File: dpml_private.h

package info (click to toggle)
intelrdfpmath 2.0u2-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 27,204 kB
  • sloc: ansic: 310,457; makefile: 397; sh: 3
file content (2412 lines) | stat: -rwxr-xr-x 66,650 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
/******************************************************************************
  Copyright (c) 2007-2018, Intel Corp.
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of Intel Corporation nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/

#ifndef DPML_PRIVATE_H
#define DPML_PRIVATE_H


#ifndef TRUE
#    define     TRUE    1
#endif

#ifndef FALSE
#    define     FALSE   0
#endif


#include "build.h"
#include "op_system.h"
#include "compiler.h"
#include "architecture.h"
#include "i_format.h"
#include "f_format.h"

#if NEW_DPML_MACROS == 1

#   if MULTIPLE_ISSUE
#       define PIPELINED	1
#   else
#       define PIPELINED	0
#   endif

#endif

#define	DPML_NULL_MACRO
#define DPML_NULL_MACRO_TOKEN   1

/*
 * For values that are small powers of two, the follow macros are useful for
 * generating the base two log of that values.  For example,
 * LOG2(BITS_PER_F_TYPE) will evaluate to 5, 6 or 7 for floating point
 * types s/f, t/g or x.
 */

#define	__LOG2(name)	PASTE_2(__LOG2_,name)
#define __LOG2_1	0
#define __LOG2_2	1
#define __LOG2_4	2
#define __LOG2_8	3
#define __LOG2_16	4
#define __LOG2_32	5
#define __LOG2_64	6
#define __LOG2_128	7
#define __LOG2_256	8
#define __LOG2_512	9
#define __LOG2_1024	10
#define __LOG2_2048	11
#define __LOG2_4096	12
#define __LOG2_8192	13
#define __LOG2_16384	14
#define __LOG2_32768	15
#define __LOG2_65536	16


#if defined(F_TYPE)
#    define     GENERIC_TYPE            F_TYPE
#else
#    define     GENERIC_TYPE            I_TYPE
#endif

#ifndef TYPE1
#   define      TYPE1   GENERIC_TYPE
#endif

#ifndef TYPE2
#    define     TYPE2   GENERIC_TYPE
#endif

#ifndef TYPE3
#    define     TYPE3   GENERIC_TYPE
#endif

#if ((defined(ALPHA) || defined(alpha)) && (defined(wnt) || defined(vms)))
#   define EXP_WORD_TYPE INT_64
#else
#   define EXP_WORD_TYPE WORD
#endif

#if defined(MAKE_INCLUDE) || defined(MAKE_MTC)
#    include "mtc_macros.h"
#    include "mphoc_macros.h"
#endif

#include "poly_macros.h"
#include "assert.h"
#include "dpml_names.h"
#include "dpml_exception.h"

# define C_F_PROTO( name )	extern F_COMPLEX name( F_TYPE )
# define C_FF_PROTO( name )	extern F_COMPLEX name( F_TYPE, F_TYPE )
# define C_FI_PROTO( name )	extern F_COMPLEX name( F_TYPE, WORD )
# define C_FFFF_PROTO( name )	extern F_COMPLEX name( F_TYPE, F_TYPE, F_TYPE, F_TYPE )
# define C_p_PROTO( name )	extern F_COMPLEX name( F_COMPLEX * )
# define C_s_PROTO( name )      extern F_COMPLEX name( F_COMPLEX  )

# define C_B_PROTO( name )	extern B_COMPLEX name( B_TYPE )
# define C_BB_PROTO( name )	extern B_COMPLEX name( B_TYPE, B_TYPE )
# define C_BBBB_PROTO( name )	extern B_COMPLEX name( B_TYPE, B_TYPE, B_TYPE, B_TYPE )

# define F_F_PROTO( name )	extern F_TYPE name( F_TYPE )
# define F_FF_PROTO( name )	extern F_TYPE name( F_TYPE, F_TYPE )
# define F_FI_PROTO( name )	extern F_TYPE name( F_TYPE, WORD )
# define F_FpI_PROTO( name )	extern F_TYPE name( F_TYPE, WORD* )
# define F_IF_PROTO( name )	extern F_TYPE name( WORD, F_TYPE )

# define B_B_PROTO( name )	extern B_TYPE name( B_TYPE )
# define B_BB_PROTO( name )	extern B_TYPE name( B_TYPE, B_TYPE )
# define B_BI_PROTO( name )	extern B_TYPE name( B_TYPE, WORD )
# define B_BpI_PROTO( name )	extern B_TYPE name( B_TYPE, WORD* )
# define B_IB_PROTO( name )	extern B_TYPE name( WORD, B_TYPE )

# define I_F_PROTO( name )	extern WORD name( F_TYPE )
# define I_FpF_PROTO( name )	extern WORD name( F_TYPE, F_TYPE* )
# define I_FIpF_PROTO( name )	extern WORD name( F_TYPE, WORD, F_TYPE* )
# define I_FIpFpF_PROTO( name )	extern WORD name( F_TYPE, WORD, F_TYPE*, F_TYPE* )

# define I_B_PROTO( name )	extern WORD name( B_TYPE )
# define I_BpB_PROTO( name )	extern WORD name( B_TYPE, B_TYPE* )
# define I_BIpB_PROTO( name )	extern WORD name( B_TYPE, WORD, B_TYPE* )
# define I_BIpBpB_PROTO( name )	extern WORD name( B_TYPE, WORD, B_TYPE*, B_TYPE* )

# define I_II_PROTO( name )	extern WORD name( WORD, WORD )

#define F_C_NAN		0
#define F_C_INF		1
#define F_C_NORM	2
#define F_C_DENORM	3
#define F_C_ZERO	4

#define F_C_POS_CLASS(n)	((n) << 1)
#define F_C_NEG_CLASS(n)	(((n) << 1) | 1)
#define F_C_BASE_CLASS(c)	((c) >> 1)
#define F_C_IS_NEG_CLASS(c)	((c) & 1)
#define F_C_IS_POS_CLASS(c)	(((c) & 1) == 0)

/* The F_C_* defs must be in the current order, enumerated from 0 to 9 */

#   define F_C_SIG_NAN		F_C_POS_CLASS(F_C_NAN)		/* 0 */
#   define F_C_QUIET_NAN	F_C_NEG_CLASS(F_C_NAN)		/* 1 */
#   define F_C_POS_INF		F_C_POS_CLASS(F_C_INF)		/* 2 */
#   define F_C_NEG_INF		F_C_NEG_CLASS(F_C_INF)		/* 3 */
#   define F_C_POS_NORM		F_C_POS_CLASS(F_C_NORM)		/* 4 */
#   define F_C_NEG_NORM		F_C_NEG_CLASS(F_C_NORM)		/* 5 */
#   define F_C_POS_DENORM	F_C_POS_CLASS(F_C_DENORM)	/* 6 */
#   define F_C_NEG_DENORM	F_C_NEG_CLASS(F_C_DENORM)	/* 7 */
#   define F_C_POS_ZERO		F_C_POS_CLASS(F_C_ZERO)		/* 8 */
#   define F_C_NEG_ZERO		F_C_NEG_CLASS(F_C_ZERO)		/* 9 */

#   define F_C_NUM_CLASSES	10
#   define F_C_CLASS_BIT_WIDTH	4


#define AS_WORD(p) (*(WORD *)&(p))
#define AS_CHAR(p) (*(char *)&(p))
#define AS_SHORT(p) (*(short *)&(p))
#define AS_INT(p) (*(int *)&(p))
#define AS_LONG(p) (*(long *)&(p))
#define AS_FLOAT(p) (*(float *)&(p))
#define AS_DOUBLE(p) (*(double *)&(p))
#define AS_F_TYPE(p) (*(F_TYPE *)&(p))
#define AS_B_TYPE(p) (*(B_TYPE *)&(p))



/* Environment specific macro definitions that pre-empt the generic
(and perhaps slow) definitions below are in include files per
ARCHITECTURE.  The macros defined in these files should be a subset of
the macros defined below (i.e. if there is a specific version, there
should also be a generic version that will work with any ANSI C
compiler).  [ In practice, we may not get around to writing the generic
versions until we need them. ] */


#if (ARCHITECTURE == vax)

#    include "vax_macros.h"

#elif (ARCHITECTURE == mips)

#    include "mips_macros.h"

#elif (ARCHITECTURE == hp_pa)

#    include "ix86_macros.h"

#elif (ARCHITECTURE == cray)

#    include "cray_macros.h"

#elif (ARCHITECTURE == alpha)

#    include "alpha_macros.h"

#elif (ARCHITECTURE == ix86)

#    include "ix86_macros.h"

#elif (ARCHITECTURE == merced)

#include "ix86_macros.h"

#elif (ARCHITECTURE == amd64 )

#    include "ix86_macros.h"

#elif (ARCHITECTURE == sparc )

#    include "ix86_macros.h"

#else

#    error Unknown ARCHITECTURE.

#endif


# if (defined( _WIN32 ) && defined( _M_IX86 )) || (defined(merced) && !defined(HPUX_OS))

/*  Disallow use of intrinsic math functions on Windows NT on Intel  */

    double acos( double ) ;
#	pragma function( acos )
    double asin( double ) ;
#	pragma function( asin )
    double atan( double ) ;
#	pragma function( atan )
    double atan2( double, double ) ;
#	pragma function( atan2 )
    double cos( double ) ;
#	pragma function( cos )
    double cosh( double ) ;
#	pragma function( cosh )
    double exp( double ) ;
#	pragma function( exp )
    double fabs( double ) ;
#	pragma function( fabs )
    double fmod( double, double ) ;
#	pragma function( fmod )
    double log( double ) ;
#	pragma function( log )
    double log10( double ) ;
#	pragma function( log10 )
    double pow( double, double ) ;
#	pragma function( pow )
    double sin( double ) ;
#	pragma function( sin )
    double sinh( double ) ;
#	pragma function( sinh )
    double sqrt( double ) ;
#	pragma function( sqrt )
    double tan( double ) ;
#	pragma function( tan )
    double tanh( double ) ;
#	pragma function( tanh )

# endif  /*  defined( _WIN32 ) && defined( _M_IX86 ) */


# if defined(merced)

    float acosf( float ) ;
#       pragma function( acosf )
    float asinf( float ) ;
#       pragma function( asinf )
    float atanf( float ) ;
#       pragma function( atanf )
    float atan2f( float, float ) ;
#       pragma function( atan2f )
    float cosf( float ) ;
#       pragma function( cosf )
    float coshf( float ) ;
#       pragma function( coshf )
    float expf( float ) ;
#       pragma function( expf )
    float fabsf( float ) ;
#       pragma function( fabsf )
    float fmodf( float, float ) ;
#       pragma function( fmodf )
    float logf( float ) ;
#       pragma function( logf )
    float log10f( float ) ;
#       pragma function( log10f )
    float powf( float, float ) ;
#       pragma function( powf )
    float sinf( float ) ;
#       pragma function( sinf )
    float sinhf( float ) ;
#       pragma function( sinhf )
    float sqrtf( float ) ;
#       pragma function( sqrtf )
    float tanf( float ) ;
#       pragma function( tanf )
    float tanhf( float ) ;
#       pragma function( tanhf )
    float ceilf( float ) ;
#       pragma function( ceilf )
    float floorf( float ) ;
#       pragma function( floorf )

#endif



/* General macros and generic (though perhaps slow) versions of the
specific macro definitions included above.  */



