File: dpml_ux_radian_reduce.c

package info (click to toggle)
intelrdfpmath 2.0u2-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 27,204 kB
  • sloc: ansic: 310,457; makefile: 397; sh: 3
file content (1091 lines) | stat: -rwxr-xr-x 43,308 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
/******************************************************************************
  Copyright (c) 2007-2018, Intel Corp.
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of Intel Corporation nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/

#if defined(MAKE_INCLUDE)
#   define BASE_NAME       rdx
#elif !defined(DPML_UX_RDX_BUILD_FILE_NAME)
#   define DPML_UX_RDX_BUILD_FILE_NAME	dpml_rdx_x.h
#endif

#include "dpml_ux.h"

/*
** This file contains the code for performing radian argument reduction
** for unpacked x-float arguments.  The code here is liberally borrowed
** from dpml_trig_reduce.c and assumes the existence of a file that contains
** the bits of 4/pi and appropriate definitions for accessing it.  This
** file is denoted by FOUR_OVER_PI_BUILD_FILE_NAME in dpml_names.h.
**
** The reduction routine returns the reduced argument accurate to F_PRECISION +
** EXTRA_PRECISION and the quadrant (modulo 4) that contained the original
** argument.  Special cases like infinites and NaN's are assumed to have been
** screened out prior to calling this routine.
*/

#if !defined(EXTRA_PRECISION)
#   define EXTRA_PRECISION	6
#endif


#if !defined(MAKE_INCLUDE)
//#   undef FOUR_OVER_PI_BUILD_FILE_NAME
#   include STR(DPML_UX_RDX_BUILD_FILE_NAME)
#endif

#define DEFINES
#include STR(FOUR_OVER_PI_BUILD_FILE_NAME)


/*
** BASIC ALGORITHM:
** ----------------
**
** Let z = x + octant*(pi/4).  We want to produce
**
**		y = rem( z, pi/2 )
**
** or equivalently,
**
**		Q = nint( z/(pi/2) )
**		y = z - Q*(pi/2)
**
** Note that the reduce argument is in "radians".  For computational
** purposes, it is convenient to first obtain the reduced argument in
** cycles - i.e. compute y as
**
**              c   = z/(pi/2)
**              Q   = nint(c)
**              w  = c - Q
**              y = w*(pi/2)
**
** If in the above calculations, we substitute x + octant*(pi/4) for x, we get
**
**              c   = x/(pi/2) + octant/2
**              Q   = nint(c)
**              w  = c - Q
**              y = w*(pi/2)
**
** Now, suppose instead of computing, c, Q and w, we compute c' = 2*c, Q' = 2*Q
** and w' = 2*w.  Then the above becomes
**
**              c' = x/(pi/4) + octant
**              Q' = 2*nint(c'/2)
**              w'  = x/(pi/4) + octant - Q'
**              y = w'*(pi/4)
**
** We see that the key operation is to compute x/(pi/4).  With this in mind,
** let x = 2^n*f, where 1/2 <= f < 1 and f has P' ( = 128 ) significant bits.
** If F is defined as F = 2^P'*f, it follows that F is an integer.
** Now
**
**              x/(pi/4) = x*(4/pi)
**                       = (2^n*f)*(4/pi)
**                       = [2^(n-P')]*[2^P'*f] *(4/pi)
**                       = [2^(n-P')]*F*(4/pi)
**                       = F*{2^(n-P')*(4/pi)}
**
** Suppose that we have stored a large bit string that represents the value
** of 4/pi, then we can obtain the value of 2^(n-P')*(4/pi) by moving the
** binary point in 4/pi by n-P' places.  In particular, let
**
**              2^(n-P')*(4/pi) = J*8 + g
**
** That is, J is an integer formed from the first n-P'-3 bits of 4/pi and
** g is value formed by the remaining bits.  It follows that 
**
**              x/(pi/4) = F*{2^(n-P')*(4/pi)}
**                       = F*(J*8 + g)
**                       = F*J*8 + F*g
**
** Note that we need only compute x/(pi/4) modulo 8.  Since F and J are both
** integers, the above gives
**
**              x/(pi/4) (mod 8) = (F*J*8 + F*g) (mod 8)
**                               = F*g (mod 8)
**
** At this point the algorithm for large argument reduction has the following
** flavor:
**
**              (1) index into a precomputed bit string for 4/pi to
**                  obtain g 
**              (2) compute w = F*g (mod 8)
**              (3) w <-- integer part of w + octant (mod 8)
**              (4) Q <-- nint(w)
**              (5) y = w - Q
**              (6) y = y*(pi/4)
**
**			Algorithm I
**			-----------
**
** The following sections describe the implementation issues associated with
** each of the steps in algorithm I as well as present the code for the 
** overall implementation.
**
**
** THE 4/pi TABLE
** --------------
**
** Step (1) of Algorithm I requires indexing into a bit string for 4/pi using
** the exponent field of the argument.  Specifically, if n is the argument
** exponent we want to shift the binary point of 4/pi by n - P' bits to the
** right.  If |x| < pi/4, there is no need to compute x/(pi/4), so we assume
** that we only index into the table if |x| >= 1/2.  Under this assumption,
** it is possible that n - P' is negative.  Thus to facilitate the indexing
** operation, it is necessary for the bit string to have some leading 0's.
**
** Assume the bit string for 4/pi has T leading zeros and that the bits are
** numbered in increasing order starting from 0.  I.e. the string looks like:
**
**	bit number: 0      T
**	            00...001.01000101111.....
**                          ^
**                          |
**		       binary point 
**
** From the above discussion, we want to shift the binary point of the bit
** string n-P' bits to the right and extract g as some (as yet undetermined)
** number of bits, starting 3 bits to the left of the shifted binary point.
** Consequently, the position of the most significant bit we would like to
** access is k = T + n - P' - 2.  Since we want the bit position to be greater
** than or equal to zero, and we are assuming that the argument is greater
** than or equal to 1/2 (i.e. n >= 0), it follows that T >= P' + 2.
*/

