1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
|
/******************************************************************************
Copyright (c) 2007-2018, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
#if defined(MAKE_INCLUDE)
# define BASE_NAME rdx
#elif !defined(DPML_UX_RDX_BUILD_FILE_NAME)
# define DPML_UX_RDX_BUILD_FILE_NAME dpml_rdx_x.h
#endif
#include "dpml_ux.h"
/*
** This file contains the code for performing radian argument reduction
** for unpacked x-float arguments. The code here is liberally borrowed
** from dpml_trig_reduce.c and assumes the existence of a file that contains
** the bits of 4/pi and appropriate definitions for accessing it. This
** file is denoted by FOUR_OVER_PI_BUILD_FILE_NAME in dpml_names.h.
**
** The reduction routine returns the reduced argument accurate to F_PRECISION +
** EXTRA_PRECISION and the quadrant (modulo 4) that contained the original
** argument. Special cases like infinites and NaN's are assumed to have been
** screened out prior to calling this routine.
*/
#if !defined(EXTRA_PRECISION)
# define EXTRA_PRECISION 6
#endif
#if !defined(MAKE_INCLUDE)
//# undef FOUR_OVER_PI_BUILD_FILE_NAME
# include STR(DPML_UX_RDX_BUILD_FILE_NAME)
#endif
#define DEFINES
#include STR(FOUR_OVER_PI_BUILD_FILE_NAME)
