1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
|
/******************************************************************************
Copyright (c) 2007-2018, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
#ifndef DPML_PRIVATE_H
#define DPML_PRIVATE_H
#ifndef TRUE
# define TRUE 1
#endif
#ifndef FALSE
# define FALSE 0
#endif
#include "build.h"
#include "op_system.h"
#include "compiler.h"
#include "architecture.h"
#include "i_format.h"
#include "f_format.h"
#if NEW_DPML_MACROS == 1
# if MULTIPLE_ISSUE
# define PIPELINED 1
# else
# define PIPELINED 0
# endif
#endif
#define DPML_NULL_MACRO
#define DPML_NULL_MACRO_TOKEN 1
/*
* For values that are small powers of two, the follow macros are useful for
* generating the base two log of that values. For example,
* LOG2(BITS_PER_F_TYPE) will evaluate to 5, 6 or 7 for floating point
* types s/f, t/g or x.
*/
#define __LOG2(name) PASTE_2(__LOG2_,name)
#define __LOG2_1 0
#define __LOG2_2 1
#define __LOG2_4 2
#define __LOG2_8 3
#define __LOG2_16 4
#define __LOG2_32 5
#define __LOG2_64 6
#define __LOG2_128 7
#define __LOG2_256 8
#define __LOG2_512 9
#define __LOG2_1024 10
#define __LOG2_2048 11
#define __LOG2_4096 12
#define __LOG2_8192 13
#define __LOG2_16384 14
#define __LOG2_32768 15
#define __LOG2_65536 16
#if defined(F_TYPE)
# define GENERIC_TYPE F_TYPE
#else
# define GENERIC_TYPE I_TYPE
#endif
#ifndef TYPE1
# define TYPE1 GENERIC_TYPE
#endif
#ifndef TYPE2
# define TYPE2 GENERIC_TYPE
#endif
#ifndef TYPE3
# define TYPE3 GENERIC_TYPE
#endif
#if ((defined(ALPHA) || defined(alpha)) && (defined(wnt) || defined(vms)))
# define EXP_WORD_TYPE INT_64
#else
# define EXP_WORD_TYPE WORD
#endif
#if defined(MAKE_INCLUDE) || defined(MAKE_MTC)
# include "mtc_macros.h"
# include "mphoc_macros.h"
#endif
#include "poly_macros.h"
#include "assert.h"
#include "dpml_names.h"
#include "dpml_exception.h"
# define C_F_PROTO( name ) extern F_COMPLEX name( F_TYPE )
# define C_FF_PROTO( name ) extern F_COMPLEX name( F_TYPE, F_TYPE )
# define C_FI_PROTO( name ) extern F_COMPLEX name( F_TYPE, WORD )
# define C_FFFF_PROTO( name ) extern F_COMPLEX name( F_TYPE, F_TYPE, F_TYPE, F_TYPE )
# define C_p_PROTO( name ) extern F_COMPLEX name( F_COMPLEX * )
# define C_s_PROTO( name ) extern F_COMPLEX name( F_COMPLEX )
# define C_B_PROTO( name ) extern B_COMPLEX name( B_TYPE )
# define C_BB_PROTO( name ) extern B_COMPLEX name( B_TYPE, B_TYPE )
# define C_BBBB_PROTO( name ) extern B_COMPLEX name( B_TYPE, B_TYPE, B_TYPE, B_TYPE )
# define F_F_PROTO( name ) extern F_TYPE name( F_TYPE )
# define F_FF_PROTO( name ) extern F_TYPE name( F_TYPE, F_TYPE )
# define F_FI_PROTO( name ) extern F_TYPE name( F_TYPE, WORD )
# define F_FpI_PROTO( name ) extern F_TYPE name( F_TYPE, WORD* )
# define F_IF_PROTO( name ) extern F_TYPE name( WORD, F_TYPE )
# define B_B_PROTO( name ) extern B_TYPE name( B_TYPE )
# define B_BB_PROTO( name ) extern B_TYPE name( B_TYPE, B_TYPE )
# define B_BI_PROTO( name ) extern B_TYPE name( B_TYPE, WORD )
# define B_BpI_PROTO( name ) extern B_TYPE name( B_TYPE, WORD* )
# define B_IB_PROTO( name ) extern B_TYPE name( WORD, B_TYPE )
# define I_F_PROTO( name ) extern WORD name( F_TYPE )
# define I_FpF_PROTO( name ) extern WORD name( F_TYPE, F_TYPE* )
# define I_FIpF_PROTO( name ) extern WORD name( F_TYPE, WORD, F_TYPE* )
# define I_FIpFpF_PROTO( name ) extern WORD name( F_TYPE, WORD, F_TYPE*, F_TYPE* )
# define I_B_PROTO( name ) extern WORD name( B_TYPE )
# define I_BpB_PROTO( name ) extern WORD name( B_TYPE, B_TYPE* )
# define I_BIpB_PROTO( name ) extern WORD name( B_TYPE, WORD, B_TYPE* )
# define I_BIpBpB_PROTO( name ) extern WORD name( B_TYPE, WORD, B_TYPE*, B_TYPE* )
# define I_II_PROTO( name ) extern WORD name( WORD, WORD )
#define F_C_NAN 0
#define F_C_INF 1
#define F_C_NORM 2
#define F_C_DENORM 3
#define F_C_ZERO 4
#define F_C_POS_CLASS(n) ((n) << 1)
#define F_C_NEG_CLASS(n) (((n) << 1) | 1)
#define F_C_BASE_CLASS(c) ((c) >> 1)
#define F_C_IS_NEG_CLASS(c) ((c) & 1)
#define F_C_IS_POS_CLASS(c) (((c) & 1) == 0)
/* The F_C_* defs must be in the current order, enumerated from 0 to 9 */
# define F_C_SIG_NAN F_C_POS_CLASS(F_C_NAN) /* 0 */
# define F_C_QUIET_NAN F_C_NEG_CLASS(F_C_NAN) /* 1 */
# define F_C_POS_INF F_C_POS_CLASS(F_C_INF) /* 2 */
# define F_C_NEG_INF F_C_NEG_CLASS(F_C_INF) /* 3 */
# define F_C_POS_NORM F_C_POS_CLASS(F_C_NORM) /* 4 */
# define F_C_NEG_NORM F_C_NEG_CLASS(F_C_NORM) /* 5 */
# define F_C_POS_DENORM F_C_POS_CLASS(F_C_DENORM) /* 6 */
# define F_C_NEG_DENORM F_C_NEG_CLASS(F_C_DENORM) /* 7 */
# define F_C_POS_ZERO F_C_POS_CLASS(F_C_ZERO) /* 8 */
# define F_C_NEG_ZERO F_C_NEG_CLASS(F_C_ZERO) /* 9 */
# define F_C_NUM_CLASSES 10
# define F_C_CLASS_BIT_WIDTH 4
#define AS_WORD(p) (*(WORD *)&(p))
#define AS_CHAR(p) (*(char *)&(p))
#define AS_SHORT(p) (*(short *)&(p))
#define AS_INT(p) (*(int *)&(p))
#define AS_LONG(p) (*(long *)&(p))
#define AS_FLOAT(p) (*(float *)&(p))
#define AS_DOUBLE(p) (*(double *)&(p))
#define AS_F_TYPE(p) (*(F_TYPE *)&(p))
#define AS_B_TYPE(p) (*(B_TYPE *)&(p))
/* Environment specific macro definitions that pre-empt the generic
(and perhaps slow) definitions below are in include files per
ARCHITECTURE. The macros defined in these files should be a subset of
the macros defined below (i.e. if there is a specific version, there
should also be a generic version that will work with any ANSI C
compiler). [ In practice, we may not get around to writing the generic
versions until we need them. ] */
#if (ARCHITECTURE == vax)
# include "vax_macros.h"
#elif (ARCHITECTURE == mips)
# include "mips_macros.h"
#elif (ARCHITECTURE == hp_pa)
# include "ix86_macros.h"
#elif (ARCHITECTURE == cray)
# include "cray_macros.h"
#elif (ARCHITECTURE == alpha)
# include "alpha_macros.h"
#elif (ARCHITECTURE == ix86)
# include "ix86_macros.h"
#elif (ARCHITECTURE == merced)
#include "ix86_macros.h"
#elif (ARCHITECTURE == amd64 )
# include "ix86_macros.h"
#elif (ARCHITECTURE == sparc )