#if FOUR_OV_PI_ZERO_PAD_LEN < (UX_PRECISION + 2)
#   error "Insufficient zero padding in 4/pi table"
#endif

/*
** Since most architectures do not efficiently support bit addressing, the
** argument reduction routine assumes that the 4/pi bit string is stored
** in L-bit "digits".  Getting the right bits of 4/pi requires getting the set
** of "digits" that begin with the digit that contains the leading bit and
** doing a sequence of shifts and logical ors.  The index of the digit that
** contains the initial bit is trunc(n/L) and the bit position within that
** digit is n - L*trunc(n/L) = n % L.  For the unpacked reduction routine,
** we require the 4/pi table "digit" and a UX_FRACTION_DIGIT have the same
** length (which implies the digit length is either 32 or 64 bits).
*/
   
#if (BITS_PER_DIGIT != BITS_PER_UX_FRACTION_DIGIT_TYPE)
#   error "Digit type mis-match"
#endif

#define DIGIT_MASK(width,pos)	((( DIGIT_TYPE_CAST 1 << (width)) - 1) << (pos))
#define DIGIT_BIT(pos)		( DIGIT_TYPE_CAST 1 << (pos))

#if defined(MAKE_COMMON) || defined(MAKE_INCLUDE)
#define DIGIT_TYPE_CAST		/* MPHOC doesn't do casts */
#else
#define DIGIT_TYPE_CAST		(DIGIT_TYPE)
#endif

#define DIV_REM_BY_L(n,q,r)	(q) = (n) >> __LOG2(BITS_PER_DIGIT); \
				(r) = (n) & (BITS_PER_DIGIT - 1)


/******************************************************************************/
/*									      */
/*		Generate code for multi-precision multiplication	      */
/*									      */
/******************************************************************************/

/*
** Many of the operation used in the radian reduction scheme depend on the
** digit size.  The following code is used generate macros that hide the
** dependencies on digit size.
*/

#if defined(MAKE_INCLUDE)

    @divert -append divertText

    /*
    ** Record FOUR_OVER_PI_BUILD_FILE_NAME so we don't have to keep specifying
    ** it on the command line.
    */
    printf("#if !defined FOUR_OVER_PI_BUILD_FILE_NAME\n");
    printf("#define FOUR_OVER_PI_BUILD_FILE_NAME\t"
        STR(FOUR_OVER_PI_BUILD_FILE_NAME) "\n");
    printf("#endif\n");

    /*
    ** COMPUTING F*g
    ** -------------
    **
    ** The goal of step (2) in Algorithm I is to produce a reduced argument
    ** that is accurate to P + k bits, where k is the specified number of
    ** extra bits of precision. Also, we need to get the quadrant bits, Q.
    ** Consequently, the value of w = F*g, must be accurately computed to
    ** P + k + 3 bits.  Note however, that if x is close to a multiple of
    ** pi/2 the reduced argument will have a large number of leading zeros
    ** (in fixed point) and consequently the actual number of required bits
    ** in w will depend upon the input argument.  Since computing w is the
    ** most time consuming part of the algorithm, we would like to compute
    ** the minimum number of bits possible.  Specifically, compute w to enough
    ** bits so that if x is not near a multiple of pi/2, then the reduced
    ** argument will be accurate.  After w is computed, we can check how close
    ** the original argument was to pi/2 by examining the number of leading
    ** fractional 1's or 0's in w.  If there are too many (i.e. the reduced
    ** argument will not have enough significant bits) then we can compute
    ** additional bits of w.
    **
    ** In order to compute F*g to P + k + 3 bits, we must perform some form of 
    ** extended precision arithmetic.  For the sake of uniformity across data
    ** types and architectures, the implementation described here computes F*g
    ** by expressing F and g as fixed point values in "arrays" of some basic
    ** integer unit of computation.  As indicated above, we shall refer to this
    ** integer unit as a digit.  The choice of digit is arbitrary, however, it
    ** is best if the double length product of two digits is efficiently
    ** computed.
    **
    ** Now we need to represent w to at least P + k + 3 bits.  Since F has P'
    ** significant bits, if we use a finite precision approximation of g, call
    ** it g', then the last P' bits of the product F*g' are inaccurate.
    ** Therefore we need to represent g' to N = P' + P + k + 3 bits.   If the
    ** number of bits in a digit is L, then F and g' must be represented in at
    ** least ceil(P'/L) and D = ceil(N/L) digits respectively.
    */