/*
** BASIC ALGORITHM:
** ----------------
**
** Let z = x + octant*(pi/4). We want to produce
**
** y = rem( z, pi/2 )
**
** or equivalently,
**
** Q = nint( z/(pi/2) )
** y = z - Q*(pi/2)
**
** Note that the reduce argument is in "radians". For computational
** purposes, it is convenient to first obtain the reduced argument in
** cycles - i.e. compute y as
**
** c = z/(pi/2)
** Q = nint(c)
** w = c - Q
** y = w*(pi/2)
**
** If in the above calculations, we substitute x + octant*(pi/4) for x, we get
**
** c = x/(pi/2) + octant/2
** Q = nint(c)
** w = c - Q
** y = w*(pi/2)
**
** Now, suppose instead of computing, c, Q and w, we compute c' = 2*c, Q' = 2*Q
** and w' = 2*w. Then the above becomes
**
** c' = x/(pi/4) + octant
** Q' = 2*nint(c'/2)
** w' = x/(pi/4) + octant - Q'
** y = w'*(pi/4)
**
** We see that the key operation is to compute x/(pi/4). With this in mind,
** let x = 2^n*f, where 1/2 <= f < 1 and f has P' ( = 128 ) significant bits.
** If F is defined as F = 2^P'*f, it follows that F is an integer.
** Now
**
** x/(pi/4) = x*(4/pi)
** = (2^n*f)*(4/pi)
** = [2^(n-P')]*[2^P'*f] *(4/pi)
** = [2^(n-P')]*F*(4/pi)
** = F*{2^(n-P')*(4/pi)}
**
** Suppose that we have stored a large bit string that represents the value
** of 4/pi, then we can obtain the value of 2^(n-P')*(4/pi) by moving the
** binary point in 4/pi by n-P' places. In particular, let
**
** 2^(n-P')*(4/pi) = J*8 + g
**
** That is, J is an integer formed from the first n-P'-3 bits of 4/pi and
** g is value formed by the remaining bits. It follows that
**
** x/(pi/4) = F*{2^(n-P')*(4/pi)}
** = F*(J*8 + g)
** = F*J*8 + F*g
**
** Note that we need only compute x/(pi/4) modulo 8. Since F and J are both
** integers, the above gives
**
** x/(pi/4) (mod 8) = (F*J*8 + F*g) (mod 8)
** = F*g (mod 8)
**
** At this point the algorithm for large argument reduction has the following
** flavor:
**
** (1) index into a precomputed bit string for 4/pi to
** obtain g
** (2) compute w = F*g (mod 8)
** (3) w <-- integer part of w + octant (mod 8)
** (4) Q <-- nint(w)
** (5) y = w - Q
** (6) y = y*(pi/4)
**
** Algorithm I
** -----------
**
** The following sections describe the implementation issues associated with
** each of the steps in algorithm I as well as present the code for the
** overall implementation.
**
**
** THE 4/pi TABLE
** --------------
**
** Step (1) of Algorithm I requires indexing into a bit string for 4/pi using
** the exponent field of the argument. Specifically, if n is the argument
** exponent we want to shift the binary point of 4/pi by n - P' bits to the
** right. If |x| < pi/4, there is no need to compute x/(pi/4), so we assume
** that we only index into the table if |x| >= 1/2. Under this assumption,
** it is possible that n - P' is negative. Thus to facilitate the indexing
** operation, it is necessary for the bit string to have some leading 0's.
**
** Assume the bit string for 4/pi has T leading zeros and that the bits are
** numbered in increasing order starting from 0. I.e. the string looks like:
**
** bit number: 0 T
** 00...001.01000101111.....
** ^
** |
** binary point
**
** From the above discussion, we want to shift the binary point of the bit
** string n-P' bits to the right and extract g as some (as yet undetermined)
** number of bits, starting 3 bits to the left of the shifted binary point.
** Consequently, the position of the most significant bit we would like to
** access is k = T + n - P' - 2. Since we want the bit position to be greater
** than or equal to zero, and we are assuming that the argument is greater
** than or equal to 1/2 (i.e. n >= 0), it follows that T >= P' + 2.
*/
#if FOUR_OV_PI_ZERO_PAD_LEN < (UX_PRECISION + 2)
# error "Insufficient zero padding in 4/pi table"
#endif
/*
** Since most architectures do not efficiently support bit addressing, the
** argument reduction routine assumes that the 4/pi bit string is stored
** in L-bit "digits". Getting the right bits of 4/pi requires getting the set
** of "digits" that begin with the digit that contains the leading bit and
** doing a sequence of shifts and logical ors. The index of the digit that
** contains the initial bit is trunc(n/L) and the bit position within that
** digit is n - L*trunc(n/L) = n % L. For the unpacked reduction routine,
** we require the 4/pi table "digit" and a UX_FRACTION_DIGIT have the same
** length (which implies the digit length is either 32 or 64 bits).
*/
#if (BITS_PER_DIGIT != BITS_PER_UX_FRACTION_DIGIT_TYPE)
# error "Digit type mis-match"
#endif
#define DIGIT_MASK(width,pos) ((( DIGIT_TYPE_CAST 1 << (width)) - 1) << (pos))
#define DIGIT_BIT(pos) ( DIGIT_TYPE_CAST 1 << (pos))
#if defined(MAKE_COMMON) || defined(MAKE_INCLUDE)
#define DIGIT_TYPE_CAST /* MPHOC doesn't do casts */
#else
#define DIGIT_TYPE_CAST (DIGIT_TYPE)
#endif
#define DIV_REM_BY_L(n,q,r) (q) = (n) >> __LOG2(BITS_PER_DIGIT); \
(r) = (n) & (BITS_PER_DIGIT - 1)
/******************************************************************************/
/* */
/* Generate code for multi-precision multiplication */
/* */
/******************************************************************************/
/*
** Many of the operation used in the radian reduction scheme depend on the
** digit size. The following code is used generate macros that hide the
** dependencies on digit size.
*/
#if defined(MAKE_INCLUDE)
@divert -append divertText
/*
** Record FOUR_OVER_PI_BUILD_FILE_NAME so we don't have to keep specifying
** it on the command line.
*/
printf("#if !defined FOUR_OVER_PI_BUILD_FILE_NAME\n");
printf("#define FOUR_OVER_PI_BUILD_FILE_NAME\t"
STR(FOUR_OVER_PI_BUILD_FILE_NAME) "\n");
printf("#endif\n");