# include "ix86_macros.h"
#else
# error Unknown ARCHITECTURE.
#endif
# if (defined( _WIN32 ) && defined( _M_IX86 )) || (defined(merced) && !defined(HPUX_OS))
/* Disallow use of intrinsic math functions on Windows NT on Intel */
double acos( double ) ;
# pragma function( acos )
double asin( double ) ;
# pragma function( asin )
double atan( double ) ;
# pragma function( atan )
double atan2( double, double ) ;
# pragma function( atan2 )
double cos( double ) ;
# pragma function( cos )
double cosh( double ) ;
# pragma function( cosh )
double exp( double ) ;
# pragma function( exp )
double fabs( double ) ;
# pragma function( fabs )
double fmod( double, double ) ;
# pragma function( fmod )
double log( double ) ;
# pragma function( log )
double log10( double ) ;
# pragma function( log10 )
double pow( double, double ) ;
# pragma function( pow )
double sin( double ) ;
# pragma function( sin )
double sinh( double ) ;
# pragma function( sinh )
double sqrt( double ) ;
# pragma function( sqrt )
double tan( double ) ;
# pragma function( tan )
double tanh( double ) ;
# pragma function( tanh )
# endif /* defined( _WIN32 ) && defined( _M_IX86 ) */
# if defined(merced)
float acosf( float ) ;
# pragma function( acosf )
float asinf( float ) ;
# pragma function( asinf )
float atanf( float ) ;
# pragma function( atanf )
float atan2f( float, float ) ;
# pragma function( atan2f )
float cosf( float ) ;
# pragma function( cosf )
float coshf( float ) ;
# pragma function( coshf )
float expf( float ) ;
# pragma function( expf )
float fabsf( float ) ;
# pragma function( fabsf )
float fmodf( float, float ) ;
# pragma function( fmodf )
float logf( float ) ;
# pragma function( logf )
float log10f( float ) ;
# pragma function( log10f )
float powf( float, float ) ;
# pragma function( powf )
float sinf( float ) ;
# pragma function( sinf )
float sinhf( float ) ;
# pragma function( sinhf )
float sqrtf( float ) ;
# pragma function( sqrtf )
float tanf( float ) ;
# pragma function( tanf )
float tanhf( float ) ;
# pragma function( tanhf )
float ceilf( float ) ;
# pragma function( ceilf )
float floorf( float ) ;
# pragma function( floorf )
#endif
/* General macros and generic (though perhaps slow) versions of the
specific macro definitions included above. */
#ifndef F_IS_NAN
#define F_IS_NAN(x) (x != x)
#endif
#ifndef F_IS_ZERO
#define F_IS_ZERO(x) (x == 0.0)
#endif
#ifndef F_IS_NEG
#define F_IS_NEG(x) (x < 0.0)
#endif
#ifndef F_IS_POS
#define F_IS_POS(x) (x > 0.0)
#endif
#ifndef F_SET_FLAG_IF_ZERO
#define F_SET_FLAG_IF_ZERO(x,flag) { \
(flag) = ((x) == 0.0); \
}
#endif
#if 0
#ifndef F_SET_FLAG_IF_NEG
#define F_SET_FLAG_IF_NEG(x,flag) { \
(flag) = ((x) < 0.0); \
}
#endif
#endif
#ifndef F_SET_FLAG_IF_POS
#define F_SET_FLAG_IF_POS(x,flag) { \
(flag) = ((x) > 0.0); \
}
#endif
#if (VAX_FLOATING)
#ifndef F_EXP_WORD_IS_ABNORMAL
#define F_EXP_WORD_IS_ABNORMAL(exp_word) (!((exp_word) & F_EXP_MASK))
#endif
#ifndef F_EXP_WORD_IS_ABNORMAL_OR_NEG
#define F_EXP_WORD_IS_ABNORMAL_OR_NEG(exp_word) \
((INT_16)((exp_word) & ((1 << 16) - 1)) < (INT_16)(1 << F_EXP_POS))
#endif
#ifndef B_EXP_WORD_IS_ABNORMAL_OR_NEG
#define B_EXP_WORD_IS_ABNORMAL_OR_NEG(exp_word) \
((INT_16)((exp_word) & ((1 << 16) - 1)) < (INT_16)(1 << B_EXP_POS))
#endif
#ifndef F_EXP_WORD_IS_INFINITE_OR_NAN
/* It is assumed that ROP detection has already been done */
#define F_EXP_WORD_IS_INFINITE_OR_NAN(exp_word) (0)
#endif
#ifndef F_SET_FLAG_IF_ZERO_OR_DENORM
#define F_SET_FLAG_IF_ZERO_OR_DENORM(x,flag) { \
F_UNION u; \
u.f = (x); \
(flag) = (!(u.F_HI_WORD & F_SIGN_EXP_MASK)); \
}
#endif
#ifndef F_SET_FLAG_IF_DENORM
#define F_SET_FLAG_IF_DENORM(x,flag) { \
(flag) = 0; \
}
#endif
#ifndef F_SET_FLAG_IF_INF
#define F_SET_FLAG_IF_INF(x,flag) { \
(flag) = 0; \
}
#endif
#ifndef F_SET_FLAG_IF_FINITE
#define F_SET_FLAG_IF_FINITE(x,flag) { \
(flag) = 1; \
}
#endif
#ifndef F_SET_FLAG_IF_NAN
#define F_SET_FLAG_IF_NAN(x,flag) { \
F_UNION u; \
u.f = (x); \
(flag) = ((u.F_HI_WORD & F_SIGN_EXP_MASK) == F_SIGN_BIT_MASK); \
}
#endif
#ifndef F_SET_FLAG_IF_NAN_OR_INF
#define F_SET_FLAG_IF_NAN_OR_INF(x,flag) { \
F_UNION u; \
u.f = (x); \
(flag) = ((u.F_HI_WORD & F_SIGN_EXP_MASK) == F_SIGN_BIT_MASK); \
}
#endif
#ifndef F_SET_FLAG_IF_NORM
#define F_SET_FLAG_IF_NORM(x,flag) { \
F_UNION u; \
u.f = (x); \
(flag) = (u.F_HI_WORD & F_EXP_MASK); \
}
#endif
#ifndef F_CLASSIFY
#define F_CLASSIFY(x,class) { \
U_WORD exp; \
F_UNION u; \
u.f = (x); \
(class) = (((U_WORD)u.F_HI_WORD >> F_SIGN_BIT_POS) & 0x1); \
exp = (u.F_HI_WORD & F_EXP_MASK); \
if (exp) \
(class) += F_C_POS_NORM; \
else \
(class) = ((class) ? F_C_SIG_NAN : F_C_POS_ZERO); \
}
#endif
#ifndef F_CLASSIFY_AND_GET_EXP_WORD
#define F_CLASSIFY_AND_GET_EXP_WORD(x,class,exp_word) { \
U_WORD exp; \
F_UNION u; \
u.f = (x); \
exp_word = u.F_HI_WORD; \
(class) = (((U_WORD)u.F_HI_WORD >> F_SIGN_BIT_POS) & 0x1); \
exp = (u.F_HI_WORD & F_EXP_MASK); \
if (exp) \
(class) += F_C_POS_NORM; \
else \
(class) = ((class) ? F_C_SIG_NAN : F_C_POS_ZERO); \
}
#endif
#elif (IEEE_FLOATING)
#ifndef F_EXP_WORD_IS_ABNORMAL
#define F_EXP_WORD_IS_ABNORMAL(exp_word) \
(((exp_word) & F_EXP_MASK) - ((U_WORD)1 << F_EXP_POS) \
>= MAKE_MASK(F_EXP_WIDTH - 1, F_EXP_POS + 1))
#endif
#ifndef F_EXP_WORD_IS_ABNORMAL_OR_NEG
#define F_EXP_WORD_IS_ABNORMAL_OR_NEG(exp_word) \
((exp_word) - ((U_WORD)1 << F_EXP_POS) \
>= MAKE_MASK(F_EXP_WIDTH - 1, F_EXP_POS + 1))
#endif
#ifndef B_EXP_WORD_IS_ABNORMAL_OR_NEG
#define B_EXP_WORD_IS_ABNORMAL_OR_NEG(exp_word) \
((exp_word) - ((U_WORD)1 << B_EXP_POS) \
>= MAKE_MASK(B_EXP_WIDTH - 1, B_EXP_POS + 1))
#endif
#ifndef F_EXP_WORD_IS_INFINITE_OR_NAN
#define F_EXP_WORD_IS_INFINITE_OR_NAN(exp_word) \
(((exp_word) & F_EXP_MASK) == F_EXP_MASK)
#endif
#ifndef F_SET_FLAG_IF_ZERO_OR_DENORM
#define F_SET_FLAG_IF_ZERO_OR_DENORM(x,flag) { \
F_UNION u; \
u.f = (x); \
flag = (!(u.F_HI_WORD & F_EXP_MASK)); \
}
#endif
#ifndef F_SET_FLAG_IF_DENORM
#define F_SET_FLAG_IF_DENORM(x,flag) { \
F_UNION u; \
u.f = (x); \
flag = (!(u.F_HI_WORD & F_EXP_MASK) \
&& ((u.F_HI_WORD & F_MANTISSA_MASK) OR_LOW_BITS_SET(u))); \
}
#endif
#ifndef F_SET_FLAG_IF_INF
#define F_SET_FLAG_IF_INF(x,flag) { \
F_UNION u; \
u.f = (x); \
(flag) = (((u.F_HI_WORD & F_EXP_MASK) == F_EXP_MASK) \
&& (!((u.F_HI_WORD & F_MANTISSA_MASK) OR_LOW_BITS_SET(u)))); \
}
#endif
#ifndef F_SET_FLAG_IF_FINITE
#define F_SET_FLAG_IF_FINITE(x,flag) { \
F_UNION u; \
u.f = (x); \
(flag) = ((u.F_HI_WORD & F_EXP_MASK) != F_EXP_MASK); \
}
#endif
#ifndef F_SET_FLAG_IF_NAN
#define F_SET_FLAG_IF_NAN(x,flag) { \
F_UNION u; \
u.f = (x); \
(flag) = (((u.F_HI_WORD & F_EXP_MASK) == F_EXP_MASK) \
&& ((u.F_HI_WORD & F_MANTISSA_MASK) OR_LOW_BITS_SET(u))); \
}
#endif
#ifndef F_SET_FLAG_IF_NAN_OR_INF
#define F_SET_FLAG_IF_NAN_OR_INF(x,flag) { \
F_UNION u; \
u.f = (x); \
(flag) = ((u.F_HI_WORD & F_EXP_MASK) == F_EXP_MASK); \
}
#endif
#ifndef F_SET_FLAG_IF_NORM