    num_f_digits = ceil(UX_PRECISION/BITS_PER_DIGIT);
    num_req_bits = (F_PRECISION + UX_PRECISION + EXTRA_PRECISION + 3);
    num_w_digits = ceil(num_req_bits/BITS_PER_DIGIT);
    num_g_digits = num_w_digits;
    num_extra_bits = num_w_digits*BITS_PER_DIGIT - num_req_bits;


    printf("#define NUM_F_DIGITS\t%i\n", num_f_digits);
    printf("#define NUM_G_DIGITS\t%i\n", num_g_digits);
    printf("#define NUM_W_DIGITS\t%i\n", num_w_digits);
    printf("#define NUM_REQ_BITS\t%i\n", num_req_bits);
    printf("#define NUM_EXTRA_BITS\t%i\n", num_extra_bits);
    print;

    /*
    ** Now consider the computation of F*g' in terms of digits.  For the
    ** purpose of discussion, suppose F requires 2 digits and g' requires 4
    ** digits.
    ** Then using "black board" arithmetic F*g' looks like:
    **
    **                              binary point
    **                               |
    **                               |
    **                               |
    **                             +--------+--------+--------+--------+
    **                         g': |   g1   |   g2   |   g3   |   g4   |
    **                             +--------+--------+--------+--------+
    **             +--------+--------+
    **          F: |   F1   |   F2   |
    **             +--------+--------+
    **          ----------------------------------------------------------
    **                               |               +--------+--------+
    **                               |               |      F2*g4      |
    **                               |      +--------+--------+--------+
    **                               |      |      F1*g4      |
    **                               |      +--------+--------+
    **                               |      |      F2*g3      |
    **                             +--------+--------+--------+
    **                             |      F1*g3      |
    **                             +--------+--------+
    **                             |      F2*g2      |
    **                    +--------+--------+--------+
    **                    |      F1*g2      |
    **                    +--------+--------+
    **                    |      F2*g1      |
    **           +--------+--------+--------+
    **           |      F1*g1      | |
    **           +--------+--------+ |
    **                               |
    **          ----------------------------------------------------------
    **           +--------+--------+--------+--------+--------+--------+
    **           |  Not required   |   w1   |   w2   |   w3   |   w4   |
    **           +--------+--------+--------+--------+--------+--------+
    **
    **                              Figure 1
    **                              --------
    **
    ** The high two digits of the product are not required since we are
    ** interested in the result modulo 8.
    **
    ** In general the number of digits used to express g' will contain more
    ** than N bits.  Let the number of bits in excess of N be M.  Then if x is
    ** close to pi/2 and the number of leading fractional 0's or 1's in F*g' is
    ** less than M, F*g' still contains enough significant bits to return an
    ** accurate reduced argument.  If we denote the 3 most significant bits
    ** of w1 as o, then x will be close to pi/2 if o is odd the bits below
    ** o are 1's or o is even and the bits below o are 0's.  Therefore there
    ** will be loss of significance if w1 (in the picture above) has a binary
    ** representation of the form
    **
    **                      +----------------------+
    **                      |xx00000...00000xxxxxxx|
    **                      +----------------------+
    **                              - or -
    **                      +----------------------+
    **                      |xx11111...11111xxxxxxx|
    **                      +----------------------+
    **                         |<-- M+2 -->|
    **
    ** These two bit patterns can be detected by add and mask operations.
    **
    ** Assuming that M+2 0's or 1's appear in w1, we know that there are not
    ** enough significant bits in w to guarantee the accuracy of the answer.
    ** Consequently, we need to generate more bits of w.  This can be done by
    ** getting the next digit of g, computing the product of that digit with
    ** F and adding it into the previous value of w.  This process can be
    ** repeated until there are a sufficient number of significant bits.  Note
    ** that each additional digit of g will add one digit (L bits) of
    ** significance to w.
    **
    ** If the processes of adding additional significant bits is implemented
    ** in a naive fashion, each time through the loop will require an
    ** additional digit of storage.  Consider the situation where the first
    ** additional digit has been added to w and there are still insufficient
    ** significant bits for an accurate result.  This means that there are at
    ** least M + L leading fractional 0's or 1's.  Then w must have the form
    **
    **              |<------------ D + 1 digits ---------->|
    **              +----------+----------+     +----------+
    **              |xx########|######xxxx| ... |xxxxxxxxxx|
    **              +----------+----------+     +----------+
    **                 |<-- M+L+2 -->|
    **
    ** where the #'s indicate a string of 0's or 1's.  Since there are more
    ** than L consecutive 0's or 1's, we can compress the representation of w
    ** by one digit by removing L consecutive 0's or 1's from the first two
    ** digits of w.  If this is done w will look like
    **
    **              |<-------------- D digits ------------>|
    **              +----------+----------+     +----------+
    **              |xx#####xxx|xxxxxxxxxx| ... |xxxxxxxxxx|
    **              +----------+----------+     +----------+
    **              -->|M+2|<--
    **
    ** Which is the same as for when the first additional digit was added.
    ** It follows that we need storage for only D+1 digits of w and a counter
    ** indicating the number of additional digits that were added.
    **
    ** To recap the above discussion, algorithm I is expanded as follows:
    **
    **               (1) s <-- 0
    **               (2) w <-- first D digits of F*g
    **               (3) if w has less than or equal to M leading fractional
    **                   0's or 1's, go to step 9
    **               (4) add an additional digit of F*g to w
    **               (5) if w has less than L leading leading fractional 0's
    **                   or 1's, go to step 9
    **               (6) Compact w by removing L 0's or 1's
    **               (7) s <-- s + 1
    **               (8) go to step 3.
    **               (9) o <-- high three bits of w
    **              (10) z' <-- w - nint(w) (taking into account what
    **		            ever compaction took place, i.e. what the current
    **			    value of s is.)
    **              (11) y = z*(pi/4)
    **		
    **				Algorithm II
    **				------------
    **
    ** The above loop has two exits.  An exit from step 3 yields an
    ** approximation to w containing D digits while an exit from step 5
    ** contains D+1 digits.  In the second case, there are fewer than L
    ** leading 0's and 1's and this implies that there are enough "good" bits
    ** in the first D digits to generate the return values.  Consequently,
    ** from either exit, it is sufficient to use only the first D digits of w.
    **
    ** The exposition above on the number of leading zeros was a little loose,
    ** in that for the general case, the leading zeros and ones may not always
    ** lie entirely in the first digit of w.  In general, there can be as many
    ** as L-1 extra bits, in which case, we would need to examine both the
    ** first and second word of w. However, for the digit sizes we are
    ** considering combined with the number of extra bits we are returning,
    ** examining one digit will suffice.
    */