#ifndef F_IS_NAN
#define F_IS_NAN(x) (x != x)
#endif

#ifndef F_IS_ZERO
#define F_IS_ZERO(x) (x == 0.0)
#endif

#ifndef F_IS_NEG
#define F_IS_NEG(x) (x < 0.0)
#endif

#ifndef F_IS_POS
#define F_IS_POS(x) (x > 0.0)
#endif

#ifndef F_SET_FLAG_IF_ZERO
#define F_SET_FLAG_IF_ZERO(x,flag) { \
        (flag) = ((x) == 0.0); \
}
#endif

#if 0
#ifndef F_SET_FLAG_IF_NEG
#define F_SET_FLAG_IF_NEG(x,flag) { \
        (flag) = ((x) < 0.0); \
}
#endif
#endif

#ifndef F_SET_FLAG_IF_POS
#define F_SET_FLAG_IF_POS(x,flag) { \
        (flag) = ((x) > 0.0); \
}
#endif


#if (VAX_FLOATING) 

#ifndef F_EXP_WORD_IS_ABNORMAL
#define F_EXP_WORD_IS_ABNORMAL(exp_word) (!((exp_word) & F_EXP_MASK))
#endif

#ifndef F_EXP_WORD_IS_ABNORMAL_OR_NEG
#define F_EXP_WORD_IS_ABNORMAL_OR_NEG(exp_word) \
        ((INT_16)((exp_word) & ((1 << 16) - 1)) < (INT_16)(1 << F_EXP_POS))
#endif
#ifndef B_EXP_WORD_IS_ABNORMAL_OR_NEG
#define B_EXP_WORD_IS_ABNORMAL_OR_NEG(exp_word) \
        ((INT_16)((exp_word) & ((1 << 16) - 1)) < (INT_16)(1 << B_EXP_POS))
#endif

#ifndef F_EXP_WORD_IS_INFINITE_OR_NAN
/* It is assumed that ROP detection has already been done */
#define F_EXP_WORD_IS_INFINITE_OR_NAN(exp_word) (0)
#endif

#ifndef F_SET_FLAG_IF_ZERO_OR_DENORM
#define F_SET_FLAG_IF_ZERO_OR_DENORM(x,flag) { \
        F_UNION u; \
        u.f = (x); \
        (flag) = (!(u.F_HI_WORD & F_SIGN_EXP_MASK)); \
}
#endif

#ifndef F_SET_FLAG_IF_DENORM
#define F_SET_FLAG_IF_DENORM(x,flag) { \
        (flag) = 0; \
}
#endif

#ifndef F_SET_FLAG_IF_INF
#define F_SET_FLAG_IF_INF(x,flag) { \
        (flag) = 0; \
}
#endif

#ifndef F_SET_FLAG_IF_FINITE
#define F_SET_FLAG_IF_FINITE(x,flag) { \
        (flag) = 1; \
}
#endif

#ifndef F_SET_FLAG_IF_NAN
#define F_SET_FLAG_IF_NAN(x,flag) { \
        F_UNION u; \
        u.f = (x); \
        (flag) = ((u.F_HI_WORD & F_SIGN_EXP_MASK) == F_SIGN_BIT_MASK); \
}
#endif

#ifndef F_SET_FLAG_IF_NAN_OR_INF
#define F_SET_FLAG_IF_NAN_OR_INF(x,flag) { \
        F_UNION u; \
        u.f = (x); \
        (flag) = ((u.F_HI_WORD & F_SIGN_EXP_MASK) == F_SIGN_BIT_MASK); \
}
#endif

#ifndef F_SET_FLAG_IF_NORM
#define F_SET_FLAG_IF_NORM(x,flag) { \
        F_UNION u; \
        u.f = (x); \
        (flag) = (u.F_HI_WORD & F_EXP_MASK); \
}
#endif

#ifndef F_CLASSIFY
#define F_CLASSIFY(x,class) { \
        U_WORD exp; \
        F_UNION u; \
        u.f = (x); \
        (class) = (((U_WORD)u.F_HI_WORD >> F_SIGN_BIT_POS) & 0x1); \
        exp = (u.F_HI_WORD & F_EXP_MASK); \
        if (exp) \
                (class) += F_C_POS_NORM; \
        else \
                (class) = ((class) ? F_C_SIG_NAN : F_C_POS_ZERO); \
}
#endif

#ifndef F_CLASSIFY_AND_GET_EXP_WORD
#define F_CLASSIFY_AND_GET_EXP_WORD(x,class,exp_word) { \
        U_WORD exp; \
        F_UNION u; \
        u.f = (x); \
        exp_word = u.F_HI_WORD; \
        (class) = (((U_WORD)u.F_HI_WORD >> F_SIGN_BIT_POS) & 0x1); \
        exp = (u.F_HI_WORD & F_EXP_MASK); \
        if (exp) \
                (class) += F_C_POS_NORM; \
        else \
                (class) = ((class) ? F_C_SIG_NAN : F_C_POS_ZERO); \
}
#endif



#elif (IEEE_FLOATING)



#ifndef F_EXP_WORD_IS_ABNORMAL
#define F_EXP_WORD_IS_ABNORMAL(exp_word) \
        (((exp_word) & F_EXP_MASK) - ((U_WORD)1 << F_EXP_POS) \
        >= MAKE_MASK(F_EXP_WIDTH - 1, F_EXP_POS + 1))
#endif

#ifndef F_EXP_WORD_IS_ABNORMAL_OR_NEG
#define F_EXP_WORD_IS_ABNORMAL_OR_NEG(exp_word) \
        ((exp_word) - ((U_WORD)1 << F_EXP_POS) \
        >= MAKE_MASK(F_EXP_WIDTH - 1, F_EXP_POS + 1))
#endif
#ifndef B_EXP_WORD_IS_ABNORMAL_OR_NEG
#define B_EXP_WORD_IS_ABNORMAL_OR_NEG(exp_word) \
        ((exp_word) - ((U_WORD)1 << B_EXP_POS) \
        >= MAKE_MASK(B_EXP_WIDTH - 1, B_EXP_POS + 1))
#endif

#ifndef F_EXP_WORD_IS_INFINITE_OR_NAN
#define F_EXP_WORD_IS_INFINITE_OR_NAN(exp_word) \
        (((exp_word) & F_EXP_MASK) == F_EXP_MASK)
#endif

#ifndef F_SET_FLAG_IF_ZERO_OR_DENORM
#define F_SET_FLAG_IF_ZERO_OR_DENORM(x,flag) { \
        F_UNION u; \
        u.f = (x); \
        flag = (!(u.F_HI_WORD & F_EXP_MASK)); \
}
#endif

#ifndef F_SET_FLAG_IF_DENORM
#define F_SET_FLAG_IF_DENORM(x,flag) { \
		F_UNION u; \
		u.f = (x); \
		flag = (!(u.F_HI_WORD & F_EXP_MASK) \
			&&  ((u.F_HI_WORD & F_MANTISSA_MASK) OR_LOW_BITS_SET(u))); \
}
#endif

#ifndef F_SET_FLAG_IF_INF
#define F_SET_FLAG_IF_INF(x,flag) { \
		F_UNION u; \
		u.f = (x); \
		(flag) = (((u.F_HI_WORD & F_EXP_MASK) == F_EXP_MASK) \
			&&  (!((u.F_HI_WORD & F_MANTISSA_MASK) OR_LOW_BITS_SET(u)))); \
}
#endif

#ifndef F_SET_FLAG_IF_FINITE
#define F_SET_FLAG_IF_FINITE(x,flag) { \
        F_UNION u; \
        u.f = (x); \
        (flag) = ((u.F_HI_WORD & F_EXP_MASK) != F_EXP_MASK); \
}
#endif

#ifndef F_SET_FLAG_IF_NAN
#define F_SET_FLAG_IF_NAN(x,flag) { \
		F_UNION u; \
		u.f = (x); \
		(flag) = (((u.F_HI_WORD & F_EXP_MASK) == F_EXP_MASK) \
			&&    ((u.F_HI_WORD & F_MANTISSA_MASK) OR_LOW_BITS_SET(u))); \
}
#endif

#ifndef F_SET_FLAG_IF_NAN_OR_INF
#define F_SET_FLAG_IF_NAN_OR_INF(x,flag) { \
        F_UNION u; \
        u.f = (x); \
        (flag) = ((u.F_HI_WORD & F_EXP_MASK) == F_EXP_MASK); \
}
#endif

#ifndef F_SET_FLAG_IF_NORM
#define F_SET_FLAG_IF_NORM(x,flag) { \
        F_UNION u; \
        u.f = (x); \
        (flag) = (u.F_HI_WORD & F_EXP_MASK); \
        (flag) = ((flag) && (flag < F_EXP_MASK)); \
}
#endif

#ifndef F_CLASSIFY
#define F_CLASSIFY(x,class) { \
        U_WORD exp; \
        F_UNION u; \
        u.f = (x); \
        (class) = (((U_WORD)u.F_HI_WORD >> F_SIGN_BIT_POS) & 0x1); \
        exp = (u.F_HI_WORD & F_EXP_MASK); \
        if (exp) { \
                if (exp < F_EXP_MASK) \
                        (class) += F_C_POS_NORM; \
                else { \
                        u.F_HI_WORD &= F_MANTISSA_MASK; \
                        if (u.F_HI_WORD OR_LOW_BITS_SET(u)) { \
								(class) = (((U_WORD)u.F_HI_WORD >> F_MSB_POS) & 0x1); \
						} else \
                                (class) += F_C_POS_INF; \
                } \
        } else { \
                u.F_HI_WORD &= F_MANTISSA_MASK; \
                (class) += \
                        ((u.F_HI_WORD OR_LOW_BITS_SET(u)) ? F_C_POS_DENORM : F_C_POS_ZERO); \
        } \
}
#endif

#ifndef F_CLASSIFY_AND_GET_EXP_WORD
#define F_CLASSIFY_AND_GET_EXP_WORD(x,class,exp_word) { \
        U_WORD exp; \
        F_UNION u; \
        u.f = (x); \
        exp_word = u.F_HI_WORD; \
        (class) = (((U_WORD)u.F_HI_WORD >> F_SIGN_BIT_POS) & 0x1); \
        exp = (u.F_HI_WORD & F_EXP_MASK); \
        if (exp) { \
                if (exp < F_EXP_MASK) \
                        (class) += F_C_POS_NORM; \
                else { \
                        u.F_HI_WORD &= F_MANTISSA_MASK; \
                        if (u.F_HI_WORD OR_LOW_BITS_SET(u)) { \
								(class) = (((U_WORD)u.F_HI_WORD >> F_MSB_POS) & 0x1); \
                        } else \
                                (class) += F_C_POS_INF; \
                } \
        } else { \
                u.F_HI_WORD &= F_MANTISSA_MASK; \
                (class) += \
                        ((u.F_HI_WORD OR_LOW_BITS_SET(u)) ? F_C_POS_DENORM : F_C_POS_ZERO); \
        } \
}
#endif




#endif  /* floating type */


#ifndef F_SET_FLAG_IF_NEG
#define F_SET_FLAG_IF_NEG(x,flag) { \
        F_UNION u; \
        u.f = (x); \
        (flag) = ((u.F_HI_WORD) & F_SIGN_BIT_MASK); \
}
#endif


#ifndef F_EXP_WORD_IS_ZERO_OR_DENORM
#define F_EXP_WORD_IS_ZERO_OR_DENORM(exp_word) \
        (!((exp_word) & F_EXP_MASK))
#endif