#define F_SET_FLAG_IF_NORM(x,flag) { \
F_UNION u; \
u.f = (x); \
(flag) = (u.F_HI_WORD & F_EXP_MASK); \
(flag) = ((flag) && (flag < F_EXP_MASK)); \
}
#endif
#ifndef F_CLASSIFY
#define F_CLASSIFY(x,class) { \
U_WORD exp; \
F_UNION u; \
u.f = (x); \
(class) = (((U_WORD)u.F_HI_WORD >> F_SIGN_BIT_POS) & 0x1); \
exp = (u.F_HI_WORD & F_EXP_MASK); \
if (exp) { \
if (exp < F_EXP_MASK) \
(class) += F_C_POS_NORM; \
else { \
u.F_HI_WORD &= F_MANTISSA_MASK; \
if (u.F_HI_WORD OR_LOW_BITS_SET(u)) { \
(class) = (((U_WORD)u.F_HI_WORD >> F_MSB_POS) & 0x1); \
} else \
(class) += F_C_POS_INF; \
} \
} else { \
u.F_HI_WORD &= F_MANTISSA_MASK; \
(class) += \
((u.F_HI_WORD OR_LOW_BITS_SET(u)) ? F_C_POS_DENORM : F_C_POS_ZERO); \
} \
}
#endif
#ifndef F_CLASSIFY_AND_GET_EXP_WORD
#define F_CLASSIFY_AND_GET_EXP_WORD(x,class,exp_word) { \
U_WORD exp; \
F_UNION u; \
u.f = (x); \
exp_word = u.F_HI_WORD; \
(class) = (((U_WORD)u.F_HI_WORD >> F_SIGN_BIT_POS) & 0x1); \
exp = (u.F_HI_WORD & F_EXP_MASK); \
if (exp) { \
if (exp < F_EXP_MASK) \
(class) += F_C_POS_NORM; \
else { \
u.F_HI_WORD &= F_MANTISSA_MASK; \
if (u.F_HI_WORD OR_LOW_BITS_SET(u)) { \
(class) = (((U_WORD)u.F_HI_WORD >> F_MSB_POS) & 0x1); \
} else \
(class) += F_C_POS_INF; \
} \
} else { \
u.F_HI_WORD &= F_MANTISSA_MASK; \
(class) += \
((u.F_HI_WORD OR_LOW_BITS_SET(u)) ? F_C_POS_DENORM : F_C_POS_ZERO); \
} \
}
#endif
#endif /* floating type */
#ifndef F_SET_FLAG_IF_NEG
#define F_SET_FLAG_IF_NEG(x,flag) { \
F_UNION u; \
u.f = (x); \
(flag) = ((u.F_HI_WORD) & F_SIGN_BIT_MASK); \
}
#endif
#ifndef F_EXP_WORD_IS_ZERO_OR_DENORM
#define F_EXP_WORD_IS_ZERO_OR_DENORM(exp_word) \
(!((exp_word) & F_EXP_MASK))
#endif
#ifndef B_EXP_WORD_IS_ZERO_OR_DENORM
#define B_EXP_WORD_IS_ZERO_OR_DENORM(exp_word) \
(!((exp_word) & B_EXP_MASK))
#endif
#ifndef F_EXP_WORD_IS_NEG
#define F_EXP_WORD_IS_NEG(exp_word) \
((exp_word) & F_SIGN_BIT_MASK)
#endif
#ifndef B_EXP_WORD_IS_NEG
#define B_EXP_WORD_IS_NEG(exp_word) \
((exp_word) & B_SIGN_BIT_MASK)
#endif
#ifndef F_EXP_WORD_IS_POS
#define F_EXP_WORD_IS_POS(exp_word) \
(!((exp_word) & F_SIGN_BIT_MASK))
#endif
#ifndef SET_BIT
# define SET_BIT(pos) ((U_WORD)1 << (pos))
#endif
#ifndef MAKE_MASK
# define MAKE_MASK(width,pos) ((((U_WORD)1 << (width)) - 1) << (pos))
#endif
/* Rounding modes are done in an architecture specific way. If no
specific macros were defined, assume there are no rounding modes. */
#ifndef GET_ROUNDING_MODE
#define GET_ROUNDING_MODE(old)
#endif
#ifndef SET_ROUNDING_MODE
#define SET_ROUNDING_MODE(new)
#endif
#ifndef SWAP_ROUNDING_MODE
#define SWAP_ROUNDING_MODE(new,old)
#endif
#ifndef FPU_STATUS_WORD_TYPE
#define FPU_STATUS_WORD_TYPE WORD
#endif
#ifndef INIT_FPU_STATE_AND_ROUND_TO_NEAREST
#define INIT_FPU_STATE_AND_ROUND_TO_NEAREST(status_word)
#endif
#ifndef INIT_FPU_STATE_AND_ROUND_TO_ZERO
#define INIT_FPU_STATE_AND_ROUND_TO_ZERO(status_word)
#endif
#ifndef RESTORE_FPU_STATE
#define RESTORE_FPU_STATE(status_word)
#endif
/* Constants in bytes, for table indexing */
#define BYTES_PER_S_TYPE (BITS_PER_S_TYPE/BITS_PER_CHAR)
#define BYTES_PER_D_TYPE (BITS_PER_D_TYPE/BITS_PER_CHAR)
#define BYTES_PER_Q_TYPE (BITS_PER_Q_TYPE/BITS_PER_CHAR)
#define BYTES_PER_B_TYPE (BITS_PER_B_TYPE/BITS_PER_CHAR)
#define BYTES_PER_R_TYPE (BITS_PER_R_TYPE/BITS_PER_CHAR)
/* Make_float primitives */
#define S_MAKE_FLOAT(i,s) { \
S_UNION u; \
u.S_HI_WORD = (i); \
s = u.f; \
}
#if WORDS_PER_D_TYPE == 1
# define D_MAKE_FLOAT(i,s) { \
D_UNION u; \
u.D_HI_WORD = (i); \
s = u.f; \
}
#elif WORDS_PER_D_TYPE == 2
# define D_MAKE_FLOAT(i,s) { \
D_UNION u; \
u.D_HI_WORD = (i); \
u.D_LO_WORD = 0; \
s = u.f; \
}
#else
# error Surprising number of words per D_FLOAT
#endif
#define D_MAKE_FLOAT_64(i,s) { \
D_UNION u; \
u.D_UNSIGNED_HI_64 = (i); \
s = u.f; \
}
#define Q_MAKE_FLOAT(i,s) { \
Q_UNION u; \
u.f = 0.0; \
u.Q_HI_WORD = (i); \
s = u.f; \
}
#define F_EXP_MAKE_FLOAT PASTE_2(F_PREC_CHAR,_MAKE_FLOAT)
#define B_EXP_MAKE_FLOAT PASTE_2(B_PREC_CHAR,_MAKE_FLOAT)
#define F_MAKE_FLOAT(i,s) F_EXP_MAKE_FLOAT(i,s)
#define B_MAKE_FLOAT(i,s) B_EXP_MAKE_FLOAT(i,s)
/* The following several macros are intended to be used as a set. It
is the combination of F_SAVE_SIGN_AND_GET_ABS and F_RESTORE_SIGN (or
F_NEGATE_IF_SIGN_NEG) that should be efficient (i.e. if slowing one of
them down will make the combination faster, go ahead and do it. */
#ifndef F_SIGN_TYPE
# define F_SIGN_TYPE U_WORD
# define F_SAVE_SIGN_AND_GET_ABS(x, sign, abs_x) { \
F_TYPE save_x = (x); \
F_ABS((x), (abs_x)); \
(sign) = ((abs_x) != save_x); \
}
# define F_CHANGE_SIGN(sign) \
(sign) = !(sign)
# define F_RESTORE_SIGN(sign, x) \
ASSERT((x) >= 0.0); \
if (sign) F_NEGATE(x);
# define F_NEGATE_IF_SIGN_NEG(sign, x) \
if (sign) F_NEGATE(x);
#endif
#ifndef S_NEGATE
#define S_NEGATE(x) (x) = -(x)
#endif
#ifndef D_NEGATE
#define D_NEGATE(x) (x) = -(x)
#endif
#ifndef F_NEGATE
#define F_NEGATE(x) (x) = -(x)
#endif
#ifndef B_NEGATE
#define B_NEGATE(x) (x) = -(x)
#endif
#ifndef S_SET_NEG_BIT
#define S_SET_NEG_BIT(x) if ((x) > 0.0) S_NEGATE(x);
#endif
#ifndef D_SET_NEG_BIT
#define D_SET_NEG_BIT(x) if ((x) > 0.0) D_NEGATE(x);
#endif
#ifndef F_SET_NEG_BIT
#define F_SET_NEG_BIT(x) if ((x) > 0.0) F_NEGATE(x);
#endif
#ifndef B_SET_NEG_BIT
#define B_SET_NEG_BIT(x) if ((x) > 0.0) B_NEGATE(x);
#endif
#ifndef S_CLEAR_NEG_BIT
#define S_CLEAR_NEG_BIT(x) if ((x) < 0.0) S_NEGATE(x);
#endif
#ifndef D_CLEAR_NEG_BIT
#define D_CLEAR_NEG_BIT(x) if ((x) < 0.0) D_NEGATE(x);
#endif
#ifndef F_CLEAR_NEG_BIT
#define F_CLEAR_NEG_BIT(x) if ((x) < 0.0) F_NEGATE(x);
#endif
#ifndef B_CLEAR_NEG_BIT
#define B_CLEAR_NEG_BIT(x) if ((x) < 0.0) B_NEGATE(x);
#endif
#ifndef S_ABS
#define S_ABS(x,abs_x) { \
(abs_x) = (x); \
S_CLEAR_NEG_BIT(abs_x); \
}
#endif
#ifndef D_ABS
#define D_ABS(x,abs_x) { \
(abs_x) = (x); \
D_CLEAR_NEG_BIT(abs_x); \
}
#endif
#ifndef F_ABS
#define F_ABS(x,abs_x) { \
(abs_x) = (x); \
F_CLEAR_NEG_BIT(abs_x); \
}
#endif
#ifndef B_ABS
#define B_ABS(x,abs_x) { \
(abs_x) = (x); \
B_CLEAR_NEG_BIT(abs_x); \
}
#endif
/* Note that these copy_sign macros do not work correctly with -0.0 */
#ifndef S_COPY_SIGN
#undef S_COPY_SIGN_IS_FAST
#define S_COPY_SIGN(value,sign,result) { \
if ((sign) < 0.0) \
{ \
S_ABS((value), (result)); \
S_NEGATE(result); \
} \
else \
S_ABS((value), (result)); \
}
#endif
#ifndef D_COPY_SIGN
#undef D_COPY_SIGN_IS_FAST
#define D_COPY_SIGN(value,sign,result) { \
if ((sign) < 0.0) \
{ \
D_ABS((value), (result)); \
D_NEGATE(result); \
} \
else \
D_ABS((value), (result)); \
}
#endif
#ifndef F_COPY_SIGN
#undef F_COPY_SIGN_IS_FAST
#define F_COPY_SIGN(value,sign,result) { \
if ((sign) < 0.0) \
{ \
F_ABS((value), (result)); \
F_NEGATE(result); \
} \
else \
F_ABS((value), (result)); \
}
#endif
#ifndef B_COPY_SIGN
#undef B_COPY_SIGN_IS_FAST
#define B_COPY_SIGN(value,sign,result) { \
if ((sign) < 0.0) \
{ \
B_ABS((value), (result)); \