/*
** COMPUTING F*g
** -------------
**
** The goal of step (2) in Algorithm I is to produce a reduced argument
** that is accurate to P + k bits, where k is the specified number of
** extra bits of precision. Also, we need to get the quadrant bits, Q.
** Consequently, the value of w = F*g, must be accurately computed to
** P + k + 3 bits. Note however, that if x is close to a multiple of
** pi/2 the reduced argument will have a large number of leading zeros
** (in fixed point) and consequently the actual number of required bits
** in w will depend upon the input argument. Since computing w is the
** most time consuming part of the algorithm, we would like to compute
** the minimum number of bits possible. Specifically, compute w to enough
** bits so that if x is not near a multiple of pi/2, then the reduced
** argument will be accurate. After w is computed, we can check how close
** the original argument was to pi/2 by examining the number of leading
** fractional 1's or 0's in w. If there are too many (i.e. the reduced
** argument will not have enough significant bits) then we can compute
** additional bits of w.
**
** In order to compute F*g to P + k + 3 bits, we must perform some form of
** extended precision arithmetic. For the sake of uniformity across data
** types and architectures, the implementation described here computes F*g
** by expressing F and g as fixed point values in "arrays" of some basic
** integer unit of computation. As indicated above, we shall refer to this
** integer unit as a digit. The choice of digit is arbitrary, however, it
** is best if the double length product of two digits is efficiently
** computed.
**
** Now we need to represent w to at least P + k + 3 bits. Since F has P'
** significant bits, if we use a finite precision approximation of g, call
** it g', then the last P' bits of the product F*g' are inaccurate.
** Therefore we need to represent g' to N = P' + P + k + 3 bits. If the
** number of bits in a digit is L, then F and g' must be represented in at
** least ceil(P'/L) and D = ceil(N/L) digits respectively.
*/
num_f_digits = ceil(UX_PRECISION/BITS_PER_DIGIT);
num_req_bits = (F_PRECISION + UX_PRECISION + EXTRA_PRECISION + 3);
num_w_digits = ceil(num_req_bits/BITS_PER_DIGIT);
num_g_digits = num_w_digits;
num_extra_bits = num_w_digits*BITS_PER_DIGIT - num_req_bits;
printf("#define NUM_F_DIGITS\t%i\n", num_f_digits);
printf("#define NUM_G_DIGITS\t%i\n", num_g_digits);
printf("#define NUM_W_DIGITS\t%i\n", num_w_digits);
printf("#define NUM_REQ_BITS\t%i\n", num_req_bits);
printf("#define NUM_EXTRA_BITS\t%i\n", num_extra_bits);
print;