#ifndef B_EXP_WORD_IS_ZERO_OR_DENORM
#define B_EXP_WORD_IS_ZERO_OR_DENORM(exp_word) \
        (!((exp_word) & B_EXP_MASK))
#endif

#ifndef F_EXP_WORD_IS_NEG
#define F_EXP_WORD_IS_NEG(exp_word) \
        ((exp_word) & F_SIGN_BIT_MASK)
#endif

#ifndef B_EXP_WORD_IS_NEG
#define B_EXP_WORD_IS_NEG(exp_word) \
        ((exp_word) & B_SIGN_BIT_MASK)
#endif

#ifndef F_EXP_WORD_IS_POS
#define F_EXP_WORD_IS_POS(exp_word) \
        (!((exp_word) & F_SIGN_BIT_MASK))
#endif


#ifndef SET_BIT
#    define SET_BIT(pos) ((U_WORD)1 << (pos))
#endif

#ifndef MAKE_MASK
#    define MAKE_MASK(width,pos) ((((U_WORD)1 << (width)) - 1) << (pos))
#endif


/* Rounding modes are done in an architecture specific way.  If no
specific macros were defined, assume there are no rounding modes. */

#ifndef GET_ROUNDING_MODE
#define GET_ROUNDING_MODE(old)
#endif

#ifndef SET_ROUNDING_MODE
#define SET_ROUNDING_MODE(new)
#endif

#ifndef SWAP_ROUNDING_MODE
#define SWAP_ROUNDING_MODE(new,old)
#endif

#ifndef FPU_STATUS_WORD_TYPE
#define FPU_STATUS_WORD_TYPE WORD
#endif

#ifndef INIT_FPU_STATE_AND_ROUND_TO_NEAREST
#define INIT_FPU_STATE_AND_ROUND_TO_NEAREST(status_word)
#endif

#ifndef INIT_FPU_STATE_AND_ROUND_TO_ZERO
#define INIT_FPU_STATE_AND_ROUND_TO_ZERO(status_word)
#endif

#ifndef RESTORE_FPU_STATE
#define RESTORE_FPU_STATE(status_word)
#endif



/*  Constants in bytes, for table indexing */

#define BYTES_PER_S_TYPE    (BITS_PER_S_TYPE/BITS_PER_CHAR)
#define BYTES_PER_D_TYPE    (BITS_PER_D_TYPE/BITS_PER_CHAR)
#define BYTES_PER_Q_TYPE    (BITS_PER_Q_TYPE/BITS_PER_CHAR)
#define BYTES_PER_B_TYPE    (BITS_PER_B_TYPE/BITS_PER_CHAR)
#define BYTES_PER_R_TYPE    (BITS_PER_R_TYPE/BITS_PER_CHAR)
  


/* Make_float primitives */

#define S_MAKE_FLOAT(i,s)       { \
                                S_UNION u; \
                                u.S_HI_WORD = (i); \
                                s = u.f; \
}
#if WORDS_PER_D_TYPE == 1
#    define D_MAKE_FLOAT(i,s)   { \
                                D_UNION u; \
                                u.D_HI_WORD = (i); \
                                s = u.f; \
}
#elif WORDS_PER_D_TYPE == 2
#    define D_MAKE_FLOAT(i,s)   { \
                                D_UNION u; \
                                u.D_HI_WORD = (i); \
                                u.D_LO_WORD = 0; \
                                s = u.f; \
}
#else
#    error Surprising number of words per D_FLOAT
#endif

#define D_MAKE_FLOAT_64(i,s)   { \
                                D_UNION u; \
                                u.D_UNSIGNED_HI_64 = (i); \
                                s = u.f; \
}

#define Q_MAKE_FLOAT(i,s)       { \
                                Q_UNION u; \
                                u.f = 0.0; \
                                u.Q_HI_WORD = (i); \
                                s = u.f; \
}

#define F_EXP_MAKE_FLOAT        PASTE_2(F_PREC_CHAR,_MAKE_FLOAT)
#define B_EXP_MAKE_FLOAT        PASTE_2(B_PREC_CHAR,_MAKE_FLOAT)

#define F_MAKE_FLOAT(i,s)       F_EXP_MAKE_FLOAT(i,s)
#define B_MAKE_FLOAT(i,s)       B_EXP_MAKE_FLOAT(i,s)

/* The following several macros are intended to be used as a set.  It
is the combination of F_SAVE_SIGN_AND_GET_ABS and F_RESTORE_SIGN (or
F_NEGATE_IF_SIGN_NEG) that should be efficient (i.e. if slowing one of
them down will make the combination faster, go ahead and do it. */

#ifndef F_SIGN_TYPE

#       define F_SIGN_TYPE U_WORD

#       define F_SAVE_SIGN_AND_GET_ABS(x, sign, abs_x) { \
                F_TYPE save_x = (x); \
                F_ABS((x), (abs_x)); \
                (sign) = ((abs_x) != save_x); \
        }

#       define F_CHANGE_SIGN(sign) \
                (sign) = !(sign)

#       define F_RESTORE_SIGN(sign, x) \
                ASSERT((x) >= 0.0); \
                if (sign) F_NEGATE(x);

#       define F_NEGATE_IF_SIGN_NEG(sign, x) \
                if (sign) F_NEGATE(x);

#endif







#ifndef S_NEGATE
#define S_NEGATE(x) (x) = -(x)
#endif

#ifndef D_NEGATE
#define D_NEGATE(x) (x) = -(x)
#endif

#ifndef F_NEGATE
#define F_NEGATE(x) (x) = -(x)
#endif

#ifndef B_NEGATE
#define B_NEGATE(x) (x) = -(x)
#endif


#ifndef S_SET_NEG_BIT
#define S_SET_NEG_BIT(x) if ((x) > 0.0) S_NEGATE(x);
#endif

#ifndef D_SET_NEG_BIT
#define D_SET_NEG_BIT(x) if ((x) > 0.0) D_NEGATE(x);
#endif

#ifndef F_SET_NEG_BIT
#define F_SET_NEG_BIT(x) if ((x) > 0.0) F_NEGATE(x);
#endif

#ifndef B_SET_NEG_BIT
#define B_SET_NEG_BIT(x) if ((x) > 0.0) B_NEGATE(x);
#endif


#ifndef S_CLEAR_NEG_BIT
#define S_CLEAR_NEG_BIT(x) if ((x) < 0.0) S_NEGATE(x);
#endif

#ifndef D_CLEAR_NEG_BIT
#define D_CLEAR_NEG_BIT(x) if ((x) < 0.0) D_NEGATE(x);
#endif

#ifndef F_CLEAR_NEG_BIT
#define F_CLEAR_NEG_BIT(x) if ((x) < 0.0) F_NEGATE(x);
#endif

#ifndef B_CLEAR_NEG_BIT
#define B_CLEAR_NEG_BIT(x) if ((x) < 0.0) B_NEGATE(x);
#endif


#ifndef S_ABS
#define S_ABS(x,abs_x) { \
        (abs_x) = (x); \
        S_CLEAR_NEG_BIT(abs_x); \
}
#endif

#ifndef D_ABS
#define D_ABS(x,abs_x) { \
        (abs_x) = (x); \
        D_CLEAR_NEG_BIT(abs_x); \
}
#endif

#ifndef F_ABS
#define F_ABS(x,abs_x) { \
        (abs_x) = (x); \
        F_CLEAR_NEG_BIT(abs_x); \
}
#endif

#ifndef B_ABS
#define B_ABS(x,abs_x) { \
        (abs_x) = (x); \
        B_CLEAR_NEG_BIT(abs_x); \
}
#endif


/* Note that these copy_sign macros do not work correctly with -0.0 */

#ifndef S_COPY_SIGN
#undef  S_COPY_SIGN_IS_FAST
#define S_COPY_SIGN(value,sign,result) { \
        if ((sign) < 0.0) \
	{ \
	        S_ABS((value), (result)); \
                S_NEGATE(result); \
	} \
	else \
	        S_ABS((value), (result)); \
}
#endif

#ifndef D_COPY_SIGN
#undef  D_COPY_SIGN_IS_FAST
#define D_COPY_SIGN(value,sign,result) { \
        if ((sign) < 0.0) \
	{ \
	        D_ABS((value), (result)); \
                D_NEGATE(result); \
	} \
	else \
	        D_ABS((value), (result)); \
}
#endif

#ifndef F_COPY_SIGN
#undef  F_COPY_SIGN_IS_FAST
#define F_COPY_SIGN(value,sign,result) { \
        if ((sign) < 0.0) \
	{ \
	        F_ABS((value), (result)); \
                F_NEGATE(result); \
	} \
	else \
	        F_ABS((value), (result)); \
}
#endif

#ifndef B_COPY_SIGN
#undef  B_COPY_SIGN_IS_FAST
#define B_COPY_SIGN(value,sign,result) { \
        if ((sign) < 0.0) \
	{ \
	        B_ABS((value), (result)); \
                B_NEGATE(result); \
	} \
	else \
	        B_ABS((value), (result)); \
}
#endif


#ifndef S_COPY_SIGN_AND_EXP
#undef  S_COPY_SIGN_AND_EXP_IS_FAST
#define S_COPY_SIGN_AND_EXP(value,sign_and_exp,result) { \
        S_UNION u; \
        U_WORD new_sign_exp; \
        u.f = sign_and_exp; \
        new_sign_exp = u.S_HI_WORD & S_SIGN_EXP_MASK; \
        u.f = value; \
        u.S_HI_WORD &= ~S_SIGN_EXP_MASK; \
        u.S_HI_WORD |= new_sign_exp; \
        result = u.f; \
}
#endif

#ifndef D_COPY_SIGN_AND_EXP
#undef  D_COPY_SIGN_AND_EXP_IS_FAST
#define D_COPY_SIGN_AND_EXP(value,sign_and_exp,result) { \
        D_UNION u; \
        U_WORD new_sign_exp; \
        u.f = sign_and_exp; \
        new_sign_exp = u.D_HI_WORD & D_SIGN_EXP_MASK; \
        u.f = value; \
        u.D_HI_WORD &= ~D_SIGN_EXP_MASK; \
        u.D_HI_WORD |= new_sign_exp; \
        result = u.f; \
}
#endif

#ifndef F_COPY_SIGN_AND_EXP
#undef  F_COPY_SIGN_AND_EXP_IS_FAST
#define F_COPY_SIGN_AND_EXP(value,sign_and_exp,result) { \
        F_UNION u; \
        U_WORD new_sign_exp; \
        u.f = sign_and_exp; \
        new_sign_exp = u.F_HI_WORD & F_SIGN_EXP_MASK; \
        u.f = value; \
        u.F_HI_WORD &= ~F_SIGN_EXP_MASK; \
        u.F_HI_WORD |= new_sign_exp; \
        result = u.f; \
}
#endif

#ifndef B_COPY_SIGN_AND_EXP
#undef  B_COPY_SIGN_AND_EXP_IS_FAST
#define B_COPY_SIGN_AND_EXP(value,sign_and_exp,result) { \
        B_UNION u; \
        U_WORD new_sign_exp; \
        u.f = sign_and_exp; \
        new_sign_exp = u.B_HI_WORD & B_SIGN_EXP_MASK; \
        u.f = value; \
        u.B_HI_WORD &= ~B_SIGN_EXP_MASK; \
        u.B_HI_WORD |= new_sign_exp; \
        result = u.f; \
}
#endif