B_NEGATE(result); \
} \
else \
B_ABS((value), (result)); \
}
#endif
#ifndef S_COPY_SIGN_AND_EXP
#undef S_COPY_SIGN_AND_EXP_IS_FAST
#define S_COPY_SIGN_AND_EXP(value,sign_and_exp,result) { \
S_UNION u; \
U_WORD new_sign_exp; \
u.f = sign_and_exp; \
new_sign_exp = u.S_HI_WORD & S_SIGN_EXP_MASK; \
u.f = value; \
u.S_HI_WORD &= ~S_SIGN_EXP_MASK; \
u.S_HI_WORD |= new_sign_exp; \
result = u.f; \
}
#endif
#ifndef D_COPY_SIGN_AND_EXP
#undef D_COPY_SIGN_AND_EXP_IS_FAST
#define D_COPY_SIGN_AND_EXP(value,sign_and_exp,result) { \
D_UNION u; \
U_WORD new_sign_exp; \
u.f = sign_and_exp; \
new_sign_exp = u.D_HI_WORD & D_SIGN_EXP_MASK; \
u.f = value; \
u.D_HI_WORD &= ~D_SIGN_EXP_MASK; \
u.D_HI_WORD |= new_sign_exp; \
result = u.f; \
}
#endif
#ifndef F_COPY_SIGN_AND_EXP
#undef F_COPY_SIGN_AND_EXP_IS_FAST
#define F_COPY_SIGN_AND_EXP(value,sign_and_exp,result) { \
F_UNION u; \
U_WORD new_sign_exp; \
u.f = sign_and_exp; \
new_sign_exp = u.F_HI_WORD & F_SIGN_EXP_MASK; \
u.f = value; \
u.F_HI_WORD &= ~F_SIGN_EXP_MASK; \
u.F_HI_WORD |= new_sign_exp; \
result = u.f; \
}
#endif
#ifndef B_COPY_SIGN_AND_EXP
#undef B_COPY_SIGN_AND_EXP_IS_FAST
#define B_COPY_SIGN_AND_EXP(value,sign_and_exp,result) { \
B_UNION u; \
U_WORD new_sign_exp; \
u.f = sign_and_exp; \
new_sign_exp = u.B_HI_WORD & B_SIGN_EXP_MASK; \
u.f = value; \
u.B_HI_WORD &= ~B_SIGN_EXP_MASK; \
u.B_HI_WORD |= new_sign_exp; \
result = u.f; \
}
#endif
#ifndef F_COPY_NEG_SIGN
/* F_COPY_NEG_SIGN assumes the input value is non-negative. If the
input value is negative, the sign of the result is undefined. If the
input value is non-negative and sign is negative, the result will be
-(value). If value is non-negative and sign is non-negative, the
result will = value. */
#if F_COPY_SIGN_IS_FAST
# define F_COPY_NEG_SIGN(sign,abs_sign,value) \
ASSERT((value) >= 0.0); \
F_COPY_SIGN((value),(sign),(value))
#else
# define F_COPY_NEG_SIGN(sign,abs_sign,value) { \
ASSERT((value) >= 0.0); \
if ((abs_sign) != (sign)) \
F_NEGATE(value); \
}
#endif
#endif
#if (F_MAX_BIN_EXP > 2 * F_PRECISION)
# define GOTO_CLEANUP_IF_POTENTIAL_OVERFLOW(x, t)
#else
# define GOTO_CLEANUP_IF_POTENTIAL_OVERFLOW(x, t) { \
F_TYPE abs_x; \
F_ABS(x, abs_x); \
if (abs_x >= t) \
goto cleanup; \
}
#endif
#if (DPML_DEBUG)
# define DPML_DEBUG_ABS(x) (((x) < 0.0) ? (-(x)) : (x))
#endif
#ifndef F_POS_RINT
#undef F_POS_RINT_IS_FAST
#define F_POS_RINT_PRECISION_LIMIT (F_PRECISION - 1)
#define F_POS_RINT(x,y) { \
F_TYPE t = F_POW_2(F_PRECISION - 1); \
ASSERT((x) < t); \
(y) = (x) + t; \
(y) -= t; \
}
#endif
#ifndef F_NEG_RINT
#undef F_NEG_RINT_IS_FAST
#define F_NEG_RINT_PRECISION_LIMIT (F_PRECISION - 1)
#define F_NEG_RINT(x,y) { \
F_TYPE t = F_POW_2(F_PRECISION - 1); \
ASSERT((x) > -t); \
(y) = (x) - t; \
(y) += t; \
}
#endif
#ifndef S_RINT
#define S_RINT_PRECISION_LIMIT (F_PRECISION - 1)
#define S_RINT(x,y) { \
S_TYPE t = S_POW_2(S_PRECISION - 1); \
ASSERT(DPML_DEBUG_ABS(x) < t); \
S_COPY_SIGN(t, (x), t); \
(y) = (x) + t; \
(y) -= t; \
}
#endif
#ifndef D_RINT
#define D_RINT_PRECISION_LIMIT (F_PRECISION - 1)
#define D_RINT(x,y) { \
D_TYPE t = D_POW_2(D_PRECISION - 1); \
ASSERT(DPML_DEBUG_ABS(x) < t); \
D_COPY_SIGN(t, (x), t); \
(y) = (x) + t; \
(y) -= t; \
}
#endif
#ifndef F_RINT
#undef F_RINT_IS_FAST
#define F_RINT_PRECISION_LIMIT (F_PRECISION - 1)
#define F_RINT(x,y) { \
F_TYPE t = F_POW_2(F_PRECISION - 1); \
ASSERT(DPML_DEBUG_ABS(x) < t); \
F_COPY_SIGN(t, (x), t); \
(y) = (x) + t; \
(y) -= t; \
}
#endif
#ifndef B_RINT
#undef B_RINT_IS_FAST
#define B_RINT_PRECISION_LIMIT (B_PRECISION - 1)
#define B_RINT(x,y) { \
B_TYPE t = B_POW_2(B_PRECISION - 1); \
ASSERT(DPML_DEBUG_ABS(x) < t); \
B_COPY_SIGN(t, (x), t); \
(y) = (x) + t; \
(y) -= t; \
}
#endif
#ifndef S_RINT_TO_FLOATING_AND_WORD
#define S_RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT (S_RINT_PRECISION_LIMIT)
#define S_RINT_TO_FLOATING_AND_WORD(x, flt_int_x, int_x) { \
S_RINT((x), (flt_int_x)); \
(int_x) = (WORD) (flt_int_x); \
}
#endif
#ifndef D_RINT_TO_FLOATING_AND_WORD
#define D_RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT (D_RINT_PRECISION_LIMIT)
#define D_RINT_TO_FLOATING_AND_WORD(x, flt_int_x, int_x) { \
D_RINT((x), (flt_int_x)); \
(int_x) = (WORD) (flt_int_x); \
}
#endif
#ifndef F_RINT_TO_FLOATING_AND_WORD
#define F_RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT (F_RINT_PRECISION_LIMIT)
#define F_RINT_TO_FLOATING_AND_WORD(x, flt_int_x, int_x) { \
F_RINT((x), (flt_int_x)); \
(int_x) = (WORD) (flt_int_x); \
}
#endif
#ifndef B_RINT_TO_FLOATING_AND_WORD
#define B_RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT (B_RINT_PRECISION_LIMIT)
#define B_RINT_TO_FLOATING_AND_WORD(x, flt_int_x, int_x) { \
B_RINT((x), (flt_int_x)); \
(int_x) = (WORD) (flt_int_x); \
}
#endif
#ifndef F_POS_TRUNC
#undef F_POS_TRUNC_IS_FAST
#define F_POS_TRUNC_PRECISION_LIMIT (F_PRECISION - 1)
#define F_POS_TRUNC(x,y) { \
F_TYPE orig_x = (x); \
F_TYPE t = F_POW_2(F_PRECISION - 1); \
ASSERT((x) < t); \
(y) = x + t; \
(y) -= t; \
if ((y) > orig_x) \
(y) -= 1.0; \
}
#endif
#ifndef F_NEG_TRUNC
#undef F_NEG_TRUNC_IS_FAST
#define F_NEG_TRUNC_PRECISION_LIMIT (F_PRECISION - 1)
#define F_NEG_TRUNC(x,y) { \
F_TYPE orig_x = (x); \
F_TYPE t = F_POW_2(F_PRECISION - 1); \
ASSERT((x) > -t); \
(y) = x - t; \
(y) += t; \
if ((y) < orig_x) \
(y) += 1.0; \
}
#endif
#ifndef F_TRUNC
#undef F_TRUNC_IS_FAST
#define F_TRUNC_PRECISION_LIMIT (F_PRECISION - 1)
#define F_TRUNC(x,y) { \
F_TYPE orig_x = (x); \
F_TYPE abs_x, t = F_POW_2(F_PRECISION - 1); \
F_ABS(orig_x, abs_x); \
ASSERT(abs_x < t); \
(y) = abs_x + t; \
(y) -= t; \
if ((y) > abs_x) \
(y) -= 1.0; \
if (abs_x != orig_x) \
F_NEGATE(y); \
}
#endif
#ifndef F_CVT_TO_WORD_CHOPPED
#undef F_CVT_TO_WORD_CHOPPED_IS_FAST
#define F_CVT_TO_WORD_CHOPPED_PRECISION_LIMIT (BITS_PER_WORD - 1)
#define F_CVT_TO_WORD_CHOPPED(x,i) (i) = (WORD)(x)
#endif
#ifndef F_CVT_TO_WORD_ROUNDED
#undef F_CVT_TO_WORD_ROUNDED_IS_FAST
#define F_CVT_TO_WORD_ROUNDED_PRECISION_LIMIT (F_PRECISION - 1)
#define F_CVT_TO_WORD_ROUNDED(x,i) { \
U_WORD status_word; \
F_TYPE y, t; \
t = F_POW_2(F_PRECISION - 1); \
ASSERT(DPML_DEBUG_ABS(x) < t); \
F_COPY_SIGN(t, (x), t); \
INIT_FPU_STATE_AND_ROUND_TO_NEAREST(status_word); \
y = (x) + t; \
RESTORE_FPU_STATE(status_word); \
y -= t; \
(i) = (WORD)y; \
}
#endif
#ifndef F_CVT_TO_WORD_ROUNDED_UP
#undef F_CVT_TO_WORD_ROUNDED_UP_IS_FAST
#define F_CVT_TO_WORD_ROUNDED_UP_PRECISION_LIMIT (F_PRECISION - 1)
#define F_CVT_TO_WORD_ROUNDED_UP(x,i) { \
F_TYPE y, t; \
t = F_POW_2(F_PRECISION - 1); \
ASSERT(DPML_DEBUG_ABS(x) < t); \
F_COPY_SIGN(t, (x), t); \
y = (x) + t; \
y -= t; \
if (y < x) \
y += 1.0; \
(i) = (WORD)y; \
}
#endif
#ifndef F_CVT_TO_WORD_ROUNDED_DOWN
#undef F_CVT_TO_WORD_ROUNDED_DOWN_IS_FAST
#define F_CVT_TO_WORD_ROUNDED_DOWN_PRECISION_LIMIT (F_PRECISION - 1)
#define F_CVT_TO_WORD_ROUNDED_DOWN(x,i) { \
F_TYPE y, t; \