    p = BITS_PER_DIGIT - (num_extra_bits + 4);
    if (p < 0)
        {
        printf("ERROR: mask spans two digits\n");
        exit;
        }
    else
        {
        i = DIGIT_BIT(p);	/* to 'add 1' at position p */
        m = DIGIT_MASK(num_extra_bits + 1, p + 1);

	printf("#define W_HAS_M_BIT_LOSS\t"
           "(((MSD_OF_W + 0x%..16i) & 0x%..16i) == 0)\n", i, m);
        }

    /*
    ** DIGIT ARITHMETIC
    ** ----------------
    **
    ** In step (2) of Algorithm 2, we are computing the first D digits of the
    ** product F*g.  From figure 1, we see that, (in general) we are computing
    ** a 2*L bit product and incorporating it into the sum of previously
    ** computed 2*L bit products.  If we think of F, g and w as multi-digit
    ** integers with their digits numbered from least significant to most
    ** significant (starting at zero) and denoting the i-th digit of F by F(i)
    ** and the j-th digit of g by g(j), then the product in figure 1 can be
    ** obtained as follows:
    **
    **		t = 0;
    **		for (i = 0; i < num_g_digits; i++)
    **		    {
    **		    for (j = 0; j < num_F_digits; j++)
    **		        t = t + F[j]*g[i]*2^(j*L)
    **		    w[i] = t mod 2^L;
    **		    t = (t >> L);            
    **		    }
    **
    **			      Example 1
    **			      ---------
    **
    ** Note that each time through the loop, t is accumulating the product
    ** g[i]*F plus "the high digits" of g[i-1]*F.  It follows that t can be
    ** represented in (num_F_digits + 1) digits.
    **
    ** If F contains n digits, then the sum in the above loops looks like:
    **
    **	    +--------+     +--------+--------+--------+--------+     +--------+ 
    **   t: |  t(n)  | ... | t(j+3) | t(j+2) | t(j+1) |  t(j)  | ... |  t(0)  |
    **	    +--------+     +--------+--------+--------+--------+     +--------+ 
    **	                                     +--------+--------+
    **	 +                                   |    F[j]*g[i]    |
    **	                                     +--------+--------+
    **     --------------------------------------------------------------------
    **	    +--------+     +--------+--------+--------+--------+     +--------+ 
    **   t: | t'(n)  | ... | t'(j+3)| t'(j+2)| t'(j+1)|  t'(j) | ... |  t(0)  |
    **	    +--------+     +--------+--------+--------+--------+     +--------+ 
    **
    ** Note that t(0) through t(j-1) are unaffected and that t(j+2) through
    ** t(n) are affected only by the carry out when computing t'(j+1).  It
    ** follows that if we keep the carry out of t'(j+1) as a separate quantity,
    ** then the addition in the inner loop only affects two digits of t.  If
    ** we denote the separate carry by c(j), the picture on the next iteration
    ** of the loop (i.e. replace j by j+1) looks like:
    **
    **	    +--------+     +--------+--------+--------+--------+     +--------+ 
    **   t: |  t(n)  | ... | t(j+3) | t(j+2) | t(j+1) |  t(j)  | ... |  t(0)  |
    **	    +--------+     +--------+--------+--------+--------+     +--------+ 
    **	                        +--------+--------+
    **	                        |    F(i)*g(j+1)  |
    **	                        +--------+--------+
    **	                        +--------+
    **	 +                      |  c(j)  |
    **	                        +--------+
    **     --------------------------------------------------------------------
    **	    +--------+     +--------+--------+--------+--------+     +--------+ 
    **  t': |  t(n)  | ... | t(j+3) | t'(j+2)| t'(j+1)|  t(j)  | ... |  t(0)  |
    **	    +--------+     +--------+--------+--------+--------+     +--------+ 
    **	                   +--------+
    **	 +                 | c(k+1) |
    **	                   +--------+
    **
    **				Figure 1
    **				--------
    **