#ifndef F_COPY_NEG_SIGN

/* F_COPY_NEG_SIGN assumes the input value is non-negative.  If the
input value is negative, the sign of the result is undefined.  If the
input value is non-negative and sign is negative, the result will be
-(value).  If value is non-negative and sign is non-negative, the
result will = value. */

#if F_COPY_SIGN_IS_FAST

#       define F_COPY_NEG_SIGN(sign,abs_sign,value) \
                ASSERT((value) >= 0.0); \
                F_COPY_SIGN((value),(sign),(value))

#else

#       define F_COPY_NEG_SIGN(sign,abs_sign,value) { \
                ASSERT((value) >= 0.0); \
                if ((abs_sign) != (sign)) \
                        F_NEGATE(value); \
        }

#endif

#endif



#if (F_MAX_BIN_EXP > 2 * F_PRECISION)

#       define GOTO_CLEANUP_IF_POTENTIAL_OVERFLOW(x, t)

#else

#       define GOTO_CLEANUP_IF_POTENTIAL_OVERFLOW(x, t) { \
                F_TYPE abs_x; \
                F_ABS(x, abs_x); \
                if (abs_x >= t) \
                        goto cleanup; \
        }

#endif


#if (DPML_DEBUG)
#       define DPML_DEBUG_ABS(x) (((x) < 0.0) ? (-(x)) : (x))
#endif



#ifndef F_POS_RINT
#undef  F_POS_RINT_IS_FAST
#define F_POS_RINT_PRECISION_LIMIT (F_PRECISION - 1)
#define F_POS_RINT(x,y) { \
        F_TYPE t = F_POW_2(F_PRECISION - 1); \
        ASSERT((x) < t); \
        (y) = (x) + t; \
        (y) -= t; \
}
#endif

#ifndef F_NEG_RINT
#undef  F_NEG_RINT_IS_FAST
#define F_NEG_RINT_PRECISION_LIMIT (F_PRECISION - 1)
#define F_NEG_RINT(x,y) { \
        F_TYPE t = F_POW_2(F_PRECISION - 1); \
        ASSERT((x) > -t); \
        (y) = (x) - t; \
        (y) += t; \
}
#endif


#ifndef S_RINT
#define S_RINT_PRECISION_LIMIT (F_PRECISION - 1)
#define S_RINT(x,y) { \
        S_TYPE t = S_POW_2(S_PRECISION - 1); \
        ASSERT(DPML_DEBUG_ABS(x) < t); \
        S_COPY_SIGN(t, (x), t); \
        (y) = (x) + t; \
        (y) -= t; \
}
#endif

#ifndef D_RINT
#define D_RINT_PRECISION_LIMIT (F_PRECISION - 1)
#define D_RINT(x,y) { \
        D_TYPE t = D_POW_2(D_PRECISION - 1); \
        ASSERT(DPML_DEBUG_ABS(x) < t); \
        D_COPY_SIGN(t, (x), t); \
        (y) = (x) + t; \
        (y) -= t; \
}
#endif

#ifndef F_RINT
#undef  F_RINT_IS_FAST
#define F_RINT_PRECISION_LIMIT (F_PRECISION - 1)
#define F_RINT(x,y) { \
        F_TYPE t = F_POW_2(F_PRECISION - 1); \
        ASSERT(DPML_DEBUG_ABS(x) < t); \
        F_COPY_SIGN(t, (x), t); \
        (y) = (x) + t; \
        (y) -= t; \
}
#endif

#ifndef B_RINT
#undef  B_RINT_IS_FAST
#define B_RINT_PRECISION_LIMIT (B_PRECISION - 1)
#define B_RINT(x,y) { \
        B_TYPE t = B_POW_2(B_PRECISION - 1); \
        ASSERT(DPML_DEBUG_ABS(x) < t); \
        B_COPY_SIGN(t, (x), t); \
        (y) = (x) + t; \
        (y) -= t; \
}
#endif


#ifndef S_RINT_TO_FLOATING_AND_WORD
#define S_RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT (S_RINT_PRECISION_LIMIT)
#define S_RINT_TO_FLOATING_AND_WORD(x, flt_int_x, int_x) { \
        S_RINT((x), (flt_int_x)); \
        (int_x) = (WORD) (flt_int_x); \
}
#endif

#ifndef D_RINT_TO_FLOATING_AND_WORD
#define D_RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT (D_RINT_PRECISION_LIMIT)
#define D_RINT_TO_FLOATING_AND_WORD(x, flt_int_x, int_x) { \
        D_RINT((x), (flt_int_x)); \
        (int_x) = (WORD) (flt_int_x); \
}
#endif

#ifndef F_RINT_TO_FLOATING_AND_WORD
#define F_RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT (F_RINT_PRECISION_LIMIT)
#define F_RINT_TO_FLOATING_AND_WORD(x, flt_int_x, int_x) { \
        F_RINT((x), (flt_int_x)); \
        (int_x) = (WORD) (flt_int_x); \
}
#endif

#ifndef B_RINT_TO_FLOATING_AND_WORD
#define B_RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT (B_RINT_PRECISION_LIMIT)
#define B_RINT_TO_FLOATING_AND_WORD(x, flt_int_x, int_x) { \
        B_RINT((x), (flt_int_x)); \
        (int_x) = (WORD) (flt_int_x); \
}
#endif


#ifndef F_POS_TRUNC
#undef  F_POS_TRUNC_IS_FAST
#define F_POS_TRUNC_PRECISION_LIMIT (F_PRECISION - 1)
#define F_POS_TRUNC(x,y) { \
        F_TYPE orig_x = (x); \
        F_TYPE t = F_POW_2(F_PRECISION - 1); \
        ASSERT((x) < t); \
        (y) = x + t; \
        (y) -= t; \
        if ((y) > orig_x) \
                (y) -= 1.0; \
}
#endif

#ifndef F_NEG_TRUNC
#undef  F_NEG_TRUNC_IS_FAST
#define F_NEG_TRUNC_PRECISION_LIMIT (F_PRECISION - 1)
#define F_NEG_TRUNC(x,y) { \
        F_TYPE orig_x = (x); \
        F_TYPE t = F_POW_2(F_PRECISION - 1); \
        ASSERT((x) > -t); \
        (y) = x - t; \
        (y) += t; \
        if ((y) < orig_x) \
                (y) += 1.0; \
}
#endif

#ifndef F_TRUNC
#undef  F_TRUNC_IS_FAST
#define F_TRUNC_PRECISION_LIMIT (F_PRECISION - 1)
#define F_TRUNC(x,y) { \
        F_TYPE orig_x = (x); \
        F_TYPE abs_x, t = F_POW_2(F_PRECISION - 1); \
        F_ABS(orig_x, abs_x); \
        ASSERT(abs_x < t); \
        (y) = abs_x + t; \
        (y) -= t; \
        if ((y) > abs_x) \
                (y) -= 1.0; \
        if (abs_x != orig_x) \
                F_NEGATE(y); \
}
#endif


#ifndef F_CVT_TO_WORD_CHOPPED
#undef  F_CVT_TO_WORD_CHOPPED_IS_FAST
#define F_CVT_TO_WORD_CHOPPED_PRECISION_LIMIT (BITS_PER_WORD - 1)
#define F_CVT_TO_WORD_CHOPPED(x,i) (i) = (WORD)(x)
#endif

#ifndef F_CVT_TO_WORD_ROUNDED
#undef  F_CVT_TO_WORD_ROUNDED_IS_FAST
#define F_CVT_TO_WORD_ROUNDED_PRECISION_LIMIT (F_PRECISION - 1)
#define F_CVT_TO_WORD_ROUNDED(x,i) { \
        U_WORD status_word; \
        F_TYPE y, t; \
        t = F_POW_2(F_PRECISION - 1); \
        ASSERT(DPML_DEBUG_ABS(x) < t); \
        F_COPY_SIGN(t, (x), t); \
        INIT_FPU_STATE_AND_ROUND_TO_NEAREST(status_word); \
        y = (x) + t; \
        RESTORE_FPU_STATE(status_word); \
        y -= t; \
        (i) = (WORD)y; \
}
#endif

#ifndef F_CVT_TO_WORD_ROUNDED_UP
#undef  F_CVT_TO_WORD_ROUNDED_UP_IS_FAST
#define F_CVT_TO_WORD_ROUNDED_UP_PRECISION_LIMIT (F_PRECISION - 1)
#define F_CVT_TO_WORD_ROUNDED_UP(x,i) { \
        F_TYPE y, t; \
        t = F_POW_2(F_PRECISION - 1); \
        ASSERT(DPML_DEBUG_ABS(x) < t); \
        F_COPY_SIGN(t, (x), t); \
        y = (x) + t; \
        y -= t; \
        if (y < x) \
                y += 1.0; \
        (i) = (WORD)y; \
}
#endif

#ifndef F_CVT_TO_WORD_ROUNDED_DOWN
#undef  F_CVT_TO_WORD_ROUNDED_DOWN_IS_FAST
#define F_CVT_TO_WORD_ROUNDED_DOWN_PRECISION_LIMIT (F_PRECISION - 1)
#define F_CVT_TO_WORD_ROUNDED_DOWN(x,i) { \
        F_TYPE y, t; \
        t = F_POW_2(F_PRECISION - 1); \
        ASSERT(DPML_DEBUG_ABS(x) < t); \
        F_COPY_SIGN(t, (x), t); \
        y = (x) + t; \
        y -= t; \
        if (y > x) \
                y -= 1.0; \
        (i) = (WORD)y; \
}
#endif



#if 0

These do not yet have generic definitions:

#define ARITH_SHIFT_WORD_RIGHT(i,j)
#define F_ADD_CHOPPED
#define F_ADD_ROUNDED_UP
#define F_ADD_ROUNDED_DOWN
#define F_MUL_CHOPPED
#define F_MUL_ROUNDED_UP
#define F_MUL_ROUNDED_DOWN

#endif



#ifndef EXT_MUL
#define EXT_MUL(i,j,lo,hi) { \
        WORD I = (i); \
        WORD J = (j); \
        U_WORD sign, i_neg, j_neg; \
        i_neg = (I < 0); \
        sign = i_neg; \
        if (i_neg) { I = ~((U_WORD)(I)) + 1; i_neg = (I < 0); } \
        j_neg = (J < 0);  \
        if (j_neg) { sign ^= 1; J = ~((U_WORD)J) + 1; j_neg = (J < 0); } \
        if (i_neg | j_neg) { \
                if (i_neg) { \
                        (lo) = (U_WORD)J << (BITS_PER_WORD - 1); \
                        (hi) = (U_WORD)J >> 1;  \
                } else { \
                        (lo) = (U_WORD)I << (BITS_PER_WORD - 1); \
                        (hi) = (U_WORD)I >> 1; \
                } \
        } else { \
                EXT_UMUL(I,J,(lo),(hi)); \
        } \
        if (sign) { \
                (lo) = ~((U_WORD)(lo)) + 1; \
                (hi) = ~((U_WORD)(hi)); \
                if (!lo) (hi) += 1; \
        } \
}
#endif



#ifndef EXT_MULH
#define EXT_MULH(i,j,hi) { \
        WORD lo; \
        EXT_MUL((i),(j),(lo),(hi)); \
}
#endif