t = F_POW_2(F_PRECISION - 1); \
ASSERT(DPML_DEBUG_ABS(x) < t); \
F_COPY_SIGN(t, (x), t); \
y = (x) + t; \
y -= t; \
if (y > x) \
y -= 1.0; \
(i) = (WORD)y; \
}
#endif
#if 0
These do not yet have generic definitions:
#define ARITH_SHIFT_WORD_RIGHT(i,j)
#define F_ADD_CHOPPED
#define F_ADD_ROUNDED_UP
#define F_ADD_ROUNDED_DOWN
#define F_MUL_CHOPPED
#define F_MUL_ROUNDED_UP
#define F_MUL_ROUNDED_DOWN
#endif
#ifndef EXT_MUL
#define EXT_MUL(i,j,lo,hi) { \
WORD I = (i); \
WORD J = (j); \
U_WORD sign, i_neg, j_neg; \
i_neg = (I < 0); \
sign = i_neg; \
if (i_neg) { I = ~((U_WORD)(I)) + 1; i_neg = (I < 0); } \
j_neg = (J < 0); \
if (j_neg) { sign ^= 1; J = ~((U_WORD)J) + 1; j_neg = (J < 0); } \
if (i_neg | j_neg) { \
if (i_neg) { \
(lo) = (U_WORD)J << (BITS_PER_WORD - 1); \
(hi) = (U_WORD)J >> 1; \
} else { \
(lo) = (U_WORD)I << (BITS_PER_WORD - 1); \
(hi) = (U_WORD)I >> 1; \
} \
} else { \
EXT_UMUL(I,J,(lo),(hi)); \
} \
if (sign) { \
(lo) = ~((U_WORD)(lo)) + 1; \
(hi) = ~((U_WORD)(hi)); \
if (!lo) (hi) += 1; \
} \
}
#endif
#ifndef EXT_MULH
#define EXT_MULH(i,j,hi) { \
WORD lo; \
EXT_MUL((i),(j),(lo),(hi)); \
}
#endif
#ifndef EXT_MUL1
#define EXT_MUL1(i,u1,u2) EXT_MUL((i),(u1),(u1),(u2))
#endif
#ifndef EXT_UMUL
#define EXT_UMUL(i,j,lo,hi) { \
U_WORD i1, i2, j1, j2, p1, p2; \
i2 = (U_WORD)(i) >> (BITS_PER_WORD / 2); \
j2 = (U_WORD)(j) >> (BITS_PER_WORD / 2); \
p2 = i2 * j2; \
i1 = (U_WORD)((i) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
p1 = i1 * j2; \
j1 = (U_WORD)((j) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
(lo) = i1 * j1; \
(hi) = p2; \
(hi) += (U_WORD)(p1 >> (BITS_PER_WORD / 2)); \
ADD_AND_CARRY((p1 << (BITS_PER_WORD / 2)), (lo), (hi)); \
p2 = i2 * j1; \
(hi) += (U_WORD)(p2 >> (BITS_PER_WORD / 2)); \
ADD_AND_CARRY((p2 << (BITS_PER_WORD / 2)), (lo), (hi)); \
}
#endif
#ifndef EXT_UMULH
#define EXT_UMULH(i,j,hi) { \
U_WORD lo; \
EXT_UMUL((i),(j),(lo),(hi)); \
}
#endif
#ifndef EXT_UMUL1
#define EXT_UMUL1(i,u1,u2) EXT_UMUL((i),(u1),(u1),(u2))
#endif
#ifndef EXT_UMUL2
#define EXT_UMUL2(i,u1,u2,u3) { \
U_WORD c1, c2, i1, i2, j1, j2, j3, j4, p1, p2, p3; \
i2 = (U_WORD)(i) >> (BITS_PER_WORD / 2); \
j2 = (U_WORD)(u1) >> (BITS_PER_WORD / 2); \
p2 = i2 * j2; \
i1 = (U_WORD)((i) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
j1 = (U_WORD)((u1) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
j3 = (U_WORD)((u2) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
j4 = (U_WORD)(u2) >> (BITS_PER_WORD / 2); \
u2 = i1 * j3; \
u3 = i2 * j4; \
u1 = i1 * j1; \
ADD_AND_CARRY(p2, u2, u3); \
p1 = i1 * j2; \
p2 = i2 * j1; \
p1 += p2; \
c1 = (p1 < p2); \
p2 = i1 * j4; \
p3 = i2 * j3; \
p2 += p3; \
c2 = (p2 < p3); \
p2 += c1; \
c1 = (p2 < c1); \
c1 += c2; \
u3 += (c1 << (BITS_PER_WORD / 2)); \
ADD_AND_CARRY_2( (p1 << (BITS_PER_WORD / 2)), u1, u2, u3); \
ADD_AND_CARRY( (p1 >> (BITS_PER_WORD / 2)), u2, u3); \
ADD_AND_CARRY( (p2 << (BITS_PER_WORD / 2)), u2, u3); \
u3 += (p2 >> (BITS_PER_WORD / 2)); \
}
#endif
#ifndef EXT_UMUL3
#define EXT_UMUL3(i,u1,u2,u3,u4) { \
U_WORD c1, c2, c3, i1, i2, j1, j2, j3, j4, j5, j6, p1, p2, p3, p4; \
i2 = (U_WORD)(i) >> (BITS_PER_WORD / 2); \
j2 = (U_WORD)(u1) >> (BITS_PER_WORD / 2); \
p2 = i2 * j2; \
i1 = (U_WORD)((i) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
j1 = (U_WORD)((u1) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
j3 = (U_WORD)((u2) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
p1 = i1 * j3; \
j4 = (U_WORD)(u2) >> (BITS_PER_WORD / 2); \
j5 = (U_WORD)((u3) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
j6 = (U_WORD)(u3) >> (BITS_PER_WORD / 2); \
u1 = i1 * j1; \
u2 = p1; \
u3 = i2 * j4; \
p1 = i1 * j5; \
u4 = i2 * j6; \
ADD_AND_CARRY_2(p2, u2, u3, u4); \
ADD_AND_CARRY(p1, u3, u4); \
p1 = i1 * j2; \
p2 = i2 * j1; \
p1 += p2; \
c1 = (p1 < p2); \
p2 = i1 * j4; \
p3 = i2 * j3; \
p2 += p3; \
c2 = (p2 < p3); \
p3 = i1 * j6; \
p4 = i2 * j5; \
p3 += p4; \
c3 = (p3 < p4); \
p2 += c1; \
c1 = (p2 < c1); \
c2 += c1; \
p3 += c2; \
c2 = (p3 < c2); \
c3 += c2; \
u4 += (c3 << (BITS_PER_WORD / 2)); \
ADD_AND_CARRY_3( (p1 << (BITS_PER_WORD / 2)), u1, u2, u3, u4); \
ADD_AND_CARRY_2( (p1 >> (BITS_PER_WORD / 2)), u2, u3, u4); \
ADD_AND_CARRY_2( (p2 << (BITS_PER_WORD / 2)), u2, u3, u4); \
ADD_AND_CARRY( (p2 >> (BITS_PER_WORD / 2)), u3, u4); \
ADD_AND_CARRY( (p3 << (BITS_PER_WORD / 2)), u3, u4); \
u4 += (p3 >> (BITS_PER_WORD / 2)); \
}
#endif
#if (BITS_PER_WORD == 32) && !defined(UMUL32_64_BY_64_GIVING_96)
#define UMUL32_64_BY_64_GIVING_96(x0,x1,y0,y1,z1,z2,z3) { \
U_WORD z0, c1, c2, c3, i1, i2, i3, i4, j1, j2, j3, j4, p1, p2, p3, p4; \
i2 = (U_WORD)(x0) >> (BITS_PER_WORD / 2); \
j2 = (U_WORD)(y0) >> (BITS_PER_WORD / 2); \
p2 = i2 * j2; \
i4 = (U_WORD)(x1) >> (BITS_PER_WORD / 2); \
j4 = (U_WORD)(y1) >> (BITS_PER_WORD / 2); \
i1 = (U_WORD)((x0) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
j1 = (U_WORD)((y0) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
p4 = i4 * j4; \
i3 = (U_WORD)((x1) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
j3 = (U_WORD)((y1) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
z0 = i1 * j1; \
z0 >> (BITS_PER_WORD / 2); \
p1 = i1 * j2; \
p1 += z0; \
p1 >> (BITS_PER_WORD / 2); \
z1 = i1 * j3; \
z1 += p1; \
p1 = i2 * j1; \
p1 >> (BITS_PER_WORD / 2); \
p2 += p1; \
z1 += p2; \
c1 = (z1 < p2); \
p1 = i3 * j1; \
z1 += p1; \
c1 += (z1 < p1); \
z2 = i2 * j4; \
p1 = i3 * j3; \
z2 += p1; \
c2 = (z2 < p1); \
p1 = i4 * j2; \
z2 += p1; \
c2 += (z2 < p1); \
z2 += c1; \
c2 += (z2 < c1); \
z3 = p4 + c2; \
p2 = i1 * j4; \
p1 = i2 * j3; \
p2 += p1; \
c2 = (p2 < p1); \
p1 = i3 * j2; \
p2 += p1; \
c2 += (p2 < p1); \
p1 = i4 * j1; \
p2 += p1; \
c2 += (p2 < p1); \
p3 = i3 * j4; \
p1 = i4 * j3; \
p3 += p1; \
c3 = (p3 < p1); \
p3 += c2; \
c3 += (p3 < c2); \
z3 += (c3 << (BITS_PER_WORD / 2)); \
z3 += (p3 >> (BITS_PER_WORD / 2)); \
ADD_AND_CARRY( (p3 << (BITS_PER_WORD / 2)), z2, z3); \
ADD_AND_CARRY( (p2 >> (BITS_PER_WORD / 2)), z2, z3); \
ADD_AND_CARRY_2( (p2 << (BITS_PER_WORD / 2)), z1, z2, z3); \
}
#endif
#ifndef ADD_AND_CARRY
#define ADD_AND_CARRY(i,u1,u2) { \
U_WORD carry; \
(u1) += (i); \
carry = ((u1) < (i)); \
(u2) += carry; \
}
#endif
#ifndef ADD_AND_CARRY_2
#define ADD_AND_CARRY_2(i,u1,u2,u3) { \
U_WORD carry; \
(u1) += (i); \
carry = ((u1) < (i)); \
(u2) += carry; \
carry = ((u2) < carry); \
(u3) += carry; \
}
#endif
#ifndef ADD_AND_CARRY_3
#define ADD_AND_CARRY_3(i,u1,u2,u3,u4) { \
U_WORD carry; \
(u1) += (i); \
carry = ((u1) < (i)); \
(u2) += carry; \
carry = ((u2) < carry); \
(u3) += carry; \
carry = ((u3) < carry); \
(u4) += carry; \
}
#endif
#ifndef U_MUL_BY_10
#define U_MUL_BY_10(i) { \
(i) = (U_WORD)(i) + ((U_WORD)(i) << 2); \
(i) = (U_WORD)(i) << 1; \
}
#endif
#ifndef LEFT_NORMALIZE_WORD
#define LEFT_NORMALIZE_WORD(i,j) { \
(j) = 0; \
while ((WORD)(i) > 0) { \
(i) <<= 1; \
(j) += 1; \
} \
}
#endif