/*
** Now consider the computation of F*g' in terms of digits. For the
** purpose of discussion, suppose F requires 2 digits and g' requires 4
** digits.
** Then using "black board" arithmetic F*g' looks like:
**
** binary point
** |
** |
** |
** +--------+--------+--------+--------+
** g': | g1 | g2 | g3 | g4 |
** +--------+--------+--------+--------+
** +--------+--------+
** F: | F1 | F2 |
** +--------+--------+
** ----------------------------------------------------------
** | +--------+--------+
** | | F2*g4 |
** | +--------+--------+--------+
** | | F1*g4 |
** | +--------+--------+
** | | F2*g3 |
** +--------+--------+--------+
** | F1*g3 |
** +--------+--------+
** | F2*g2 |
** +--------+--------+--------+
** | F1*g2 |
** +--------+--------+
** | F2*g1 |
** +--------+--------+--------+
** | F1*g1 | |
** +--------+--------+ |
** |
** ----------------------------------------------------------
** +--------+--------+--------+--------+--------+--------+
** | Not required | w1 | w2 | w3 | w4 |
** +--------+--------+--------+--------+--------+--------+
**
** Figure 1
** --------
**
** The high two digits of the product are not required since we are
** interested in the result modulo 8.
**
** In general the number of digits used to express g' will contain more
** than N bits. Let the number of bits in excess of N be M. Then if x is
** close to pi/2 and the number of leading fractional 0's or 1's in F*g' is
** less than M, F*g' still contains enough significant bits to return an
** accurate reduced argument. If we denote the 3 most significant bits
** of w1 as o, then x will be close to pi/2 if o is odd the bits below
** o are 1's or o is even and the bits below o are 0's. Therefore there
** will be loss of significance if w1 (in the picture above) has a binary
** representation of the form
**
** +----------------------+
** |xx00000...00000xxxxxxx|
** +----------------------+
** - or -
** +----------------------+
** |xx11111...11111xxxxxxx|
** +----------------------+
** |<-- M+2 -->|
**
** These two bit patterns can be detected by add and mask operations.
**
** Assuming that M+2 0's or 1's appear in w1, we know that there are not
** enough significant bits in w to guarantee the accuracy of the answer.
** Consequently, we need to generate more bits of w. This can be done by
** getting the next digit of g, computing the product of that digit with
** F and adding it into the previous value of w. This process can be
** repeated until there are a sufficient number of significant bits. Note
** that each additional digit of g will add one digit (L bits) of
** significance to w.
**
** If the processes of adding additional significant bits is implemented
** in a naive fashion, each time through the loop will require an
** additional digit of storage. Consider the situation where the first
** additional digit has been added to w and there are still insufficient
** significant bits for an accurate result. This means that there are at
** least M + L leading fractional 0's or 1's. Then w must have the form
**
** |<------------ D + 1 digits ---------->|
** +----------+----------+ +----------+
** |xx########|######xxxx| ... |xxxxxxxxxx|
** +----------+----------+ +----------+
** |<-- M+L+2 -->|
**
** where the #'s indicate a string of 0's or 1's. Since there are more
** than L consecutive 0's or 1's, we can compress the representation of w
** by one digit by removing L consecutive 0's or 1's from the first two
** digits of w. If this is done w will look like
**
** |<-------------- D digits ------------>|
** +----------+----------+ +----------+
** |xx#####xxx|xxxxxxxxxx| ... |xxxxxxxxxx|
** +----------+----------+ +----------+
** -->|M+2|<--
**
** Which is the same as for when the first additional digit was added.
** It follows that we need storage for only D+1 digits of w and a counter
** indicating the number of additional digits that were added.
**
** To recap the above discussion, algorithm I is expanded as follows:
**
** (1) s <-- 0
** (2) w <-- first D digits of F*g
** (3) if w has less than or equal to M leading fractional
** 0's or 1's, go to step 9
** (4) add an additional digit of F*g to w
** (5) if w has less than L leading leading fractional 0's
** or 1's, go to step 9
** (6) Compact w by removing L 0's or 1's
** (7) s <-- s + 1
** (8) go to step 3.
** (9) o <-- high three bits of w
** (10) z' <-- w - nint(w) (taking into account what
** ever compaction took place, i.e. what the current
** value of s is.)
** (11) y = z*(pi/4)
**
** Algorithm II
** ------------
**
** The above loop has two exits. An exit from step 3 yields an
** approximation to w containing D digits while an exit from step 5
** contains D+1 digits. In the second case, there are fewer than L
** leading 0's and 1's and this implies that there are enough "good" bits
** in the first D digits to generate the return values. Consequently,
** from either exit, it is sufficient to use only the first D digits of w.
**
** The exposition above on the number of leading zeros was a little loose,
** in that for the general case, the leading zeros and ones may not always
** lie entirely in the first digit of w. In general, there can be as many
** as L-1 extra bits, in which case, we would need to examine both the
** first and second word of w. However, for the digit sizes we are
** considering combined with the number of extra bits we are returning,
** examining one digit will suffice.
*/
p = BITS_PER_DIGIT - (num_extra_bits + 4);
if (p < 0)
{
printf("ERROR: mask spans two digits\n");
exit;
}
else
{
i = DIGIT_BIT(p); /* to 'add 1' at position p */
m = DIGIT_MASK(num_extra_bits + 1, p + 1);
printf("#define W_HAS_M_BIT_LOSS\t"
"(((MSD_OF_W + 0x%..16i) & 0x%..16i) == 0)\n", i, m);