#ifndef EXT_MUL1
#define EXT_MUL1(i,u1,u2) EXT_MUL((i),(u1),(u1),(u2))
#endif



#ifndef EXT_UMUL
#define EXT_UMUL(i,j,lo,hi) { \
        U_WORD i1, i2, j1, j2, p1, p2; \
        i2 = (U_WORD)(i) >> (BITS_PER_WORD / 2); \
        j2 = (U_WORD)(j) >> (BITS_PER_WORD / 2); \
        p2 = i2 * j2; \
        i1 = (U_WORD)((i) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
        p1 = i1 * j2; \
        j1 = (U_WORD)((j) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
        (lo) = i1 * j1; \
        (hi) = p2; \
        (hi) += (U_WORD)(p1 >> (BITS_PER_WORD / 2)); \
        ADD_AND_CARRY((p1 << (BITS_PER_WORD / 2)), (lo), (hi)); \
        p2 = i2 * j1; \
        (hi) += (U_WORD)(p2 >> (BITS_PER_WORD / 2)); \
        ADD_AND_CARRY((p2 << (BITS_PER_WORD / 2)), (lo), (hi)); \
}
#endif



#ifndef EXT_UMULH
#define EXT_UMULH(i,j,hi) { \
        U_WORD lo; \
        EXT_UMUL((i),(j),(lo),(hi)); \
}
#endif



#ifndef EXT_UMUL1
#define EXT_UMUL1(i,u1,u2) EXT_UMUL((i),(u1),(u1),(u2))
#endif



#ifndef EXT_UMUL2
#define EXT_UMUL2(i,u1,u2,u3) { \
        U_WORD c1, c2, i1, i2, j1, j2, j3, j4, p1, p2, p3; \
        i2 = (U_WORD)(i) >> (BITS_PER_WORD / 2); \
        j2 = (U_WORD)(u1) >> (BITS_PER_WORD / 2); \
        p2 = i2 * j2; \
        i1 = (U_WORD)((i) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
        j1 = (U_WORD)((u1) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
        j3 = (U_WORD)((u2) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
        j4 = (U_WORD)(u2) >> (BITS_PER_WORD / 2); \
        u2 = i1 * j3; \
        u3 = i2 * j4; \
        u1 = i1 * j1; \
        ADD_AND_CARRY(p2, u2, u3); \
        p1 = i1 * j2; \
        p2 = i2 * j1; \
        p1 += p2; \
        c1 = (p1 < p2); \
        p2 = i1 * j4; \
        p3 = i2 * j3; \
        p2 += p3; \
        c2 = (p2 < p3); \
        p2 += c1; \
        c1 = (p2 < c1); \
        c1 += c2; \
        u3 += (c1 << (BITS_PER_WORD / 2)); \
        ADD_AND_CARRY_2( (p1 << (BITS_PER_WORD / 2)), u1, u2, u3); \
        ADD_AND_CARRY( (p1 >> (BITS_PER_WORD / 2)), u2, u3); \
        ADD_AND_CARRY( (p2 << (BITS_PER_WORD / 2)), u2, u3); \
        u3 += (p2 >> (BITS_PER_WORD / 2)); \
}
#endif



#ifndef EXT_UMUL3
#define EXT_UMUL3(i,u1,u2,u3,u4) { \
        U_WORD c1, c2, c3, i1, i2, j1, j2, j3, j4, j5, j6, p1, p2, p3, p4; \
        i2 = (U_WORD)(i) >> (BITS_PER_WORD / 2); \
        j2 = (U_WORD)(u1) >> (BITS_PER_WORD / 2); \
        p2 = i2 * j2; \
        i1 = (U_WORD)((i) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
        j1 = (U_WORD)((u1) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
        j3 = (U_WORD)((u2) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
        p1 = i1 * j3; \
        j4 = (U_WORD)(u2) >> (BITS_PER_WORD / 2); \
        j5 = (U_WORD)((u3) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
        j6 = (U_WORD)(u3) >> (BITS_PER_WORD / 2); \
        u1 = i1 * j1; \
        u2 = p1; \
        u3 = i2 * j4; \
        p1 = i1 * j5; \
        u4 = i2 * j6; \
        ADD_AND_CARRY_2(p2, u2, u3, u4); \
        ADD_AND_CARRY(p1, u3, u4); \
        p1 = i1 * j2; \
        p2 = i2 * j1; \
        p1 += p2; \
        c1 = (p1 < p2); \
        p2 = i1 * j4; \
        p3 = i2 * j3; \
        p2 += p3; \
        c2 = (p2 < p3); \
        p3 = i1 * j6; \
        p4 = i2 * j5; \
        p3 += p4; \
        c3 = (p3 < p4); \
        p2 += c1; \
        c1 = (p2 < c1); \
        c2 += c1; \
        p3 += c2; \
        c2 = (p3 < c2); \
        c3 += c2; \
        u4 += (c3 << (BITS_PER_WORD / 2)); \
        ADD_AND_CARRY_3( (p1 << (BITS_PER_WORD / 2)), u1, u2, u3, u4); \
        ADD_AND_CARRY_2( (p1 >> (BITS_PER_WORD / 2)), u2, u3, u4); \
        ADD_AND_CARRY_2( (p2 << (BITS_PER_WORD / 2)), u2, u3, u4); \
        ADD_AND_CARRY( (p2 >> (BITS_PER_WORD / 2)), u3, u4); \
        ADD_AND_CARRY( (p3 << (BITS_PER_WORD / 2)), u3, u4); \
        u4 += (p3 >> (BITS_PER_WORD / 2)); \
}
#endif



#if (BITS_PER_WORD == 32) && !defined(UMUL32_64_BY_64_GIVING_96)
#define UMUL32_64_BY_64_GIVING_96(x0,x1,y0,y1,z1,z2,z3) { \
        U_WORD z0, c1, c2, c3, i1, i2, i3, i4, j1, j2, j3, j4, p1, p2, p3, p4; \
        i2 = (U_WORD)(x0) >> (BITS_PER_WORD / 2); \
        j2 = (U_WORD)(y0) >> (BITS_PER_WORD / 2); \
        p2 = i2 * j2; \
        i4 = (U_WORD)(x1) >> (BITS_PER_WORD / 2); \
        j4 = (U_WORD)(y1) >> (BITS_PER_WORD / 2); \
        i1 = (U_WORD)((x0) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
        j1 = (U_WORD)((y0) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
        p4 = i4 * j4; \
        i3 = (U_WORD)((x1) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
        j3 = (U_WORD)((y1) << (BITS_PER_WORD / 2)) >> (BITS_PER_WORD / 2); \
        z0 = i1 * j1; \
        z0 >> (BITS_PER_WORD / 2); \
        p1 = i1 * j2; \
        p1 += z0; \
        p1 >> (BITS_PER_WORD / 2); \
        z1 = i1 * j3; \
        z1 += p1; \
        p1 = i2 * j1; \
        p1 >> (BITS_PER_WORD / 2); \
        p2 += p1; \
        z1 += p2; \
        c1 = (z1 < p2); \
        p1 = i3 * j1; \
        z1 += p1; \
        c1 += (z1 < p1); \
        z2 = i2 * j4; \
        p1 = i3 * j3; \
        z2 += p1; \
        c2 = (z2 < p1); \
        p1 = i4 * j2; \
        z2 += p1; \
        c2 += (z2 < p1); \
        z2 += c1; \
        c2 += (z2 < c1); \
        z3 = p4 + c2; \
        p2 = i1 * j4; \
        p1 = i2 * j3; \
        p2 += p1; \
        c2 = (p2 < p1); \
        p1 = i3 * j2; \
        p2 += p1; \
        c2 += (p2 < p1); \
        p1 = i4 * j1; \
        p2 += p1; \
        c2 += (p2 < p1); \
        p3 = i3 * j4; \
        p1 = i4 * j3; \
        p3 += p1; \
        c3 = (p3 < p1); \
        p3 += c2; \
        c3 += (p3 < c2); \
        z3 += (c3 << (BITS_PER_WORD / 2)); \
        z3 += (p3 >> (BITS_PER_WORD / 2)); \
        ADD_AND_CARRY( (p3 << (BITS_PER_WORD / 2)), z2, z3); \
        ADD_AND_CARRY( (p2 >> (BITS_PER_WORD / 2)), z2, z3); \
        ADD_AND_CARRY_2( (p2 << (BITS_PER_WORD / 2)), z1, z2, z3); \
}
#endif



#ifndef ADD_AND_CARRY
#define ADD_AND_CARRY(i,u1,u2) { \
        U_WORD carry; \
        (u1) += (i); \
        carry = ((u1) < (i)); \
        (u2) += carry; \
}
#endif


#ifndef ADD_AND_CARRY_2
#define ADD_AND_CARRY_2(i,u1,u2,u3) { \
        U_WORD carry; \
        (u1) += (i); \
        carry = ((u1) < (i)); \
        (u2) += carry; \
        carry = ((u2) < carry); \
        (u3) += carry; \
}
#endif


#ifndef ADD_AND_CARRY_3
#define ADD_AND_CARRY_3(i,u1,u2,u3,u4) { \
        U_WORD carry; \
        (u1) += (i); \
        carry = ((u1) < (i)); \
        (u2) += carry; \
        carry = ((u2) < carry); \
        (u3) += carry; \
        carry = ((u3) < carry); \
        (u4) += carry; \
}
#endif



#ifndef U_MUL_BY_10
#define U_MUL_BY_10(i) { \
        (i) = (U_WORD)(i) + ((U_WORD)(i) << 2); \
        (i) = (U_WORD)(i) << 1; \
}
#endif

#ifndef LEFT_NORMALIZE_WORD
#define LEFT_NORMALIZE_WORD(i,j) { \
        (j) = 0; \
        while ((WORD)(i) > 0) { \
                (i) <<= 1; \
                (j) += 1; \
        } \
}
#endif

#ifndef SHIFT_WORD_LEFT
#define SHIFT_WORD_LEFT(shift, u) { \
        (u) <<= (shift); \
}
#endif

#ifndef SHIFT_2_WORDS_LEFT
#define SHIFT_2_WORDS_LEFT(shift, u1, u2) { \
        ASSERT((shift) != 0); \
        (u1) <<= (shift); \
        (u1) |= ((u2) >> (BITS_PER_WORD - (shift))); \
        (u2) <<= (shift); \
}
#endif

#ifndef SHIFT_3_WORDS_LEFT
#define SHIFT_3_WORDS_LEFT(shift, u1, u2, u3) { \
        ASSERT((shift) != 0); \
        (u1) <<= (shift); \
        (u1) |= ((u2) >> (BITS_PER_WORD - (shift))); \
        (u2) <<= (shift); \
        (u2) |= ((u3) >> (BITS_PER_WORD - (shift))); \
        (u3) <<= (shift); \
}
#endif

#ifndef SHIFT_4_WORDS_LEFT
#define SHIFT_4_WORDS_LEFT(shift, u1, u2, u3, u4) { \
        ASSERT((shift) != 0); \
        (u1) <<= (shift); \
        (u1) |= ((u2) >> (BITS_PER_WORD - (shift))); \
        (u2) <<= (shift); \
        (u2) |= ((u3) >> (BITS_PER_WORD - (shift))); \
        (u3) <<= (shift); \
        (u3) |= ((u4) >> (BITS_PER_WORD - (shift))); \
        (u4) <<= (shift); \
}
#endif

#ifndef SHIFT_WORD_RIGHT
#define SHIFT_WORD_RIGHT(shift, u) { \
        (u) >>= (shift); \
}
#endif