#ifndef SHIFT_WORD_LEFT
#define SHIFT_WORD_LEFT(shift, u) { \
(u) <<= (shift); \
}
#endif
#ifndef SHIFT_2_WORDS_LEFT
#define SHIFT_2_WORDS_LEFT(shift, u1, u2) { \
ASSERT((shift) != 0); \
(u1) <<= (shift); \
(u1) |= ((u2) >> (BITS_PER_WORD - (shift))); \
(u2) <<= (shift); \
}
#endif
#ifndef SHIFT_3_WORDS_LEFT
#define SHIFT_3_WORDS_LEFT(shift, u1, u2, u3) { \
ASSERT((shift) != 0); \
(u1) <<= (shift); \
(u1) |= ((u2) >> (BITS_PER_WORD - (shift))); \
(u2) <<= (shift); \
(u2) |= ((u3) >> (BITS_PER_WORD - (shift))); \
(u3) <<= (shift); \
}
#endif
#ifndef SHIFT_4_WORDS_LEFT
#define SHIFT_4_WORDS_LEFT(shift, u1, u2, u3, u4) { \
ASSERT((shift) != 0); \
(u1) <<= (shift); \
(u1) |= ((u2) >> (BITS_PER_WORD - (shift))); \
(u2) <<= (shift); \
(u2) |= ((u3) >> (BITS_PER_WORD - (shift))); \
(u3) <<= (shift); \
(u3) |= ((u4) >> (BITS_PER_WORD - (shift))); \
(u4) <<= (shift); \
}
#endif
#ifndef SHIFT_WORD_RIGHT
#define SHIFT_WORD_RIGHT(shift, u) { \
(u) >>= (shift); \
}
#endif
#ifndef SHIFT_2_WORDS_RIGHT
#define SHIFT_2_WORDS_RIGHT(shift, u1, u2) { \
ASSERT((shift) != 0); \
(u1) >>= (shift); \
(u1) |= ((u2) << (BITS_PER_WORD - (shift))); \
(u2) >>= (shift); \
}
#endif
#ifndef SHIFT_3_WORDS_RIGHT
#define SHIFT_3_WORDS_RIGHT(shift, u1, u2, u3) { \
ASSERT((shift) != 0); \
(u1) >>= (shift); \
(u1) |= ((u2) << (BITS_PER_WORD - (shift))); \
(u2) >>= (shift); \
(u2) |= ((u3) << (BITS_PER_WORD - (shift))); \
(u3) >>= (shift); \
}
#endif
#ifndef SHIFT_4_WORDS_RIGHT
#define SHIFT_4_WORDS_RIGHT(shift, u1, u2, u3, u4) { \
ASSERT((shift) != 0); \
(u1) >>= (shift); \
(u1) |= ((u2) << (BITS_PER_WORD - (shift))); \
(u2) >>= (shift); \
(u2) |= ((u3) << (BITS_PER_WORD - (shift))); \
(u3) >>= (shift); \
(u3) |= ((u4) << (BITS_PER_WORD - (shift))); \
(u4) >>= (shift); \
}
#endif
#ifndef D_GET_EXP_WORD
#define D_GET_EXP_WORD(x,exp_word) { \
D_UNION u; \
u.f = (x); \
(exp_word) = u.D_HI_WORD; \
}
#endif
#ifndef GET_EXP_WORD
#define GET_EXP_WORD(x,exp_word) { \
F_UNION u; \
u.f = (x); \
(exp_word) = u.F_HI_WORD; \
}
#endif
#ifndef D_PUT_EXP_WORD
#define D_PUT_EXP_WORD(x,exp_word) { \
D_UNION u; \
u.f = (x); \
u.D_HI_WORD = (exp_word); \
(x) = u.f; \
}
#endif
#ifndef PUT_EXP_WORD
#define PUT_EXP_WORD(x,exp_word) { \
F_UNION u; \
u.f = (x); \
u.F_HI_WORD = (exp_word); \
(x) = u.f; \
}
#endif
#ifndef GET_SIGN_WORD
#define GET_SIGN_WORD(x,sign_word) { \
F_UNION u; \
u.f = (x); \
(sign_word) = u.F_HI_WORD; \
}
#endif
#ifndef PUT_SIGN_WORD
#define PUT_SIGN_WORD(x,sign_word) { \
F_UNION u; \
u.f = (x); \
u.F_HI_WORD = (sign_word); \
(x) = u.f; \
}
#endif
#ifndef GET_HI_FRAC_WORD
#define GET_HI_FRAC_WORD(x,hi_frac_word) { \
F_UNION u; \
u.f = (x); \
(hi_frac_word) = u.F_HI_WORD; \
}
#endif
#ifndef PUT_HI_FRAC_WORD
#define PUT_HI_FRAC_WORD(x,hi_frac_word) { \
F_UNION u; \
u.f = (x); \
u.F_HI_WORD = (hi_frac_word); \
(x) = u.f; \
}
#endif
#ifndef GET_LO_FRAC_WORD
#define GET_LO_FRAC_WORD(x,lo_frac_word) { \
F_UNION u; \
u.f = (x); \
(lo_frac_word) = u.F_LO_WORD; \
}
#endif
#ifndef PUT_LO_FRAC_WORD
#define PUT_LO_FRAC_WORD(x,lo_frac_word) { \
F_UNION u; \
u.f = (x); \
u.F_LO_WORD = (lo_frac_word); \
(x) = u.f; \
}
#endif
#ifndef GET_EXP_BITS
#define GET_EXP_BITS(x,mask,exp_bits) { \
GET_EXP_WORD((x),(exp_bits)); \
(exp_bits) &= (mask); \
}
#endif
#ifndef PUT_EXP_BITS
#define PUT_EXP_BITS(x,mask,exp_bits) { \
F_UNION u; \
u.f = (x); \
u.F_HI_WORD &= ~(mask); \
u.F_HI_WORD |= (exp_bits); \
(x) = u.f; \
}
#endif
#ifndef D_PUT_EXP_BITS
#define D_PUT_EXP_BITS(x,mask,exp_bits) { \
D_UNION u; \
u.f = (x); \
u.D_HI_WORD &= ~(mask); \
u.D_HI_WORD |= (exp_bits); \
(x) = u.f; \
}
#endif
#ifndef GET_EXP_FIELD
#define GET_EXP_FIELD(x,exp_field) { \
GET_EXP_BITS((x),F_EXP_MASK,(exp_field)); \
}
#endif
#ifndef F_GET_EXP_FIELD
#define F_GET_EXP_FIELD(x, exp_word) { \
F_UNION u; \
u.f = (x); \
(exp_word) = u.F_HI_WORD; \
(exp_word) &= F_EXP_MASK; \
}
#endif
#ifndef B_GET_EXP_FIELD
#define B_GET_EXP_FIELD(x, exp_word) { \
B_UNION u; \
u.f = (x); \
(exp_word) = u.B_HI_WORD; \
(exp_word) &= B_EXP_MASK; \
}
#endif
#ifndef S_GET_EXP_FIELD
#define S_GET_EXP_FIELD(x, exp_word) { \
S_UNION u; \
u.f = (x); \
(exp_word) = u.S_HI_WORD; \
(exp_word) &= S_EXP_MASK; \
}
#endif
#ifndef D_GET_EXP_FIELD
#define D_GET_EXP_FIELD(x, exp_word) { \
D_UNION u; \
u.f = (x); \
(exp_word) = u.D_HI_WORD; \
(exp_word) &= D_EXP_MASK; \
}
#endif
#ifndef PUT_EXP_FIELD
#define PUT_EXP_FIELD(x,exp_field) { \
PUT_EXP_BITS((x),F_EXP_MASK,(exp_field)); \
}
#endif
#ifndef ALIGN_W_EXP_FIELD
#define ALIGN_W_EXP_FIELD(w) ((U_WORD)(w) << F_EXP_POS)
#endif
#ifndef D_ALIGN_W_EXP_FIELD
#define D_ALIGN_W_EXP_FIELD(w) ((U_WORD)(w) << D_EXP_POS)
#endif
#ifndef B_ALIGN_W_EXP_FIELD
#define B_ALIGN_W_EXP_FIELD(w) ((U_WORD)(w) << B_EXP_POS)
#endif
#ifndef ALIGN_EXP_FIELD_W_WORD
#define ALIGN_EXP_FIELD_W_WORD(w) (((U_WORD)(w)) >> F_EXP_POS)
#endif
#ifndef D_ALIGN_EXP_FIELD_W_WORD
#define D_ALIGN_EXP_FIELD_W_WORD(w) (((U_WORD)(w)) >> D_EXP_POS)
#endif
#ifndef B_ALIGN_EXP_FIELD_W_WORD
#define B_ALIGN_EXP_FIELD_W_WORD(w) (((U_WORD)(w)) >> B_EXP_POS)
#endif
#ifndef GET_SIGN_EXP_FIELD
#define GET_SIGN_EXP_FIELD(x,sign_exp_field) { \
GET_EXP_BITS((x),F_SIGN_EXP_MASK,(sign_exp_field)); \
}
#endif
#ifndef PUT_SIGN_EXP_FIELD
#define PUT_SIGN_EXP_FIELD(x,sign_exp_field) { \
PUT_EXP_BITS((x),F_SIGN_EXP_MASK,(sign_exp_field)); \
}
#endif
#ifndef D_PUT_SIGN_EXP_FIELD
#define D_PUT_SIGN_EXP_FIELD(x,sign_exp_field) { \
D_PUT_EXP_BITS((x),D_SIGN_EXP_MASK,(sign_exp_field)); \
}
#endif
#ifndef ADD_TO_EXP_WORD
#define ADD_TO_EXP_WORD(x,increment) { \
F_UNION u; \
u.f = (x); \
u.F_HI_WORD += (increment); \
(x) = u.f; \
}
#endif
#ifndef B_ADD_TO_EXP_WORD
#define B_ADD_TO_EXP_WORD(x,increment) { \
B_UNION u; \
u.f = (x); \
u.B_HI_WORD += (increment); \
(x) = u.f; \
}
#endif
#ifndef ADD_TO_EXP_FIELD
#define ADD_TO_EXP_FIELD(x,increment) { \
ADD_TO_EXP_WORD((x),((U_WORD)(increment) << F_EXP_POS)); \
}
#endif
#ifndef B_ADD_TO_EXP_FIELD
#define B_ADD_TO_EXP_FIELD(x,increment) { \
B_ADD_TO_EXP_WORD((x),((U_WORD)(increment) << B_EXP_POS)); \
}
#endif
#ifndef SUB_FROM_EXP_WORD
#define SUB_FROM_EXP_WORD(x,decrement) { \
F_UNION u; \
u.f = (x); \
u.F_HI_WORD -= (decrement); \
(x) = u.f; \
}
#endif
#ifndef SUB_FROM_EXP_FIELD
#define SUB_FROM_EXP_FIELD(x,decrement) { \
SUB_FROM_EXP_WORD((x),((U_WORD)(decrement) << F_EXP_POS)); \
}
#endif
#ifndef SCALE_EXPONENT_BY_INT
#define SCALE_EXPONENT_BY_INT(x,increment) { \
ADD_TO_EXP_FIELD((x),(increment)); \
}
#endif
#ifndef B_SCALE_EXPONENT_BY_INT
#define B_SCALE_EXPONENT_BY_INT(x,increment) { \
B_ADD_TO_EXP_FIELD((x),(increment)); \
}
#endif
#ifndef SCALE_EXPONENT_BY_FLT
#define SCALE_EXPONENT_BY_FLT(x,increment) { \
(x) *= F_POW_2(increment); \
}
#endif
#ifndef B_SCALE_EXPONENT_BY_FLT
#define B_SCALE_EXPONENT_BY_FLT(x,increment) { \
(x) *= B_POW_2(increment); \
}
#endif
#if (SCALE_METHOD == by_int)
