey2 address
mov tmp3, [job + _skey2]
movdqu xmm1, [tmp3]
;; set final padding bit
por xmm2, xmm3
;; XOR last partial block with skey2
;; update mlast
pxor xmm2, xmm1
movdqa [m_last], xmm2
jmp %%_step_5
%%_load_full_block_3gpp:
movdqu xmm0, [tmp]
mov r, 0xf
jmp %%_update_mlast_3gpp
%endif
%endmacro
%endif ;; MB_MGR_AES_CMAC_SUBMIT_FLUSH_SSE_INC
|