    ** The above gives rise to the notion of a multiply/add primitive that has 5
    ** inputs and 3 output: 
    **
    **	Inputs:		N, M	the most and least significant digits
    **				of t that are being added to
    **			C	the carry out from the previous mul/add
    **			A, B	The two digits that are to be multiplied
    **
    **	Outputs:	C'	The carry out of the final sum
    **			N',M'	The updated values of N and M.
    **
    ** Recalling that the number of bits per digit is denoted by L, the mul/add
    ** primitive is algebraicly defined by:
    **
    **		s  <-- (N + C)*2^L + A*B
    **		M' <-- s % 2^L
    **		N' <-- floor(s/2^L) % 2^L
    **		C' <-- floor(s/2^(2*L)) % 2^L
    **
    ** Note that in example 1, there are several special cases of the mul/add
    ** macro which might be faster depending on the values of i and j:
    **
    **	   i and j			Special case
    **	------------------	---------------------------------
    **	1) i = 0, j = 0		N = M = C = 0, C' = 0
    **	2) i = 0, j < n-1	N = C = 0, C' = 0
    **	3) i = 0, j = n-1	N = C = 0, C' = 0 and N' not needed
    **
    **	4) i > 0, j = 0		C = 0	
    **	5) i > 0, j < n-1	general case
    **	6) i > 0, j = n-1	N = 0, C' not needed
    **
    **	7) i + j = n-2		C' not needed
    **	8) i + j = n-1		C, N, C' and N' not needed
    **		
    ** Note that cases 3 and 7 are functionally identical.  For purposes of
    ** this discussion we will use the mnemonic XMUL to refer to producing a
    ** 2*L-bit product from 2 L-bit digits and XADD/XADDC to refer to the
    ** addition of one 2*L-bit integer to another without/with producing a
    ** carry out.  With this naming convention we denote the following 6
    ** mul/add operations that correspond to the 6 special cases as follows:
    **
    **	case	mul/add operator name
    **	----	---------------------
    **	 1)	 XMUL(A,B, N',M')
    **	 2)	 XMUL_ADD(A,B,M,N',M')
    **	 3)	 MUL_ADD(A,B,M,M')
    **	 4)	 XMUL_XADDC(A,B,N,M,C',N',M')
    **	 5)	 XMUL_XADDC_W_C_IN(C,A,B,N,M,C',N',M')
    **	 6)	 XMUL_XADD_W_C_IN(N,M,C,A,B,C',N',M')
    **
    ** [XMUL_XADD_W_C_IN is described with more parameters than are actually
    **  used.]
    ** [There are 8 cases, two of which are "functionally identical".  That
    ** leaves 7 cases, but only 6 have a "mul/add operator name".]
    **
    ** The mphoc code following these comments generates macros for computing
    ** the initial multiplication of F*g as a function of the number of digits
    ** in both F and g.  It assumes that NUM_F_DIGITS <= NUM_G_DIGITS
    **
    **
    **
    ** The description of digit arithmetic above indicates that we need
    ** NUM_F_DIGITS + 1 temporary locations to hold the intermediate products
    ** and sums plus one extra for dealing with carries.  For adding
    ** additional digits of the product F*g, we need at least 3 temporary
    ** locations.
    */

    num_t_digits = max(3, num_f_digits + 2);

    /*
    **  Print macros for declaring the appropriate number of digits
    */

#   define PRINT_DECL_DEF(tag,name,k)					\
	/* define 'name'0 thru 'name''k-1' */				\
	printf("#define " tag STR(name) "0");				\
	for (i = 1; i < k; i++) printf(", " STR(name) "%i", i);		\
	    printf("\n")

    PRINT_DECL_DEF("G_DIGITS\t", g, num_g_digits);
    PRINT_DECL_DEF("F_DIGITS\t", F, num_f_digits);
    PRINT_DECL_DEF("TMP_DIGITS\t", t, num_t_digits);
#   undef PRINT_DECL_DEF
    print;

    /*
    ** Print macros for referencing the most significant digits of F and g
    ** as well as declaring the high temporary as the carry digit.
    */

    printf("#define MSD_OF_W\tg%i\n", num_w_digits - 1);
    printf("#define LSD_OF_W\tg%i\n", num_w_digits - 1 - num_f_digits);
    printf("#define SECOND_MSD_OF_W\tg%i\n", num_w_digits - 2);
    printf("#define CARRY_DIGIT\tt%i\n", num_t_digits - 1);
    print;