}
/*
** DIGIT ARITHMETIC
** ----------------
**
** In step (2) of Algorithm 2, we are computing the first D digits of the
** product F*g. From figure 1, we see that, (in general) we are computing
** a 2*L bit product and incorporating it into the sum of previously
** computed 2*L bit products. If we think of F, g and w as multi-digit
** integers with their digits numbered from least significant to most
** significant (starting at zero) and denoting the i-th digit of F by F(i)
** and the j-th digit of g by g(j), then the product in figure 1 can be
** obtained as follows:
**
** t = 0;
** for (i = 0; i < num_g_digits; i++)
** {
** for (j = 0; j < num_F_digits; j++)
** t = t + F[j]*g[i]*2^(j*L)
** w[i] = t mod 2^L;
** t = (t >> L);
** }
**
** Example 1
** ---------
**
** Note that each time through the loop, t is accumulating the product
** g[i]*F plus "the high digits" of g[i-1]*F. It follows that t can be
** represented in (num_F_digits + 1) digits.
**
** If F contains n digits, then the sum in the above loops looks like:
**
** +--------+ +--------+--------+--------+--------+ +--------+
** t: | t(n) | ... | t(j+3) | t(j+2) | t(j+1) | t(j) | ... | t(0) |
** +--------+ +--------+--------+--------+--------+ +--------+
** +--------+--------+
** + | F[j]*g[i] |
** +--------+--------+
** --------------------------------------------------------------------
** +--------+ +--------+--------+--------+--------+ +--------+
** t: | t'(n) | ... | t'(j+3)| t'(j+2)| t'(j+1)| t'(j) | ... | t(0) |
** +--------+ +--------+--------+--------+--------+ +--------+
**
** Note that t(0) through t(j-1) are unaffected and that t(j+2) through
** t(n) are affected only by the carry out when computing t'(j+1). It
** follows that if we keep the carry out of t'(j+1) as a separate quantity,
** then the addition in the inner loop only affects two digits of t. If
** we denote the separate carry by c(j), the picture on the next iteration
** of the loop (i.e. replace j by j+1) looks like:
**
** +--------+ +--------+--------+--------+--------+ +--------+
** t: | t(n) | ... | t(j+3) | t(j+2) | t(j+1) | t(j) | ... | t(0) |
** +--------+ +--------+--------+--------+--------+ +--------+
** +--------+--------+
** | F(i)*g(j+1) |
** +--------+--------+
** +--------+
** + | c(j) |
** +--------+
** --------------------------------------------------------------------
** +--------+ +--------+--------+--------+--------+ +--------+
** t': | t(n) | ... | t(j+3) | t'(j+2)| t'(j+1)| t(j) | ... | t(0) |
** +--------+ +--------+--------+--------+--------+ +--------+
** +--------+
** + | c(k+1) |
** +--------+
**
** Figure 1
** --------
**
** The above gives rise to the notion of a multiply/add primitive that has 5
** inputs and 3 output:
**
** Inputs: N, M the most and least significant digits
** of t that are being added to
** C the carry out from the previous mul/add
** A, B The two digits that are to be multiplied
**
** Outputs: C' The carry out of the final sum
** N',M' The updated values of N and M.
**
** Recalling that the number of bits per digit is denoted by L, the mul/add
** primitive is algebraicly defined by:
**
** s <-- (N + C)*2^L + A*B
** M' <-- s % 2^L
** N' <-- floor(s/2^L) % 2^L
** C' <-- floor(s/2^(2*L)) % 2^L
**
** Note that in example 1, there are several special cases of the mul/add
** macro which might be faster depending on the values of i and j:
**
** i and j Special case
** ------------------ ---------------------------------
** 1) i = 0, j = 0 N = M = C = 0, C' = 0
** 2) i = 0, j < n-1 N = C = 0, C' = 0
** 3) i = 0, j = n-1 N = C = 0, C' = 0 and N' not needed
**
** 4) i > 0, j = 0 C = 0
** 5) i > 0, j < n-1 general case
** 6) i > 0, j = n-1 N = 0, C' not needed
**
** 7) i + j = n-2 C' not needed
** 8) i + j = n-1 C, N, C' and N' not needed
**
** Note that cases 3 and 7 are functionally identical. For purposes of
** this discussion we will use the mnemonic XMUL to refer to producing a
** 2*L-bit product from 2 L-bit digits and XADD/XADDC to refer to the
** addition of one 2*L-bit integer to another without/with producing a
** carry out. With this naming convention we denote the following 6
** mul/add operations that correspond to the 6 special cases as follows:
**
** case mul/add operator name
** ---- ---------------------
** 1) XMUL(A,B, N',M')
** 2) XMUL_ADD(A,B,M,N',M')
** 3) MUL_ADD(A,B,M,M')
** 4) XMUL_XADDC(A,B,N,M,C',N',M')
** 5) XMUL_XADDC_W_C_IN(C,A,B,N,M,C',N',M')
** 6) XMUL_XADD_W_C_IN(N,M,C,A,B,C',N',M')
**
** [XMUL_XADD_W_C_IN is described with more parameters than are actually
** used.]
** [There are 8 cases, two of which are "functionally identical". That
** leaves 7 cases, but only 6 have a "mul/add operator name".]
**
** The mphoc code following these comments generates macros for computing
** the initial multiplication of F*g as a function of the number of digits
** in both F and g. It assumes that NUM_F_DIGITS <= NUM_G_DIGITS
**
**
**
** The description of digit arithmetic above indicates that we need
** NUM_F_DIGITS + 1 temporary locations to hold the intermediate products
** and sums plus one extra for dealing with carries. For adding
** additional digits of the product F*g, we need at least 3 temporary
** locations.
*/
num_t_digits = max(3, num_f_digits + 2);
/*
** Print macros for declaring the appropriate number of digits
*/
# define PRINT_DECL_DEF(tag,name,k) \
/* define 'name'0 thru 'name''k-1' */ \
printf("#define " tag STR(name) "0"); \
for (i = 1; i < k; i++) printf(", " STR(name) "%i", i); \
printf("\n")
PRINT_DECL_DEF("G_DIGITS\t", g, num_g_digits);
PRINT_DECL_DEF("F_DIGITS\t", F, num_f_digits);
PRINT_DECL_DEF("TMP_DIGITS\t", t, num_t_digits);
# undef PRINT_DECL_DEF
print;
/*
** Print macros for referencing the most significant digits of F and g
** as well as declaring the high temporary as the carry digit.
*/
printf("#define MSD_OF_W\tg%i\n", num_w_digits - 1);
printf("#define LSD_OF_W\tg%i\n", num_w_digits - 1 - num_f_digits);
printf("#define SECOND_MSD_OF_W\tg%i\n", num_w_digits - 2);
printf("#define CARRY_DIGIT\tt%i\n", num_t_digits - 1);
print;
/*
** GET_F_DIGITS(x) fetches the initial digits of f from x. We assume
** that num_f_digits has the same value as NUM_UX_FRACTION_DIGITS
**
** PUT_W_DIGITS(x) stores the result digits into an UX_FLOAT fraction
** field.
*/
if (num_f_digits != NUM_UX_FRACTION_DIGITS)
{
printf("ERROR: num_f_digits != NUM_UX_FRACTION_DIGITS\n");
exit;
}
# define sMAC2 "; \\\n\t"
# define MAC2 " \\\n\t"
# define MAC3 "\n\n"
printf("#define GET_F_DIGITS(x)" );
for (i = 0; i < num_f_digits; i++)
printf( sMAC2 "F%i = G_UX_FRACTION_DIGIT(x, %i)",
NUM_UX_FRACTION_DIGITS - 1 - i, i);
printf(MAC3);
printf("#define PUT_W_DIGITS(x)" );
for (i = 0; i < num_f_digits; i++)
printf( sMAC2 "P_UX_FRACTION_DIGIT(x, %i, g%i)",
i, num_g_digits - 1 - i);
printf(MAC3);
/*
** NEGATE_W negates the high num_f_digits + 1 digits of w
*/
printf("#define NEGATE_W {" );
j = num_g_digits;
for (i = 0; i <= num_f_digits; i++)
{ j--; printf( " \\\n\t" "g%i = ~g%i;", j, j); }
printf( " \\\n\t" "g%i += 1; CARRY_DIGIT = (g%i == 0);", j, j);
for (i = 1; i < num_f_digits; i++)
{
j++;
printf(" \\\n\t" "g%i += CARRY_DIGIT; CARRY_DIGIT = (g%i == 0);", j, j);
}
printf(" \\\n\t" "g%i += CARRY_DIGIT; }\n\n", j + 1);