#ifndef SHIFT_2_WORDS_RIGHT
#define SHIFT_2_WORDS_RIGHT(shift, u1, u2) { \
        ASSERT((shift) != 0); \
        (u1) >>= (shift); \
        (u1) |= ((u2) << (BITS_PER_WORD - (shift))); \
        (u2) >>= (shift); \
}
#endif

#ifndef SHIFT_3_WORDS_RIGHT
#define SHIFT_3_WORDS_RIGHT(shift, u1, u2, u3) { \
        ASSERT((shift) != 0); \
        (u1) >>= (shift); \
        (u1) |= ((u2) << (BITS_PER_WORD - (shift))); \
        (u2) >>= (shift); \
        (u2) |= ((u3) << (BITS_PER_WORD - (shift))); \
        (u3) >>= (shift); \
}
#endif

#ifndef SHIFT_4_WORDS_RIGHT
#define SHIFT_4_WORDS_RIGHT(shift, u1, u2, u3, u4) { \
        ASSERT((shift) != 0); \
        (u1) >>= (shift); \
        (u1) |= ((u2) << (BITS_PER_WORD - (shift))); \
        (u2) >>= (shift); \
        (u2) |= ((u3) << (BITS_PER_WORD - (shift))); \
        (u3) >>= (shift); \
        (u3) |= ((u4) << (BITS_PER_WORD - (shift))); \
        (u4) >>= (shift); \
}
#endif




#ifndef D_GET_EXP_WORD
#define D_GET_EXP_WORD(x,exp_word) { \
        D_UNION u; \
        u.f = (x); \
        (exp_word) = u.D_HI_WORD; \
}
#endif

#ifndef GET_EXP_WORD
#define GET_EXP_WORD(x,exp_word) { \
        F_UNION u; \
        u.f = (x); \
        (exp_word) = u.F_HI_WORD; \
}
#endif


#ifndef D_PUT_EXP_WORD
#define D_PUT_EXP_WORD(x,exp_word) { \
        D_UNION u; \
        u.f = (x); \
        u.D_HI_WORD = (exp_word); \
        (x) = u.f; \
}
#endif

#ifndef PUT_EXP_WORD
#define PUT_EXP_WORD(x,exp_word) { \
        F_UNION u; \
        u.f = (x); \
        u.F_HI_WORD = (exp_word); \
        (x) = u.f; \
}
#endif


#ifndef GET_SIGN_WORD
#define GET_SIGN_WORD(x,sign_word) { \
        F_UNION u; \
        u.f = (x); \
        (sign_word) = u.F_HI_WORD; \
}
#endif

#ifndef PUT_SIGN_WORD
#define PUT_SIGN_WORD(x,sign_word) { \
        F_UNION u; \
        u.f = (x); \
        u.F_HI_WORD = (sign_word); \
        (x) = u.f; \
}
#endif

#ifndef GET_HI_FRAC_WORD
#define GET_HI_FRAC_WORD(x,hi_frac_word) { \
        F_UNION u; \
        u.f = (x); \
        (hi_frac_word) = u.F_HI_WORD; \
}
#endif

#ifndef PUT_HI_FRAC_WORD
#define PUT_HI_FRAC_WORD(x,hi_frac_word) { \
        F_UNION u; \
        u.f = (x); \
        u.F_HI_WORD = (hi_frac_word); \
        (x) = u.f; \
}
#endif

#ifndef GET_LO_FRAC_WORD
#define GET_LO_FRAC_WORD(x,lo_frac_word) { \
        F_UNION u; \
        u.f = (x); \
        (lo_frac_word) = u.F_LO_WORD; \
}
#endif

#ifndef PUT_LO_FRAC_WORD
#define PUT_LO_FRAC_WORD(x,lo_frac_word) { \
        F_UNION u; \
        u.f = (x); \
        u.F_LO_WORD = (lo_frac_word); \
        (x) = u.f; \
}
#endif


#ifndef GET_EXP_BITS
#define GET_EXP_BITS(x,mask,exp_bits) { \
        GET_EXP_WORD((x),(exp_bits)); \
        (exp_bits) &= (mask); \
}
#endif

#ifndef PUT_EXP_BITS
#define PUT_EXP_BITS(x,mask,exp_bits) { \
        F_UNION u; \
        u.f = (x); \
        u.F_HI_WORD &= ~(mask); \
        u.F_HI_WORD |= (exp_bits); \
        (x) = u.f; \
}
#endif

#ifndef D_PUT_EXP_BITS
#define D_PUT_EXP_BITS(x,mask,exp_bits) { \
        D_UNION u; \
        u.f = (x); \
        u.D_HI_WORD &= ~(mask); \
        u.D_HI_WORD |= (exp_bits); \
        (x) = u.f; \
}
#endif

#ifndef GET_EXP_FIELD
#define GET_EXP_FIELD(x,exp_field) { \
        GET_EXP_BITS((x),F_EXP_MASK,(exp_field)); \
}
#endif

#ifndef F_GET_EXP_FIELD
#define F_GET_EXP_FIELD(x, exp_word) { \
        F_UNION u; \
        u.f = (x); \
        (exp_word) = u.F_HI_WORD; \
        (exp_word) &= F_EXP_MASK; \
}
#endif

#ifndef B_GET_EXP_FIELD
#define B_GET_EXP_FIELD(x, exp_word) { \
        B_UNION u; \
        u.f = (x); \
        (exp_word) = u.B_HI_WORD; \
        (exp_word) &= B_EXP_MASK; \
}
#endif

#ifndef S_GET_EXP_FIELD
#define S_GET_EXP_FIELD(x, exp_word) { \
        S_UNION u; \
        u.f = (x); \
        (exp_word) = u.S_HI_WORD; \
        (exp_word) &= S_EXP_MASK; \
}
#endif

#ifndef D_GET_EXP_FIELD
#define D_GET_EXP_FIELD(x, exp_word) { \
        D_UNION u; \
        u.f = (x); \
        (exp_word) = u.D_HI_WORD; \
        (exp_word) &= D_EXP_MASK; \
}
#endif


#ifndef PUT_EXP_FIELD
#define PUT_EXP_FIELD(x,exp_field) { \
        PUT_EXP_BITS((x),F_EXP_MASK,(exp_field)); \
}
#endif


#ifndef ALIGN_W_EXP_FIELD
#define ALIGN_W_EXP_FIELD(w) ((U_WORD)(w) << F_EXP_POS)
#endif

#ifndef D_ALIGN_W_EXP_FIELD
#define D_ALIGN_W_EXP_FIELD(w) ((U_WORD)(w) << D_EXP_POS)
#endif

#ifndef B_ALIGN_W_EXP_FIELD
#define B_ALIGN_W_EXP_FIELD(w) ((U_WORD)(w) << B_EXP_POS)
#endif


#ifndef ALIGN_EXP_FIELD_W_WORD
#define ALIGN_EXP_FIELD_W_WORD(w) (((U_WORD)(w)) >> F_EXP_POS)
#endif

#ifndef D_ALIGN_EXP_FIELD_W_WORD
#define D_ALIGN_EXP_FIELD_W_WORD(w) (((U_WORD)(w)) >> D_EXP_POS)
#endif

#ifndef B_ALIGN_EXP_FIELD_W_WORD
#define B_ALIGN_EXP_FIELD_W_WORD(w) (((U_WORD)(w)) >> B_EXP_POS)
#endif


#ifndef GET_SIGN_EXP_FIELD
#define GET_SIGN_EXP_FIELD(x,sign_exp_field) { \
        GET_EXP_BITS((x),F_SIGN_EXP_MASK,(sign_exp_field)); \
}
#endif

#ifndef PUT_SIGN_EXP_FIELD
#define PUT_SIGN_EXP_FIELD(x,sign_exp_field) { \
        PUT_EXP_BITS((x),F_SIGN_EXP_MASK,(sign_exp_field)); \
}
#endif

#ifndef D_PUT_SIGN_EXP_FIELD
#define D_PUT_SIGN_EXP_FIELD(x,sign_exp_field) { \
        D_PUT_EXP_BITS((x),D_SIGN_EXP_MASK,(sign_exp_field)); \
}
#endif

#ifndef ADD_TO_EXP_WORD
#define ADD_TO_EXP_WORD(x,increment) { \
        F_UNION u; \
        u.f = (x); \
        u.F_HI_WORD += (increment); \
        (x) = u.f; \
}
#endif
#ifndef B_ADD_TO_EXP_WORD
#define B_ADD_TO_EXP_WORD(x,increment) { \
        B_UNION u; \
        u.f = (x); \
        u.B_HI_WORD += (increment); \
        (x) = u.f; \
}
#endif

#ifndef ADD_TO_EXP_FIELD
#define ADD_TO_EXP_FIELD(x,increment) { \
        ADD_TO_EXP_WORD((x),((U_WORD)(increment) << F_EXP_POS)); \
}
#endif
#ifndef B_ADD_TO_EXP_FIELD
#define B_ADD_TO_EXP_FIELD(x,increment) { \
        B_ADD_TO_EXP_WORD((x),((U_WORD)(increment) << B_EXP_POS)); \
}
#endif

#ifndef SUB_FROM_EXP_WORD
#define SUB_FROM_EXP_WORD(x,decrement) { \
        F_UNION u; \
        u.f = (x); \
        u.F_HI_WORD -= (decrement); \
        (x) = u.f; \
}
#endif

#ifndef SUB_FROM_EXP_FIELD
#define SUB_FROM_EXP_FIELD(x,decrement) { \
        SUB_FROM_EXP_WORD((x),((U_WORD)(decrement) << F_EXP_POS)); \
}
#endif

#ifndef SCALE_EXPONENT_BY_INT
#define SCALE_EXPONENT_BY_INT(x,increment) { \
        ADD_TO_EXP_FIELD((x),(increment)); \
}
#endif
#ifndef B_SCALE_EXPONENT_BY_INT
#define B_SCALE_EXPONENT_BY_INT(x,increment) { \
        B_ADD_TO_EXP_FIELD((x),(increment)); \
}
#endif

#ifndef SCALE_EXPONENT_BY_FLT
#define SCALE_EXPONENT_BY_FLT(x,increment) { \
        (x) *= F_POW_2(increment); \
}
#endif
#ifndef B_SCALE_EXPONENT_BY_FLT
#define B_SCALE_EXPONENT_BY_FLT(x,increment) { \
        (x) *= B_POW_2(increment); \
}
#endif


#if (SCALE_METHOD == by_int)

#ifndef SCALE_EXPONENT
#define SCALE_EXPONENT(x,increment) SCALE_EXPONENT_BY_INT((x),(increment))
#endif
#ifndef B_SCALE_EXPONENT
#   define B_SCALE_EXPONENT(x,increment) B_SCALE_EXPONENT_BY_INT((x),(increment))
#endif

#else  /* scale by float */

#ifndef SCALE_EXPONENT
#define SCALE_EXPONENT(x,increment) SCALE_EXPONENT_BY_FLT((x),(increment))
#endif
#ifndef B_SCALE_EXPONENT
#   define B_SCALE_EXPONENT(x,increment) B_SCALE_EXPONENT_BY_FLT((x),(increment))
#endif

#endif  /* SCALE_METHOD */


#ifndef CVT_TO_HI_LO_BY_FLT
#define CVT_TO_HI_LO_BY_FLT(x,big,y) { \
    F_TYPE t = (big); \
    F_COPY_SIGN(t, (x), t); \
    HI(y) = (x) + t; \
    HI(y) -= t; \
    LO(y) = (x) - HI(y); \
}
#endif