    /*
    ** GET_F_DIGITS(x) fetches the initial digits of f from x.  We assume
    ** that num_f_digits has the same value as NUM_UX_FRACTION_DIGITS
    **
    ** PUT_W_DIGITS(x) stores the result digits into an UX_FLOAT fraction
    ** field. 
    */

    if (num_f_digits != NUM_UX_FRACTION_DIGITS)
        {
        printf("ERROR: num_f_digits != NUM_UX_FRACTION_DIGITS\n");
        exit;
        }

#   define sMAC2       "; \\\n\t"
#   define MAC2        " \\\n\t"
#   define MAC3        "\n\n"

    printf("#define GET_F_DIGITS(x)" );
    for (i = 0; i < num_f_digits; i++)
        printf( sMAC2 "F%i = G_UX_FRACTION_DIGIT(x, %i)",
          NUM_UX_FRACTION_DIGITS - 1 - i, i);
    printf(MAC3);

    printf("#define PUT_W_DIGITS(x)" );
    for (i = 0; i < num_f_digits; i++)
        printf( sMAC2 "P_UX_FRACTION_DIGIT(x, %i, g%i)",
          i, num_g_digits - 1 - i);
    printf(MAC3);

    /*
    ** NEGATE_W negates the high num_f_digits + 1 digits of w
    */

    printf("#define NEGATE_W {" );
    j = num_g_digits;
    for (i = 0; i <= num_f_digits; i++)
        { j--; printf( " \\\n\t" "g%i = ~g%i;", j, j); }
    printf( " \\\n\t" "g%i += 1; CARRY_DIGIT = (g%i == 0);", j, j);
    for (i = 1; i < num_f_digits; i++)
        {
        j++;
        printf(" \\\n\t" "g%i += CARRY_DIGIT; CARRY_DIGIT = (g%i == 0);", j, j);
        }
    printf(" \\\n\t" "g%i += CARRY_DIGIT; }\n\n", j + 1);


    /*
    **  GET_G_DIGITS_FROM_TABLE fetches the initial digits of g
    **  (and the extra_digit) from the table.
    */

    printf("#define GET_G_DIGITS_FROM_TABLE(p, extra_digit)");

    /* Better performance with DEC C -- don't auto-increment! */
    for (i = num_g_digits - 1; i >= 0; i--)
        printf(MAC2 "g%i = p[%i]; ", i, num_g_digits - 1 - i);
    printf(MAC2 "extra_digit = p[%i]; ", num_g_digits);
    printf(MAC2 "p += %i", num_g_digits + 1);
    printf(MAC3);

    /*
    ** Generate macro that aligns g bits
    **
    ** LEFT_SHIFT_G_DIGITS(lshift,BITS_PER_WORD-lshift,extra_digit) ==
    **		g = (g << lshift) | (extra_digit >> (BITS_PER_WORD-lshift)
    **/

    printf("#define LEFT_SHIFT_G_DIGITS(lshift, rshift, extra_digit)");
    for (i = num_g_digits - 1; i > 0; i--)
        printf(MAC2 "g%i = (g%i << (lshift)) | (g%i >> (rshift));",
                       i,     i,                i-1);
    printf(MAC2 "g0 = (g0 << (lshift)) | (extra_digit >> (rshift))");
    printf(MAC3);


    /*
    ** MULTIPLY_F_AND_G_DIGITS(c) == g = F* g
    */

    printf("#define MULTIPLY_F_AND_G_DIGITS(c)");

    if (num_g_digits == 1)

	printf("\t" "g0 = F0*g0\n");

    else if (num_f_digits == 1) {

        printf(MAC2 "XMUL(F0,g0,t0,g0)");

        for (i = 1; i < num_w_digits - 1; i++)
            printf(sMAC2 "XMUL_ADD(F0,g%i,t0,t0,g%i)", i, i);

        printf(sMAC2 "MUL_ADD(F0,g%i,t0,g%i)", i, i);

    } else {

        /* Get first product */
        printf(MAC2 "XMUL(g0,F0,t1,t0)");

        /*
        ** Accumulate additional products until we use up all of the F
        ** digits, or we no longer need the high digit of the XMUL.
        */

        msd_of_mul_add = 1;
        for (i = 1; i < num_f_digits; i++) {
            msd_of_mul_add++;
            if (msd_of_mul_add >= num_w_digits)
                break;
            printf(sMAC2 "XMUL_ADD(g0,F%i,t%i,t%i,t%i)", i, i, i+1, i);
        }

        /*
        ** If we no longer needed the high digit of the XMUL before using
        ** all of the F digits, add in the low bits of the final product.
        */

        if (msd_of_mul_add >= num_w_digits)
            printf(sMAC2 "MUL_ADD(g0,F%i,t%i)", i, i);

        /* Move the low bits of t to w */
	printf(sMAC2 "g0 = t0");

        /*
        ** Now multiply by the remaining digits of g.  In the code that
        ** follows, the digits of t are reused each time through the loop
        ** modulo (NUM_F_DIGITS + 1).  For example, suppose NUM_F_DIGITS
        ** is 3.  In the multiplications above, the digits of t (in most to
        ** least significant order were t[3]:t[2]:t[1]:t[0].  In the first
        ** iterations below the order is t[0]:t[3]:t[2]:t[1], and on the
        ** next iteration t[1]:t[0]:t[3]:t[2], and so on.  The variables
        ** hi, lo and first are used to track the order of the digits and
        ** the least significant digit.  Note that the high tmp digit is
        ** used as a carry digit.
        */

        for (i = 0; i < num_t_digits - 1; i++)
            next_index[i] = i + 1;
        next_index[num_t_digits - 2] = 0;