/*
** GET_G_DIGITS_FROM_TABLE fetches the initial digits of g
** (and the extra_digit) from the table.
*/
printf("#define GET_G_DIGITS_FROM_TABLE(p, extra_digit)");
/* Better performance with DEC C -- don't auto-increment! */
for (i = num_g_digits - 1; i >= 0; i--)
printf(MAC2 "g%i = p[%i]; ", i, num_g_digits - 1 - i);
printf(MAC2 "extra_digit = p[%i]; ", num_g_digits);
printf(MAC2 "p += %i", num_g_digits + 1);
printf(MAC3);
/*
** Generate macro that aligns g bits
**
** LEFT_SHIFT_G_DIGITS(lshift,BITS_PER_WORD-lshift,extra_digit) ==
** g = (g << lshift) | (extra_digit >> (BITS_PER_WORD-lshift)
**/
printf("#define LEFT_SHIFT_G_DIGITS(lshift, rshift, extra_digit)");
for (i = num_g_digits - 1; i > 0; i--)
printf(MAC2 "g%i = (g%i << (lshift)) | (g%i >> (rshift));",
i, i, i-1);
printf(MAC2 "g0 = (g0 << (lshift)) | (extra_digit >> (rshift))");
printf(MAC3);
/*
** MULTIPLY_F_AND_G_DIGITS(c) == g = F* g
*/
printf("#define MULTIPLY_F_AND_G_DIGITS(c)");
if (num_g_digits == 1)
printf("\t" "g0 = F0*g0\n");
else if (num_f_digits == 1) {
printf(MAC2 "XMUL(F0,g0,t0,g0)");
for (i = 1; i < num_w_digits - 1; i++)
printf(sMAC2 "XMUL_ADD(F0,g%i,t0,t0,g%i)", i, i);
printf(sMAC2 "MUL_ADD(F0,g%i,t0,g%i)", i, i);
} else {
/* Get first product */
printf(MAC2 "XMUL(g0,F0,t1,t0)");
/*
** Accumulate additional products until we use up all of the F
** digits, or we no longer need the high digit of the XMUL.
*/
msd_of_mul_add = 1;
for (i = 1; i < num_f_digits; i++) {
msd_of_mul_add++;
if (msd_of_mul_add >= num_w_digits)
break;
printf(sMAC2 "XMUL_ADD(g0,F%i,t%i,t%i,t%i)", i, i, i+1, i);
}
/*
** If we no longer needed the high digit of the XMUL before using
** all of the F digits, add in the low bits of the final product.
*/
if (msd_of_mul_add >= num_w_digits)
printf(sMAC2 "MUL_ADD(g0,F%i,t%i)", i, i);
/* Move the low bits of t to w */
printf(sMAC2 "g0 = t0");
/*
** Now multiply by the remaining digits of g. In the code that
** follows, the digits of t are reused each time through the loop
** modulo (NUM_F_DIGITS + 1). For example, suppose NUM_F_DIGITS
** is 3. In the multiplications above, the digits of t (in most to
** least significant order were t[3]:t[2]:t[1]:t[0]. In the first
** iterations below the order is t[0]:t[3]:t[2]:t[1], and on the
** next iteration t[1]:t[0]:t[3]:t[2], and so on. The variables
** hi, lo and first are used to track the order of the digits and
** the least significant digit. Note that the high tmp digit is
** used as a carry digit.
*/
for (i = 0; i < num_t_digits - 1; i++)
next_index[i] = i + 1;
next_index[num_t_digits - 2] = 0;
# define UPDATE_DIGIT_INDEX(lo,hi) lo = hi; hi = next_index[hi]
first = 0;
for (i = 1; i < num_w_digits; i++) {
first = next_index[first];
lo = first;
hi = next_index[lo];
msd_of_mul_add = i + 2; /* msd is the carry out */
if (msd_of_mul_add < num_w_digits)
printf(sMAC2 "XMUL_XADDC(g%i,F0,t%i,t%i,c,t%i,t%i)",
i, hi, lo, hi, lo);
else if (msd_of_mul_add <= num_w_digits)
printf(sMAC2 "XMUL_XADD(g%i,F0,t%i,t%i,t%i,t%i)",
i, hi, lo, hi, lo);
else
printf(sMAC2 "MUL_ADD(g%i,F0,t%i,t%i)",
i, lo, lo);
UPDATE_DIGIT_INDEX(lo,hi);
for (j = 1; j < num_f_digits; j++) {
msd_of_mul_add++;
if (msd_of_mul_add < num_w_digits) {
if (j == (num_f_digits - 1))
printf(sMAC2
"XMUL_XADDC(g%i,F%i,c,t%i,c,t%i,t%i)",
i, j, lo, hi, lo);
else
printf(sMAC2
"XMUL_XADDC_W_C_IN(g%i,F%i,t%i,t%i,c,c,t%i,t%i)",
i, j, hi, lo, hi, lo);
} else if (msd_of_mul_add <= num_w_digits) {
if (j == (num_f_digits - 1))
printf(sMAC2
"XMUL_XADD(g%i,F%i,c,t%i,t%i,t%i)",
i, j, lo, hi, lo);
else
printf(sMAC2
"XMUL_XADD_W_C_IN(g%i,F%i,t%i,t%i,c,t%i,t%i)",
i, j, hi, lo, hi, lo);
} else if (msd_of_mul_add <= num_w_digits + 1) {
printf(sMAC2 "MUL_ADD(g%i,F%i,t%i,t%i)",
i, j, lo, lo);
} else
break;
UPDATE_DIGIT_INDEX(lo,hi);
}
/* Move low digit of t to W */
printf(sMAC2 "g%i = t%i", i, first);
}
}
print;
print;