#ifndef CVT_TO_HI_LO_BY_FLT_SIGNED
#define CVT_TO_HI_LO_BY_FLT_SIGNED(x,big,y) { \
    HI(y) = (x) + (big); \
    HI(y) -= (big); \
    LO(y) = (x) - HI(y); \
}
#endif


#ifndef CVT_TO_HI_LO_BY_INT
#define CVT_TO_HI_LO_BY_INT(x,n,y) { \
        F_UNION u; \
        u.f = (x); \
        u.F_LO_WORD &= ~(PDP_SHUFFLE(MAKE_MASK((n), 0))); \
        HI(y) = u.f; \
        LO(y) = (x) - HI(y); \
}
#endif


#ifndef SPLIT_TO_HI_LO_BY_INT
#if ((F_PRECISION / 2) <= BITS_PER_WORD)
#define SPLIT_TO_HI_LO_BY_INT(x,y) { \
        F_UNION u; \
        u.f = (x); \
        u.F_LO_WORD &= ~(PDP_SHUFFLE(MAKE_MASK((F_PRECISION / 2), 0))); \
        HI(y) = u.f; \
        LO(y) = (x) - HI(y); \
}
#else
#define SPLIT_TO_HI_LO_BY_INT(x,y) { \
        F_UNION u; \
        u.f = (x); \
        u.F_LO3_WORD = 0; \
        u.F_LO2_WORD &= ~(PDP_SHUFFLE(MAKE_MASK(((F_PRECISION / 2) - BITS_PER_WORD), 0))); \
        HI(y) = u.f; \
        LO(y) = (x) - HI(y); \
}
#endif
#endif


#if PRECISION_BACKUP_AVAILABLE

#ifndef EXTENDED_MUL_SUB
#define EXTENDED_MUL_SUB(a,b,c,y) { \
        y = (B_TYPE)(a) - ( (B_TYPE)(b) * (B_TYPE)(c) ); \
}
#endif

#ifndef QUICK_EXTENDED_MUL_SUB
#define QUICK_EXTENDED_MUL_SUB(a,b,c,y) { \
        y = (B_TYPE)(a) - ( (B_TYPE)(b) * (B_TYPE)(c) ); \
}
#endif

#else  /* no PRECISION_BACKUP_AVAILABLE */

#ifndef EXTENDED_MUL_SUB
#define EXTENDED_MUL_SUB(a,b,c,y) { \
        y = ((((a \
                - HI(b) * HI(c)) \
                - HI(b) * LO(c)) \
                - LO(b) * HI(c)) \
                - LO(b) * LO(c)); \
}
#endif

#ifndef QUICK_EXTENDED_MUL_SUB
#define QUICK_EXTENDED_MUL_SUB(a,b,c,y) { \
        y = ((a \
                - b * HI(c)) \
                - b * LO(c)); \
}
#endif

#endif  /* PRECISION_BACKUP_AVAILABLE */


#if (QUAD_PRECISION) && !(defined(merced) && !defined(VMS))
#    define C_C_PROTO(n)          C_p_PROTO(n)
#    define COMPLEX_QUAD_DECL(n)  F_COMPLEX n
#    define COMPLEX_ARGS_INIT(x)  F_TYPE PASTE(r,x)=x->r, PASTE(i,x)=x->i
#    define COMPLEX_ARGS(x)       F_COMPLEX *x
#    define PASS_CMPLX(a,b,p)     ( p.r = a, p.i = b, (&p))
#    define COMPLEX_PROTOTYPE     F_COMPLEX *
#    define COMPLEX_B_PROTOTYPE   B_COMPLEX *
#elif defined(merced) && !defined(VMS)
#    define C_C_PROTO(n)          C_s_PROTO(n)
#    define COMPLEX_QUAD_DECL(n)  F_COMPLEX n
#    define COMPLEX_ARGS_INIT(x)  F_TYPE PASTE(r,x)=x.r, PASTE(i,x)=x.i
#    define COMPLEX_ARGS(x)       F_COMPLEX x 
#    define PASS_CMPLX(a,b,p)     (p.r = a, p.i = b, p) 
#    define COMPLEX_PROTOTYPE     F_COMPLEX 
#    define COMPLEX_B_PROTOTYPE   B_COMPLEX 
#else
#    define C_C_PROTO(n)          C_FF_PROTO(n)
#    define COMPLEX_QUAD_DECL(n)
#    define COMPLEX_ARGS_INIT(x)
#    define COMPLEX_ARGS(x)       F_TYPE PASTE(r,x), F_TYPE PASTE(i,x) 
#    define PASS_CMPLX(a,b,p)     (F_TYPE) a, (F_TYPE) b 
#    define COMPLEX_PROTOTYPE     F_TYPE, F_TYPE
#    define COMPLEX_B_PROTOTYPE   B_TYPE, B_TYPE
#endif


#ifndef S_RECEIVE_COMPLEX_RESULT
#    define     S_RECEIVE_COMPLEX_RESULT(a,b,f) \
                        { S_COMPLEX _t = f; a = _t.r; b = _t.i; }
#endif
#ifndef S_RETURN_COMPLEX_RESULT
#    define     S_RETURN_COMPLEX_RESULT(a,b) \
                                { S_COMPLEX _t; _t.r = a; _t.i = b; return _t; }
#endif
#ifndef D_RECEIVE_COMPLEX_RESULT
#    define     D_RECEIVE_COMPLEX_RESULT(a,b,f) \
                        { D_COMPLEX _t = f; a = _t.r; b = _t.i; }
#endif
#ifndef D_RETURN_COMPLEX_RESULT
#    define     D_RETURN_COMPLEX_RESULT(a,b) \
                                { D_COMPLEX _t; _t.r = a; _t.i = b; return _t; }
#endif
#ifndef Q_RECEIVE_COMPLEX_RESULT
#    define	Q_RECEIVE_COMPLEX_RESULT(a,b,f) \
				{ Q_COMPLEX _t = f; a = _t.r; b = _t.i; }
#endif
#ifndef Q_RETURN_COMPLEX_RESULT
#    define	Q_RETURN_COMPLEX_RESULT(a,b) \
				{ Q_COMPLEX _t; _t.r = a; _t.i = b; return _t; }
#endif



#ifndef RECEIVE_COMPLEX_RESULT
#    if defined(SINGLE_PRECISION)
#        define RECEIVE_COMPLEX_RESULT(a,b,f)   S_RECEIVE_COMPLEX_RESULT(a,b,f)
#    elif defined(DOUBLE_PRECISION)
#        define RECEIVE_COMPLEX_RESULT(a,b,f)   D_RECEIVE_COMPLEX_RESULT(a,b,f)
#    else
#        define RECEIVE_COMPLEX_RESULT(a,b,f)	Q_RECEIVE_COMPLEX_RESULT(a,b,f)
#    endif
#endif

#ifndef RETURN_COMPLEX_RESULT
#    if defined(SINGLE_PRECISION)
#        define RETURN_COMPLEX_RESULT(a,b)      S_RETURN_COMPLEX_RESULT(a,b)
#    elif defined(DOUBLE_PRECISION)
#        define RETURN_COMPLEX_RESULT(a,b)      D_RETURN_COMPLEX_RESULT(a,b)
#    else
#        define RETURN_COMPLEX_RESULT(a,b)      Q_RETURN_COMPLEX_RESULT(a,b)
#    endif
#endif


#ifndef ADD_SUB_BIG
#	define ADD_SUB_BIG(x,big) \
		(x) += (big); (x) -= (big)
#endif

#ifndef SHORTEN_VIA_CASTS
#	define SHORTEN_VIA_CASTS(in,out) \
		(out) = (F_TYPE)((R_TYPE)(in))
#endif

#ifndef ASSIGN_WITH_F_TYPE_PRECISION
#	define ASSIGN_WITH_F_TYPE_PRECISION(x,y) \
		(y) = (F_TYPE)(x)
#endif

/*
 * The following macros are use to scale denormalized values to normalized
 * results.  All scaling is done by an implicit multiplication by a power
 * of two.  The power of two used to scale the denormalized values is 
 * defined by the macro __LOG2_DENORM_SCALE, which defaults to F_PRECISION.
 * Based on __LOG2_DENORM_SCALE, three other constants are specified for 
 * convienence:
 *
 *	__DENORM_SCALE			   2^__LOG2_DENORM_SCALE
 *	__DENORM_SCALE_BIASED_EXP	   the aligned, biased and unbiased 
 *	__DENORM_SCALE_UNBIASED_EXP	     exponent field of __DENORM_SCALE
 *	__LOG2_DENORM_SCALE_ALIGNED_W_EXP  __LOG2_DENORM_SCALE aligned with
 *					     exponent field
 *
 * The technique used for scaling involves minipulataing the exponent field
 * of the value to be scaled.  Specifically, if x is denormalized value with
 * bit pattern:
 *
 *		+-+-----------+------------------------+
 *	x:	|s|000 ... 000|          F             |
 *		+-+-----------+------------------------+
 *
 * Then x = (-1)^s*2^F_MIN_BIN_EXP*2^F_NORM*[F/2^(P_PRECISION - 1)].  Define u
 * and v, to be a floating point numbers with the following bits patterns:
 *
 *		+-+-----------+------------------------+
 *	u:	|s|     E     |          F             |
 *		+-+-----------+------------------------+
 *
 *		+-+-----------+------------------------+
 *	v:	|s|     E     |          0             |
 *		+-+-----------+------------------------+
 *
 * I.e. u has the bit pattern of x, with the exponent field set to E and v
 * is u with the fraction field cleared.  It follows that u and v have values:
 *
 * 	u = (-1)^s*2^(E-F_EXP_BIAS)*2^F_NORM*[1 + F/2^(P_PRECISION - 1)]
 * 	v = (-1)^s*2^(E-F_EXP_BIAS)*2^F_NORM
 *
 * If z is defined as u - v, then
 *
 *	z = (-1)^s*2^(E-F_EXP_BIAS)*2^F_NORM*[F/2^(P_PRECISION - 1)]
 *	  = 2^*(E-F_EXP_BIAS-F_MIN_BIN_EXP)*
 *             (-1)^s*2^F_MIN_BIN_EXP*2^F_NORM*[F/2^(P_PRECISION - 1)]
 *	  = 2^*(E-F_EXP_BIAS-F_MIN_BIN_EXP)*x
 *
 * I.e. z is x scaled up by 2^e, where e = E - F_EXP_BIAS - F_MIN_BIN_EXP.  In
 * the macros below, specifying __LOG2_DENORM_SCALE is equivalent to specifying
 * e in the above discussion.
 */

#if !defined(__LOG2_DENORM_SCALE)
#   if F_COPY_SIGN_AND_EXP_IS_FAST
#       define __LOG2_DENORM_SCALE		(F_PRECISION - F_MIN_BIN_EXP)
#   else
#       define __LOG2_DENORM_SCALE		F_PRECISION
#   endif
#endif

#undef  __DENORM_SCALE_UNBIASED_EXP
#define __DENORM_SCALE_UNBIASED_EXP	ALIGN_W_EXP_FIELD(__LOG2_DENORM_SCALE \
					  - F_NORM)
#undef  __DENORM_SCALE_BIASED_EXP
#define __DENORM_SCALE_BIASED_EXP	ALIGN_W_EXP_FIELD(__LOG2_DENORM_SCALE \
					  - F_NORM + F_EXP_BIAS)