#   define UPDATE_DIGIT_INDEX(lo,hi)	lo = hi; hi = next_index[hi]

        first = 0;
        for (i = 1; i < num_w_digits; i++) {

            first = next_index[first];
            lo = first;
            hi = next_index[lo];
            msd_of_mul_add = i + 2;	/* msd is the carry out */

            if (msd_of_mul_add < num_w_digits)
                printf(sMAC2 "XMUL_XADDC(g%i,F0,t%i,t%i,c,t%i,t%i)",
                                              i,    hi, lo,   hi, lo);
            else if (msd_of_mul_add <= num_w_digits)
                printf(sMAC2 "XMUL_XADD(g%i,F0,t%i,t%i,t%i,t%i)",
                                             i,    hi, lo, hi, lo);
            else
                printf(sMAC2 "MUL_ADD(g%i,F0,t%i,t%i)",
                                          i,    lo,  lo);
            UPDATE_DIGIT_INDEX(lo,hi);

            for (j = 1; j < num_f_digits; j++) {

                msd_of_mul_add++;
                if (msd_of_mul_add < num_w_digits) {

                    if (j == (num_f_digits - 1))
                        printf(sMAC2 
                         "XMUL_XADDC(g%i,F%i,c,t%i,c,t%i,t%i)",
                                       i,  j,   lo,   hi, lo);
                    else
                        printf(sMAC2 
                         "XMUL_XADDC_W_C_IN(g%i,F%i,t%i,t%i,c,c,t%i,t%i)",
                                              i,  j, hi, lo,    hi, lo);

                } else if (msd_of_mul_add <= num_w_digits) {

                    if (j == (num_f_digits - 1))
                        printf(sMAC2 
                         "XMUL_XADD(g%i,F%i,c,t%i,t%i,t%i)",
                                      i,  j,   lo, hi, lo);
                    else
                        printf(sMAC2 
                         "XMUL_XADD_W_C_IN(g%i,F%i,t%i,t%i,c,t%i,t%i)",
                                             i,  j, hi, lo,   hi, lo);

                } else if (msd_of_mul_add <= num_w_digits + 1) {

                    printf(sMAC2 "MUL_ADD(g%i,F%i,t%i,t%i)",
                                            i,  j, lo, lo);
                } else
                    break;
                UPDATE_DIGIT_INDEX(lo,hi);
            }

            /* Move low digit of t to W */
	    printf(sMAC2 "g%i = t%i", i, first);
        }
    }
    print;
    print;

    /*
    ** Generate the macro that multiplies F by an additional digit of g
    ** and adds the product to w.
    */

    printf("#define GET_NEXT_PRODUCT(g, w, c)");
    if (num_g_digits == 1)

	printf("\t" "XMUL_XADD(g,F0,g0,w,g0,w)");

    else {

        printf(MAC2 "XMUL_XADDC(g,F0,g0,(DIGIT_TYPE)0,c,g0,w)");

        msd_of_mul_add = 1;
        for (i = 1; i < num_f_digits; i++) {
	    j = i-1;

            if (msd_of_mul_add < num_w_digits)
                printf(sMAC2
                  "XMUL_XADDC_W_C_IN(g,F%i,g%i,g%i,c,c,g%i,g%i)",
                                         i,  i,  j,      i, j);
            else if (msd_of_mul_add <= num_w_digits + 1)
                printf(sMAC2
                  "XMUL_XADD_W_C_IN(g,F%i,g%i,g%i,c,g%i,g%i)",
                                        i,  i,  j,    i, j);
            else if (msd_of_mul_add <= num_w_digits + 2)
                printf(sMAC2
                  "MUL_ADD(g,F%i,g%i,g%i)",
                               i,  j,  j);
            else
                break;
            msd_of_mul_add++;
        }
	printf(";");

        /*
        ** If there was a carry out on the last add and we are not past the
        ** last w digit, then the carry has to be propagated to the remaining
        ** w digits as necessary.
        */

        if (msd_of_mul_add < num_w_digits) {
            if (msd_of_mul_add != (num_w_digits - 1)) {
                printf(MAC2 "if (c) ");
                i = msd_of_mul_add;
                while (i < num_w_digits - 1)
                    printf(MAC2 "if (++g%i == 0) ", i++);
                printf(MAC2 "g%i++", i);
            } else
                printf(MAC2 "g%i += c", i);
        }
    }
    printf(MAC3);

    /* Generate the macro that shifts w left by 1 digit */

    printf("#define LEFT_SHIFT_W_LOW_DIGITS_BY_ONE(extra_w_digit)");
    if (num_w_digits != 1)
        {
        for (i = num_w_digits - 2; i > 0; i--)
            printf(MAC2 "g%i = g%i;", i, i-1);
        printf(MAC2 "g0 = extra_w_digit");
        }
    printf(MAC3);

    print;