/*
** Generate the macro that multiplies F by an additional digit of g
** and adds the product to w.
*/
printf("#define GET_NEXT_PRODUCT(g, w, c)");
if (num_g_digits == 1)
printf("\t" "XMUL_XADD(g,F0,g0,w,g0,w)");
else {
printf(MAC2 "XMUL_XADDC(g,F0,g0,(DIGIT_TYPE)0,c,g0,w)");
msd_of_mul_add = 1;
for (i = 1; i < num_f_digits; i++) {
j = i-1;
if (msd_of_mul_add < num_w_digits)
printf(sMAC2
"XMUL_XADDC_W_C_IN(g,F%i,g%i,g%i,c,c,g%i,g%i)",
i, i, j, i, j);
else if (msd_of_mul_add <= num_w_digits + 1)
printf(sMAC2
"XMUL_XADD_W_C_IN(g,F%i,g%i,g%i,c,g%i,g%i)",
i, i, j, i, j);
else if (msd_of_mul_add <= num_w_digits + 2)
printf(sMAC2
"MUL_ADD(g,F%i,g%i,g%i)",
i, j, j);
else
break;
msd_of_mul_add++;
}
printf(";");
/*
** If there was a carry out on the last add and we are not past the
** last w digit, then the carry has to be propagated to the remaining
** w digits as necessary.
*/
if (msd_of_mul_add < num_w_digits) {
if (msd_of_mul_add != (num_w_digits - 1)) {
printf(MAC2 "if (c) ");
i = msd_of_mul_add;
while (i < num_w_digits - 1)
printf(MAC2 "if (++g%i == 0) ", i++);
printf(MAC2 "g%i++", i);
} else
printf(MAC2 "g%i += c", i);
}
}
printf(MAC3);
/* Generate the macro that shifts w left by 1 digit */
printf("#define LEFT_SHIFT_W_LOW_DIGITS_BY_ONE(extra_w_digit)");
if (num_w_digits != 1)
{
for (i = num_w_digits - 2; i > 0; i--)
printf(MAC2 "g%i = g%i;", i, i-1);
printf(MAC2 "g0 = extra_w_digit");
}
printf(MAC3);
print;
@end_divert
@eval my $outText = MphocEval( GetStream( "divertText" ) ); \
my $headerText = GetHeaderText( STR(BUILD_FILE_NAME), \
"Definitions and constants for large " . \
"radian argument reduction",__FILE__ ); \
print "$headerText\n\n$outText";
#endif
#define TMP_DIGIT t0
#define EXTRA_W_DIGIT t1
static U_WORD
UX_RADIAN_REDUCE( UX_FLOAT * x, WORD octant, UX_FLOAT * reduced_argument )
{
WORD offset, scale, j;
UX_EXPONENT_TYPE exponent;
UX_SIGN_TYPE sign, sign_x;
DIGIT_TYPE quadrant;
DIGIT_TYPE F_DIGITS; /* declare F0, ... Fm */
DIGIT_TYPE G_DIGITS; /* declare g0, ... gn */
DIGIT_TYPE TMP_DIGITS; /* declare t0, ... tm+1 */
DIGIT_TYPE next_g_digit;
const DIGIT_TYPE *p;
/*
** Get the fractional part of x into the fraction digits F. While
*/
GET_F_DIGITS(x);
/*
** Assuming the input argument x has the form x = 2^n*f, where .5 <= f < 1,
** then F at this point is a multi-precision integer, F = 2^128*f
**
** Now, use the exponent to get the bit offset of the first interesting
** bit in the 4/pi table.
*/
exponent = G_UX_EXPONENT(x);
sign_x = G_UX_SIGN(x);
/*
** A negative offset would have us access memory before the start of
** the 4/pi table. This indicates that the x was pretty small already,
** so we'll make a quick exit.
*/
if (exponent < 0)
{
/*
** At this point the argument has absolute value less than pi/4.
** We need to compute the quadrant bits based on octant and possibly
** adjust x by a +/- pi/4.
**
** If x < 0, then x + octant lies in octant - 1, not octant.
*/
j = octant + (sign_x >> (BITS_PER_UX_SIGN_TYPE - 1));