#ifndef SCALE_EXPONENT
#define SCALE_EXPONENT(x,increment) SCALE_EXPONENT_BY_INT((x),(increment))
#endif
#ifndef B_SCALE_EXPONENT
# define B_SCALE_EXPONENT(x,increment) B_SCALE_EXPONENT_BY_INT((x),(increment))
#endif
#else /* scale by float */
#ifndef SCALE_EXPONENT
#define SCALE_EXPONENT(x,increment) SCALE_EXPONENT_BY_FLT((x),(increment))
#endif
#ifndef B_SCALE_EXPONENT
# define B_SCALE_EXPONENT(x,increment) B_SCALE_EXPONENT_BY_FLT((x),(increment))
#endif
#endif /* SCALE_METHOD */
#ifndef CVT_TO_HI_LO_BY_FLT
#define CVT_TO_HI_LO_BY_FLT(x,big,y) { \
F_TYPE t = (big); \
F_COPY_SIGN(t, (x), t); \
HI(y) = (x) + t; \
HI(y) -= t; \
LO(y) = (x) - HI(y); \
}
#endif
#ifndef CVT_TO_HI_LO_BY_FLT_SIGNED
#define CVT_TO_HI_LO_BY_FLT_SIGNED(x,big,y) { \
HI(y) = (x) + (big); \
HI(y) -= (big); \
LO(y) = (x) - HI(y); \
}
#endif
#ifndef CVT_TO_HI_LO_BY_INT
#define CVT_TO_HI_LO_BY_INT(x,n,y) { \
F_UNION u; \
u.f = (x); \
u.F_LO_WORD &= ~(PDP_SHUFFLE(MAKE_MASK((n), 0))); \
HI(y) = u.f; \
LO(y) = (x) - HI(y); \
}
#endif
#ifndef SPLIT_TO_HI_LO_BY_INT
#if ((F_PRECISION / 2) <= BITS_PER_WORD)
#define SPLIT_TO_HI_LO_BY_INT(x,y) { \
F_UNION u; \
u.f = (x); \
u.F_LO_WORD &= ~(PDP_SHUFFLE(MAKE_MASK((F_PRECISION / 2), 0))); \
HI(y) = u.f; \
LO(y) = (x) - HI(y); \
}
#else
#define SPLIT_TO_HI_LO_BY_INT(x,y) { \
F_UNION u; \
u.f = (x); \
u.F_LO3_WORD = 0; \
u.F_LO2_WORD &= ~(PDP_SHUFFLE(MAKE_MASK(((F_PRECISION / 2) - BITS_PER_WORD), 0))); \
HI(y) = u.f; \
LO(y) = (x) - HI(y); \
}
#endif
#endif
#if PRECISION_BACKUP_AVAILABLE
#ifndef EXTENDED_MUL_SUB
#define EXTENDED_MUL_SUB(a,b,c,y) { \
y = (B_TYPE)(a) - ( (B_TYPE)(b) * (B_TYPE)(c) ); \
}
#endif
#ifndef QUICK_EXTENDED_MUL_SUB
#define QUICK_EXTENDED_MUL_SUB(a,b,c,y) { \
y = (B_TYPE)(a) - ( (B_TYPE)(b) * (B_TYPE)(c) ); \
}
#endif
#else /* no PRECISION_BACKUP_AVAILABLE */
#ifndef EXTENDED_MUL_SUB
#define EXTENDED_MUL_SUB(a,b,c,y) { \
y = ((((a \
- HI(b) * HI(c)) \
- HI(b) * LO(c)) \
- LO(b) * HI(c)) \
- LO(b) * LO(c)); \
}
#endif
#ifndef QUICK_EXTENDED_MUL_SUB
#define QUICK_EXTENDED_MUL_SUB(a,b,c,y) { \
y = ((a \
- b * HI(c)) \
- b * LO(c)); \
}
#endif
#endif /* PRECISION_BACKUP_AVAILABLE */
#if (QUAD_PRECISION) && !(defined(merced) && !defined(VMS))
# define C_C_PROTO(n) C_p_PROTO(n)
# define COMPLEX_QUAD_DECL(n) F_COMPLEX n
# define COMPLEX_ARGS_INIT(x) F_TYPE PASTE(r,x)=x->r, PASTE(i,x)=x->i
# define COMPLEX_ARGS(x) F_COMPLEX *x
# define PASS_CMPLX(a,b,p) ( p.r = a, p.i = b, (&p))
# define COMPLEX_PROTOTYPE F_COMPLEX *
# define COMPLEX_B_PROTOTYPE B_COMPLEX *
#elif defined(merced) && !defined(VMS)
# define C_C_PROTO(n) C_s_PROTO(n)
# define COMPLEX_QUAD_DECL(n) F_COMPLEX n
# define COMPLEX_ARGS_INIT(x) F_TYPE PASTE(r,x)=x.r, PASTE(i,x)=x.i
# define COMPLEX_ARGS(x) F_COMPLEX x
# define PASS_CMPLX(a,b,p) (p.r = a, p.i = b, p)
# define COMPLEX_PROTOTYPE F_COMPLEX
# define COMPLEX_B_PROTOTYPE B_COMPLEX
#else
# define C_C_PROTO(n) C_FF_PROTO(n)
# define COMPLEX_QUAD_DECL(n)
# define COMPLEX_ARGS_INIT(x)
# define COMPLEX_ARGS(x) F_TYPE PASTE(r,x), F_TYPE PASTE(i,x)
# define PASS_CMPLX(a,b,p) (F_TYPE) a, (F_TYPE) b
# define COMPLEX_PROTOTYPE F_TYPE, F_TYPE
# define COMPLEX_B_PROTOTYPE B_TYPE, B_TYPE
#endif
#ifndef S_RECEIVE_COMPLEX_RESULT
# define S_RECEIVE_COMPLEX_RESULT(a,b,f) \
{ S_COMPLEX _t = f; a = _t.r; b = _t.i; }
#endif
#ifndef S_RETURN_COMPLEX_RESULT
# define S_RETURN_COMPLEX_RESULT(a,b) \
{ S_COMPLEX _t; _t.r = a; _t.i = b; return _t; }
#endif
#ifndef D_RECEIVE_COMPLEX_RESULT
# define D_RECEIVE_COMPLEX_RESULT(a,b,f) \
{ D_COMPLEX _t = f; a = _t.r; b = _t.i; }
#endif
#ifndef D_RETURN_COMPLEX_RESULT
# define D_RETURN_COMPLEX_RESULT(a,b) \
{ D_COMPLEX _t; _t.r = a; _t.i = b; return _t; }
#endif
#ifndef Q_RECEIVE_COMPLEX_RESULT
# define Q_RECEIVE_COMPLEX_RESULT(a,b,f) \
{ Q_COMPLEX _t = f; a = _t.r; b = _t.i; }
#endif
#ifndef Q_RETURN_COMPLEX_RESULT
# define Q_RETURN_COMPLEX_RESULT(a,b) \
{ Q_COMPLEX _t; _t.r = a; _t.i = b; return _t; }
#endif
#ifndef RECEIVE_COMPLEX_RESULT
# if defined(SINGLE_PRECISION)
# define RECEIVE_COMPLEX_RESULT(a,b,f) S_RECEIVE_COMPLEX_RESULT(a,b,f)
# elif defined(DOUBLE_PRECISION)
# define RECEIVE_COMPLEX_RESULT(a,b,f) D_RECEIVE_COMPLEX_RESULT(a,b,f)
# else
# define RECEIVE_COMPLEX_RESULT(a,b,f) Q_RECEIVE_COMPLEX_RESULT(a,b,f)
# endif
#endif
#ifndef RETURN_COMPLEX_RESULT
# if defined(SINGLE_PRECISION)
# define RETURN_COMPLEX_RESULT(a,b) S_RETURN_COMPLEX_RESULT(a,b)
# elif defined(DOUBLE_PRECISION)
# define RETURN_COMPLEX_RESULT(a,b) D_RETURN_COMPLEX_RESULT(a,b)
# else
# define RETURN_COMPLEX_RESULT(a,b) Q_RETURN_COMPLEX_RESULT(a,b)
# endif
#endif
#ifndef ADD_SUB_BIG
# define ADD_SUB_BIG(x,big) \
(x) += (big); (x) -= (big)
#endif
#ifndef SHORTEN_VIA_CASTS
# define SHORTEN_VIA_CASTS(in,out) \
(out) = (F_TYPE)((R_TYPE)(in))
#endif
#ifndef ASSIGN_WITH_F_TYPE_PRECISION
# define ASSIGN_WITH_F_TYPE_PRECISION(x,y) \
(y) = (F_TYPE)(x)
#endif
/*
* The following macros are use to scale denormalized values to normalized
* results. All scaling is done by an implicit multiplication by a power
* of two. The power of two used to scale the denormalized values is
* defined by the macro __LOG2_DENORM_SCALE, which defaults to F_PRECISION.
* Based on __LOG2_DENORM_SCALE, three other constants are specified for
* convienence:
*
* __DENORM_SCALE 2^__LOG2_DENORM_SCALE
* __DENORM_SCALE_BIASED_EXP the aligned, biased and unbiased
* __DENORM_SCALE_UNBIASED_EXP exponent field of __DENORM_SCALE
* __LOG2_DENORM_SCALE_ALIGNED_W_EXP __LOG2_DENORM_SCALE aligned with
* exponent field
*
* The technique used for scaling involves minipulataing the exponent field
* of the value to be scaled. Specifically, if x is denormalized value with
* bit pattern:
*
* +-+-----------+------------------------+
* x: |s|000 ... 000| F |
* +-+-----------+------------------------+
*
* Then x = (-1)^s*2^F_MIN_BIN_EXP*2^F_NORM*[F/2^(P_PRECISION - 1)]. Define u
* and v, to be a floating point numbers with the following bits patterns:
*
* +-+-----------+------------------------+
* u: |s| E | F |
* +-+-----------+------------------------+
*
* +-+-----------+------------------------+
* v: |s| E | 0 |
* +-+-----------+------------------------+
*
* I.e. u has the bit pattern of x, with the exponent field set to E and v
* is u with the fraction field cleared. It follows that u and v have values:
*
* u = (-1)^s*2^(E-F_EXP_BIAS)*2^F_NORM*[1 + F/2^(P_PRECISION - 1)]
* v = (-1)^s*2^(E-F_EXP_BIAS)*2^F_NORM
*
* If z is defined as u - v, then
*
* z = (-1)^s*2^(E-F_EXP_BIAS)*2^F_NORM*[F/2^(P_PRECISION - 1)]
* = 2^*(E-F_EXP_BIAS-F_MIN_BIN_EXP)*
* (-1)^s*2^F_MIN_BIN_EXP*2^F_NORM*[F/2^(P_PRECISION - 1)]
* = 2^*(E-F_EXP_BIAS-F_MIN_BIN_EXP)*x
*
* I.e. z is x scaled up by 2^e, where e = E - F_EXP_BIAS - F_MIN_BIN_EXP. In
* the macros below, specifying __LOG2_DENORM_SCALE is equivalent to specifying
* e in the above discussion.