#undef  __LOG2_DENORM_SCALE_ALIGNED_W_EXP
#define __LOG2_DENORM_SCALE_ALIGNED_W_EXP \
					ALIGN_W_EXP_FIELD(__LOG2_DENORM_SCALE)

#define	__LOG2_DENORM_CONST		(__LOG2_DENORM_SCALE + F_NORM + \
					   F_MIN_BIN_EXP)
#define	__DENORM_CONST_BIASED_EXP	ALIGN_W_EXP_FIELD(__LOG2_DENORM_CONST \
					  - F_NORM + F_EXP_BIAS)

#if F_COPY_SIGN_AND_EXP_IS_FAST && \
     (__LOG2_DENORM_CONST >= 0) && (__LOG2_DENORM_CONST <= __MAX_F_POW_2_EXP)

#   undef  __DENORM_CONST
#   define __DENORM_CONST	(F_TYPE) F_POW_2(__LOG2_DENORM_CONST)

#   if defined(__NEED_SIGNED_DENORM_TO_NORM)
#       define DENORM_TO_NORM(p,q) \
				{ \
				F_TYPE __denorm_const; \
				F_COPY_SIGN(__DENORM_CONST,p,__denorm_const); \
				F_COPY_SIGN_AND_EXP(p, __denorm_const, q); \
                                q -= __denorm_const; \
				}
#   else
#       define DENORM_TO_NORM(p,q) \
				{ \
				F_COPY_SIGN_AND_EXP(p, __DENORM_CONST, q); \
                                q -= __DENORM_CONST; \
				}
#   endif

#   define DENORM_TO_NORM_AND_EXP(p,e,q)  \
				{ DENORM_TO_NORM(p,q); GET_EXP_FIELD(q,e) }

#else

#   define __DENORM_TO_NORM_EXP	ALIGN_W_EXP_FIELD(__LOG2_DENORM_SCALE + \
				  F_NORM + F_EXP_BIAS + F_MIN_BIN_EXP)
#   define __DENORM_TO_NORM(p,q) \
				F_UNION u; \
				u.f = p; \
				u.F_HI_WORD = (u.F_HI_WORD & ~F_EXP_MASK) | \
				  __DENORM_TO_NORM_EXP; \
				q = u.f; \
				u.F_HI_WORD &= F_SIGN_EXP_MASK; \
				CLEAR_LOW_BITS(u); \
                                q -= u.f

#   define DENORM_TO_NORM(p,q)	{ __DENORM_TO_NORM(p,q); }

#   define DENORM_TO_NORM_AND_EXP(p,e,q)  \
				{ \
				__DENORM_TO_NORM(p,q); \
				u.f = q; \
				e = u.F_HI_WORD & F_EXP_MASK; \
                                }

#endif

/*
 * The following macros support extended precision multiplication of a sequence
 * of unsigned HALF_WORDs.  The basic operation is an extended integer multiply
 * and add.  It has four inputs and three results.  The inputs are an addend
 * in hi and lo parts (w_hi, w_lo), the carry in from the previous operation,
 * c_in, and the multiplier and multiplicand F and g.  The three outputs are
 * the carry out, c_out, and the hi and lo digits of the sum, z_hi and z_lo.
 * Letting B = 2^BITS_PER_WORD, the basic operation is
 *
 *	c_out*B^2 + z_hi*B + z_lo <== (w_hi*B + w_lo) + c_in*B + F*g
 *
 * The are 6 different macros, one for the basic operation and 5 special
 * cases.  E.g. ignore the carry out or carry is zero.
 *
 * They macros are defined as a group in order to be consistent.  If
 * BITS_PER_DIGIT is defined, it is assumed that the arithmetic macros have
 * been in one of the architecture specific include files.
 */

#if !defined(BITS_PER_DIGIT)

#   define BITS_PER_DIGIT	BITS_PER_HALF_WORD
#   define DIGIT_TYPE		PASTE_2(U_INT_, BITS_PER_DIGIT)
#   define SIGNED_DIGIT_TYPE	PASTE_2(INT_, BITS_PER_DIGIT)


#   define XMUL_XADDC_W_C_IN(F, g, w_hi, w_lo, c_in, c_out, z_hi, z_lo) \
		{ \
		U_WORD prod, addend, t; \
		\
		prod = ((U_WORD) F)*((U_WORD) g); \
		addend = ((U_WORD)w_hi << BITS_PER_DIGIT) + (U_WORD) w_lo; \
		t = (U_WORD) c_in << BITS_PER_DIGIT; \
		prod += t; /* no carry out possible */ \
		prod += addend; \
		c_out = (prod < addend); \
		z_hi = prod >> BITS_PER_DIGIT; \
		z_lo = prod & MAKE_MASK(BITS_PER_DIGIT, 0); \
		}

#   define XMUL_XADD_W_C_IN(F, g, w_hi, w_lo, c_in, z_hi, z_lo) \
		{ \
		U_WORD prod, addend, t; \
		\
		prod = ((U_WORD) F)*((U_WORD) g); \
		addend = ((U_WORD) w_hi << BITS_PER_DIGIT) + (U_WORD) w_lo; \
		t = (U_WORD) c_in << BITS_PER_DIGIT; \
		prod += t; /* no carry out possible */ \
		prod += addend; \
		z_hi = prod >> BITS_PER_DIGIT; \
		z_lo = prod & MAKE_MASK(BITS_PER_DIGIT, 0); \
		}

#   define XMUL_XADDC(F, g, w_hi, w_lo, c_out, z_hi, z_lo) \
		{ \
		U_WORD prod, addend; \
		\
		prod = ((U_WORD) F)*((U_WORD) g); \
		addend = ((U_WORD) w_hi << BITS_PER_DIGIT) + (U_WORD) w_lo; \
		prod += addend; \
		c_out = (prod < addend); \
		z_hi = prod >> BITS_PER_DIGIT; \
		z_lo = prod & MAKE_MASK(BITS_PER_DIGIT, 0); \
		}

#   define XMUL_XADD(F, g, w_hi, w_lo, z_hi, z_lo) \
		{ \
		U_WORD prod, addend; \
		\
		prod = ((U_WORD) F)*((U_WORD) g); \
		addend = ((U_WORD) w_hi << BITS_PER_DIGIT) + (U_WORD) w_lo; \
		prod += addend; \
		z_hi = prod >> BITS_PER_DIGIT; \
		z_lo = prod & MAKE_MASK(BITS_PER_DIGIT, 0); \
		}

#   define XMUL_ADD(F, g, w_lo, z_hi, z_lo) \
		{ \
		U_WORD prod; \
		\
		prod = ((U_WORD) F)*((U_WORD) g); \
		prod += (U_WORD) w_lo; \
		z_hi = prod >> BITS_PER_DIGIT; \
		z_lo = prod & MAKE_MASK(BITS_PER_DIGIT, 0); \
		}

#   define MUL_ADD(F, g, w_lo, z_lo)	z_lo = F*g + w_lo
    
#   define XMUL(F, g, z_hi, z_lo) \
		{ \
		U_WORD prod; \
		\
		prod = ((U_WORD) F)*((U_WORD) g); \
		z_hi = prod >> BITS_PER_DIGIT; \
		z_lo = prod & MAKE_MASK(BITS_PER_DIGIT, 0); \
		}

#endif /* !defined(BITS_PER_DIGIT) */

/*
** It is occasionally useful to access the high or low 32 bits of a double
** precison as a 32 bit integer.  Unfortunately, for some architectures,
** (notably, alpha ev6) this can result in a memory access trap cause by
** writing 32 bits and then trying to read 64 bits from the same location.
** To work around this problem, we define the "load/store" integer type and
** appropriate macros.
*/

#if defined(HAS_LOAD_WRONG_STORE_SIZE_PENALTY)
#   define BITS_PER_LS_INT_TYPE         BITS_PER_WORD
#   define LS_INT_TYPE                  WORD
#   define U_LS_INT_TYPE                U_WORD
#   define B_HI_LS_INT_TYPE             B_SIGNED_HI_WORD
#else
#   define BITS_PER_LS_INT_TYPE         BITS_PER_INT
#   define LS_INT_TYPE                  INT_32
#   define U_LS_INT_TYPE                U_INT_32
#   define B_HI_LS_INT_TYPE             B_SIGNED_HI_32
#endif

/*
**  For platforms that have hardware SQRT instructions available (e.g., EV6),
**  the performance of some DPML functions may be improved by replacing a call
**  to (or the inlining of) the SQRT function with the equivalent hardware
**  instruction.
*/

#if IEEE_FLOATING
#   define S_HW_SQRT_NAME(x) __SQRTS(x)
#   define D_HW_SQRT_NAME(x) __SQRTT(x)
#elif VAX_FLOATING
#   define S_HW_SQRT_NAME(x) __SQRTF(x)
#   define D_HW_SQRT_NAME(x) __SQRTG(x)
#endif

#define S_HW_SQRT(x,y) (y = S_HW_SQRT_NAME(x))
#define D_HW_SQRT(x,y) (y = D_HW_SQRT_NAME(x))

#if SINGLE_PRECISION
#   define F_HW_SQRT_NAME S_HW_SQRT_NAME
#   define B_HW_SQRT_NAME D_HW_SQRT_NAME
#   define F_HW_SQRT S_HW_SQRT
#   define B_HW_SQRT D_HW_SQRT
#elif DOUBLE_PRECISION
#   define F_HW_SQRT_NAME D_HW_SQRT_NAME
#   define B_HW_SQRT_NAME D_HW_SQRT_NAME
#   define F_HW_SQRT D_HW_SQRT
#   define B_HW_SQRT D_HW_SQRT
#else
#   define F_HW_SQRT_NAME F_SQRT_NAME
#   define B_HW_SQRT_NAME B_SQRT_NAME
#   define F_HW_SQRT F_SQRT
#   define B_HW_SQRT B_SQRT
#endif

#if defined(HAS_SQRT_INSTRUCTION)
#   define F_HW_OR_SW_SQRT_NAME F_HW_SQRT_NAME
#   define B_HW_OR_SW_SQRT_NAME B_HW_SQRT_NAME
#   define F_HW_OR_SW_SQRT F_HW_SQRT
#   define B_HW_OR_SW_SQRT B_HW_SQRT
#else
#   define F_HW_OR_SW_SQRT_NAME F_SQRT_NAME
#   define B_HW_OR_SW_SQRT_NAME B_SQRT_NAME
#   define F_HW_OR_SW_SQRT F_SQRT
#   define B_HW_OR_SW_SQRT B_SQRT
#endif

/* F_HW_OR_SW_PRECISE_SQRT is defined for hypot to use
** F_PRECISE_SQRT which is defined in sqrt_macros.h.
** Both F_PRECISE_SQRT and F_HW_OR_SW_PRECISE_SQRT are 
** used only in dpml_hypot.c
*/

#if defined(HAS_SQRT_INSTRUCTION)
#   define F_HW_OR_SW_PRECISE_SQRT F_HW_SQRT
#else
#   define F_HW_OR_SW_PRECISE_SQRT F_PRECISE_SQRT
# endif

#if defined GROUP 
#   define D_GROUP(x)   GROUP(x) 
#else        
#   define D_GROUP_NAME         PASTE_2(__INTERNAL_NAME(group),_d)
    extern double D_GROUP_NAME( double );
#   define D_GROUP(x)   D_GROUP_NAME(x)
#endif 

#endif  /* DPML_PRIVATE_H */