/*
** We can now get actual quadrant by looking a the parity of effective
** octant. Depending on whether we round up or down, we might need
** to adjust x by +/- pi/4.
*/
j = j + (j & 1);
quadrant = j >> 1;
j = octant - j;
if ( j )
ADDSUB(x, UX_PI_OVER_FOUR, j < 0 ? SUB : ADD, reduced_argument);
else
UX_COPY(x, reduced_argument);
return quadrant;
}
/*
** Get the address of the digit containing the first interesting bit,
** and its bit offset within that digit. Load G from the the table,
** shifting the digits by that bit offset, so that the interesting bit
** will become the high bit of G.
*/
offset = exponent - ( UX_PRECISION + 2 - FOUR_OV_PI_ZERO_PAD_LEN );
DIV_REM_BY_L(offset, j, offset);
p = &FOUR_OVER_PI_TABLE_NAME[j];
GET_G_DIGITS_FROM_TABLE(p, next_g_digit);
if (offset)
{
j = BITS_PER_DIGIT - offset;
LEFT_SHIFT_G_DIGITS(offset, j, next_g_digit);
}
/*
** The extended-precision multiply: w = F*g.
*/
MULTIPLY_F_AND_G_DIGITS( /* F_DIGITS, G_DIGITS, T_DIGITS, */ CARRY_DIGIT );
/*
** Add in the variable octant.
*/
octant = sign_x ? -octant : octant;
MSD_OF_W += (DIGIT_TYPE)octant << (BITS_PER_DIGIT - 3);
scale = 0;
do {
/*
** If there isn't enough significance in w, then:
** get more bits from the table, form the new digit into TMP_DIGIT,
** and add the partial product F*TMP_DIGIT to w.
*/
if ( !W_HAS_M_BIT_LOSS )
break;
TMP_DIGIT = next_g_digit;
next_g_digit = *p++;
if (offset)
TMP_DIGIT = (TMP_DIGIT << offset) | (next_g_digit >> j);
GET_NEXT_PRODUCT(TMP_DIGIT, EXTRA_W_DIGIT, CARRY_DIGIT);
/*
** We're done if the there are fewer than L bits of 0's or 1's.
*/
TMP_DIGIT = ( SECOND_MSD_OF_W >> (BITS_PER_DIGIT - NUM_EXTRA_BITS - 3))
| (MSD_OF_W << (NUM_EXTRA_BITS + 3));
TMP_DIGIT ^= ((SIGNED_DIGIT_TYPE) TMP_DIGIT >> (BITS_PER_DIGIT - 1));
if ( TMP_DIGIT )
break;
/*
** Compress the current value of w and increment scale to reflect
** the compression
*/
# define OCTANT_MASK MAKE_MASK(3, BITS_PER_DIGIT - 3)
MSD_OF_W = (MSD_OF_W & OCTANT_MASK) |
(SECOND_MSD_OF_W & ~OCTANT_MASK);
LEFT_SHIFT_W_LOW_DIGITS_BY_ONE(EXTRA_W_DIGIT);
EXTRA_W_DIGIT = 0;
scale += BITS_PER_DIGIT;
} while (1);
/*
** "Sign extend" w and get the quadrant. In the process, if the MSD_OF_W
** is "all" 0's or 1's, we need to shift up one digit in order to insure
** the proper number of significant bits in the final result.
*/
quadrant = MSD_OF_W;
MSD_OF_W = MSD_OF_W << 2;
MSD_OF_W = ((SIGNED_DIGIT_TYPE) MSD_OF_W) >> 2;
TMP_DIGIT = MSD_OF_W;
quadrant -= MSD_OF_W;
if ( MSD_OF_W == ((SIGNED_DIGIT_TYPE) MSD_OF_W >> (BITS_PER_DIGIT - 1)) )
{
MSD_OF_W = SECOND_MSD_OF_W;
LEFT_SHIFT_W_LOW_DIGITS_BY_ONE(EXTRA_W_DIGIT);
scale += BITS_PER_DIGIT;
}
/*
** If the sign bit of the original MSD of w is set, then "negate" the
** result
*/
sign = ((SIGNED_DIGIT_TYPE) TMP_DIGIT) < 0 ? UX_SIGN_BIT : 0;
if (sign)
NEGATE_W
/*
** Put w into unpacked format and normalize. Make up for any zero bits
** that were shift in during the normalization. Note that by the way the
** reduced argument was constructed, normalization shift cannot be bigger
** than the digit size.
*/
quadrant = G_UX_SIGN(x) ? -quadrant : quadrant;
P_UX_SIGN(reduced_argument, sign ^ sign_x);
P_UX_EXPONENT(reduced_argument, 3);
PUT_W_DIGITS(reduced_argument);
NORMALIZE(reduced_argument);
exponent = G_UX_EXPONENT(reduced_argument);
offset = exponent - 3;
if (offset)
{
offset += BITS_PER_DIGIT;
TMP_DIGIT = G_UX_LSD( reduced_argument);
TMP_DIGIT |= (LSD_OF_W >> offset);
P_UX_LSD(reduced_argument, TMP_DIGIT);
}
P_UX_EXPONENT(reduced_argument, exponent - scale);
MULTIPLY(reduced_argument, UX_PI_OVER_FOUR, reduced_argument);
return quadrant >> (BITS_PER_DIGIT - 2);
}
|