*/
#if !defined(__LOG2_DENORM_SCALE)
# if F_COPY_SIGN_AND_EXP_IS_FAST
# define __LOG2_DENORM_SCALE (F_PRECISION - F_MIN_BIN_EXP)
# else
# define __LOG2_DENORM_SCALE F_PRECISION
# endif
#endif
#undef __DENORM_SCALE_UNBIASED_EXP
#define __DENORM_SCALE_UNBIASED_EXP ALIGN_W_EXP_FIELD(__LOG2_DENORM_SCALE \
- F_NORM)
#undef __DENORM_SCALE_BIASED_EXP
#define __DENORM_SCALE_BIASED_EXP ALIGN_W_EXP_FIELD(__LOG2_DENORM_SCALE \
- F_NORM + F_EXP_BIAS)
#undef __LOG2_DENORM_SCALE_ALIGNED_W_EXP
#define __LOG2_DENORM_SCALE_ALIGNED_W_EXP \
ALIGN_W_EXP_FIELD(__LOG2_DENORM_SCALE)
#define __LOG2_DENORM_CONST (__LOG2_DENORM_SCALE + F_NORM + \
F_MIN_BIN_EXP)
#define __DENORM_CONST_BIASED_EXP ALIGN_W_EXP_FIELD(__LOG2_DENORM_CONST \
- F_NORM + F_EXP_BIAS)
#if F_COPY_SIGN_AND_EXP_IS_FAST && \
(__LOG2_DENORM_CONST >= 0) && (__LOG2_DENORM_CONST <= __MAX_F_POW_2_EXP)
# undef __DENORM_CONST
# define __DENORM_CONST (F_TYPE) F_POW_2(__LOG2_DENORM_CONST)
# if defined(__NEED_SIGNED_DENORM_TO_NORM)
# define DENORM_TO_NORM(p,q) \
{ \
F_TYPE __denorm_const; \
F_COPY_SIGN(__DENORM_CONST,p,__denorm_const); \
F_COPY_SIGN_AND_EXP(p, __denorm_const, q); \
q -= __denorm_const; \
}
# else
# define DENORM_TO_NORM(p,q) \
{ \
F_COPY_SIGN_AND_EXP(p, __DENORM_CONST, q); \
q -= __DENORM_CONST; \
}
# endif
# define DENORM_TO_NORM_AND_EXP(p,e,q) \
{ DENORM_TO_NORM(p,q); GET_EXP_FIELD(q,e) }
#else
# define __DENORM_TO_NORM_EXP ALIGN_W_EXP_FIELD(__LOG2_DENORM_SCALE + \
F_NORM + F_EXP_BIAS + F_MIN_BIN_EXP)
# define __DENORM_TO_NORM(p,q) \
F_UNION u; \
u.f = p; \
u.F_HI_WORD = (u.F_HI_WORD & ~F_EXP_MASK) | \
__DENORM_TO_NORM_EXP; \
q = u.f; \
u.F_HI_WORD &= F_SIGN_EXP_MASK; \
CLEAR_LOW_BITS(u); \
q -= u.f
# define DENORM_TO_NORM(p,q) { __DENORM_TO_NORM(p,q); }
# define DENORM_TO_NORM_AND_EXP(p,e,q) \
{ \
__DENORM_TO_NORM(p,q); \
u.f = q; \
e = u.F_HI_WORD & F_EXP_MASK; \
}
#endif
/*
* The following macros support extended precision multiplication of a sequence
* of unsigned HALF_WORDs. The basic operation is an extended integer multiply
* and add. It has four inputs and three results. The inputs are an addend
* in hi and lo parts (w_hi, w_lo), the carry in from the previous operation,
* c_in, and the multiplier and multiplicand F and g. The three outputs are
* the carry out, c_out, and the hi and lo digits of the sum, z_hi and z_lo.
* Letting B = 2^BITS_PER_WORD, the basic operation is
*
* c_out*B^2 + z_hi*B + z_lo <== (w_hi*B + w_lo) + c_in*B + F*g
*
* The are 6 different macros, one for the basic operation and 5 special
* cases. E.g. ignore the carry out or carry is zero.
*
* They macros are defined as a group in order to be consistent. If
* BITS_PER_DIGIT is defined, it is assumed that the arithmetic macros have
* been in one of the architecture specific include files.
*/
#if !defined(BITS_PER_DIGIT)
# define BITS_PER_DIGIT BITS_PER_HALF_WORD
# define DIGIT_TYPE PASTE_2(U_INT_, BITS_PER_DIGIT)
# define SIGNED_DIGIT_TYPE PASTE_2(INT_, BITS_PER_DIGIT)
# define XMUL_XADDC_W_C_IN(F, g, w_hi, w_lo, c_in, c_out, z_hi, z_lo) \
{ \
U_WORD prod, addend, t; \
\
prod = ((U_WORD) F)*((U_WORD) g); \
addend = ((U_WORD)w_hi << BITS_PER_DIGIT) + (U_WORD) w_lo; \
t = (U_WORD) c_in << BITS_PER_DIGIT; \
prod += t; /* no carry out possible */ \
prod += addend; \
c_out = (prod < addend); \
z_hi = prod >> BITS_PER_DIGIT; \
z_lo = prod & MAKE_MASK(BITS_PER_DIGIT, 0); \
}
# define XMUL_XADD_W_C_IN(F, g, w_hi, w_lo, c_in, z_hi, z_lo) \
{ \
U_WORD prod, addend, t; \
\
prod = ((U_WORD) F)*((U_WORD) g); \
addend = ((U_WORD) w_hi << BITS_PER_DIGIT) + (U_WORD) w_lo; \
t = (U_WORD) c_in << BITS_PER_DIGIT; \
prod += t; /* no carry out possible */ \
prod += addend; \
z_hi = prod >> BITS_PER_DIGIT; \
z_lo = prod & MAKE_MASK(BITS_PER_DIGIT, 0); \
}
# define XMUL_XADDC(F, g, w_hi, w_lo, c_out, z_hi, z_lo) \
{ \
U_WORD prod, addend; \
\
prod = ((U_WORD) F)*((U_WORD) g); \
addend = ((U_WORD) w_hi << BITS_PER_DIGIT) + (U_WORD) w_lo; \
prod += addend; \
c_out = (prod < addend); \
z_hi = prod >> BITS_PER_DIGIT; \
z_lo = prod & MAKE_MASK(BITS_PER_DIGIT, 0); \
}
# define XMUL_XADD(F, g, w_hi, w_lo, z_hi, z_lo) \
{ \
U_WORD prod, addend; \
\
prod = ((U_WORD) F)*((U_WORD) g); \
addend = ((U_WORD) w_hi << BITS_PER_DIGIT) + (U_WORD) w_lo; \
prod += addend; \
z_hi = prod >> BITS_PER_DIGIT; \
z_lo = prod & MAKE_MASK(BITS_PER_DIGIT, 0); \
}
# define XMUL_ADD(F, g, w_lo, z_hi, z_lo) \
{ \
U_WORD prod; \
\
prod = ((U_WORD) F)*((U_WORD) g); \
prod += (U_WORD) w_lo; \
z_hi = prod >> BITS_PER_DIGIT; \
z_lo = prod & MAKE_MASK(BITS_PER_DIGIT, 0); \
}
# define MUL_ADD(F, g, w_lo, z_lo) z_lo = F*g + w_lo
# define XMUL(F, g, z_hi, z_lo) \
{ \
U_WORD prod; \
\
prod = ((U_WORD) F)*((U_WORD) g); \
z_hi = prod >> BITS_PER_DIGIT; \
z_lo = prod & MAKE_MASK(BITS_PER_DIGIT, 0); \
}
#endif /* !defined(BITS_PER_DIGIT) */
/*
** It is occasionally useful to access the high or low 32 bits of a double
** precison as a 32 bit integer. Unfortunately, for some architectures,
** (notably, alpha ev6) this can result in a memory access trap cause by
** writing 32 bits and then trying to read 64 bits from the same location.
** To work around this problem, we define the "load/store" integer type and
** appropriate macros.
*/
#if defined(HAS_LOAD_WRONG_STORE_SIZE_PENALTY)
# define BITS_PER_LS_INT_TYPE BITS_PER_WORD
# define LS_INT_TYPE WORD
# define U_LS_INT_TYPE U_WORD
# define B_HI_LS_INT_TYPE B_SIGNED_HI_WORD
#else
# define BITS_PER_LS_INT_TYPE BITS_PER_INT
# define LS_INT_TYPE INT_32
# define U_LS_INT_TYPE U_INT_32
# define B_HI_LS_INT_TYPE B_SIGNED_HI_32
#endif
/*
** For platforms that have hardware SQRT instructions available (e.g., EV6),
** the performance of some DPML functions may be improved by replacing a call
** to (or the inlining of) the SQRT function with the equivalent hardware
** instruction.
*/
#if IEEE_FLOATING
# define S_HW_SQRT_NAME(x) __SQRTS(x)
# define D_HW_SQRT_NAME(x) __SQRTT(x)
#elif VAX_FLOATING
# define S_HW_SQRT_NAME(x) __SQRTF(x)
# define D_HW_SQRT_NAME(x) __SQRTG(x)
#endif
#define S_HW_SQRT(x,y) (y = S_HW_SQRT_NAME(x))
#define D_HW_SQRT(x,y) (y = D_HW_SQRT_NAME(x))
#if SINGLE_PRECISION
# define F_HW_SQRT_NAME S_HW_SQRT_NAME
# define B_HW_SQRT_NAME D_HW_SQRT_NAME
# define F_HW_SQRT S_HW_SQRT
# define B_HW_SQRT D_HW_SQRT
#elif DOUBLE_PRECISION
# define F_HW_SQRT_NAME D_HW_SQRT_NAME
# define B_HW_SQRT_NAME D_HW_SQRT_NAME
# define F_HW_SQRT D_HW_SQRT
# define B_HW_SQRT D_HW_SQRT
#else
# define F_HW_SQRT_NAME F_SQRT_NAME
# define B_HW_SQRT_NAME B_SQRT_NAME
# define F_HW_SQRT F_SQRT
# define B_HW_SQRT B_SQRT
#endif
#if defined(HAS_SQRT_INSTRUCTION)
# define F_HW_OR_SW_SQRT_NAME F_HW_SQRT_NAME
# define B_HW_OR_SW_SQRT_NAME B_HW_SQRT_NAME
# define F_HW_OR_SW_SQRT F_HW_SQRT
# define B_HW_OR_SW_SQRT B_HW_SQRT
#else
# define F_HW_OR_SW_SQRT_NAME F_SQRT_NAME
# define B_HW_OR_SW_SQRT_NAME B_SQRT_NAME
# define F_HW_OR_SW_SQRT F_SQRT
# define B_HW_OR_SW_SQRT B_SQRT
#endif
/* F_HW_OR_SW_PRECISE_SQRT is defined for hypot to use
** F_PRECISE_SQRT which is defined in sqrt_macros.h.
** Both F_PRECISE_SQRT and F_HW_OR_SW_PRECISE_SQRT are
** used only in dpml_hypot.c
*/
#if defined(HAS_SQRT_INSTRUCTION)
# define F_HW_OR_SW_PRECISE_SQRT F_HW_SQRT
#else
# define F_HW_OR_SW_PRECISE_SQRT F_PRECISE_SQRT
# endif
#if defined GROUP
# define D_GROUP(x) GROUP(x)
#else
# define D_GROUP_NAME PASTE_2(__INTERNAL_NAME(group),_d)
extern double D_GROUP_NAME( double );
# define D_GROUP(x) D_GROUP_NAME(x)
#endif
#endif /* DPML_PRIVATE_H */
|