    @end_divert
    @eval my $outText = MphocEval( GetStream( "divertText" ) );		\
          my $headerText = GetHeaderText( STR(BUILD_FILE_NAME),         \
                           "Definitions and constants for large " .	\
                              "radian argument reduction",__FILE__ );	\
             print "$headerText\n\n$outText";

#endif

#define	TMP_DIGIT	t0
#define	EXTRA_W_DIGIT	t1


static U_WORD
UX_RADIAN_REDUCE( UX_FLOAT * x, WORD octant, UX_FLOAT * reduced_argument )
    {
    WORD offset, scale, j;
    UX_EXPONENT_TYPE exponent;
    UX_SIGN_TYPE sign, sign_x;
    DIGIT_TYPE quadrant;
    DIGIT_TYPE F_DIGITS;		/* declare F0, ... Fm		*/
    DIGIT_TYPE G_DIGITS;		/* declare g0, ... gn		*/
    DIGIT_TYPE TMP_DIGITS;		/* declare t0, ... tm+1		*/
    DIGIT_TYPE next_g_digit;
    const DIGIT_TYPE *p;

    /*
    ** Get the fractional part of x into the fraction digits F.  While
    */

    GET_F_DIGITS(x);

    /*
    ** Assuming the input argument x has the form x = 2^n*f, where .5 <= f < 1,
    ** then F at this point is a multi-precision integer, F = 2^128*f
    **
    ** Now, use the exponent to get the bit offset of the first interesting
    ** bit in the 4/pi table.
    */

    exponent = G_UX_EXPONENT(x);
    sign_x = G_UX_SIGN(x);

    /*
    ** A negative offset would have us access memory before the start of
    ** the 4/pi table.  This indicates that the x was pretty small already,
    ** so we'll make a quick exit.
    */

    if (exponent < 0)
        {
        /*
        ** At this point the argument has absolute value less than pi/4.
        ** We need to compute the quadrant bits based on octant and possibly
        ** adjust x by a +/- pi/4.
        **
        ** If x < 0, then x + octant lies in octant - 1, not octant.
        */

        j = octant + (sign_x >> (BITS_PER_UX_SIGN_TYPE - 1));

        /*
        ** We can now get actual quadrant by looking a the parity of effective
        ** octant.  Depending on whether we round up or down, we might need
        ** to adjust x by +/- pi/4.
        */

        j = j + (j & 1);
        quadrant = j >> 1;
        j = octant - j;

        if ( j )
            ADDSUB(x, UX_PI_OVER_FOUR,  j  < 0 ? SUB : ADD, reduced_argument);
        else
            UX_COPY(x, reduced_argument);
	return quadrant;
        }

    /*
    ** Get the address of the digit containing the first interesting bit,
    ** and its bit offset within that digit.  Load G from the the table,
    ** shifting the digits by that bit offset, so that the interesting bit
    ** will become the high bit of G.
    */

    offset = exponent - ( UX_PRECISION + 2 - FOUR_OV_PI_ZERO_PAD_LEN );
    DIV_REM_BY_L(offset, j, offset);
    p = &FOUR_OVER_PI_TABLE_NAME[j];
    GET_G_DIGITS_FROM_TABLE(p, next_g_digit);
    if (offset)
        {
        j = BITS_PER_DIGIT - offset;
        LEFT_SHIFT_G_DIGITS(offset, j, next_g_digit);
        }

    /*
    **  The extended-precision multiply: w = F*g.
    */

    MULTIPLY_F_AND_G_DIGITS( /* F_DIGITS, G_DIGITS, T_DIGITS, */ CARRY_DIGIT );

    /* 
    ** Add in the variable octant.
    */

    octant = sign_x ? -octant : octant;
    MSD_OF_W += (DIGIT_TYPE)octant << (BITS_PER_DIGIT - 3);

    scale = 0;

    do {
	/*
	**  If there isn't enough significance in w, then:
	**  get more bits from the table, form the new digit into TMP_DIGIT,
	**  and add the partial product F*TMP_DIGIT to w.
	*/

        if ( !W_HAS_M_BIT_LOSS )
            break;

        TMP_DIGIT = next_g_digit;
        next_g_digit = *p++;
        if (offset)
            TMP_DIGIT = (TMP_DIGIT << offset) | (next_g_digit >> j);
        GET_NEXT_PRODUCT(TMP_DIGIT, EXTRA_W_DIGIT, CARRY_DIGIT);

        /*
        **  We're done if the there are fewer than L bits of 0's or 1's.
        */

	TMP_DIGIT = ( SECOND_MSD_OF_W >> (BITS_PER_DIGIT - NUM_EXTRA_BITS - 3))
           | (MSD_OF_W << (NUM_EXTRA_BITS + 3));
        TMP_DIGIT ^= ((SIGNED_DIGIT_TYPE) TMP_DIGIT >> (BITS_PER_DIGIT - 1));
	if ( TMP_DIGIT )
            break;

        /*
        ** Compress the current value of w and increment scale to reflect
        ** the compression 
        */

#       define OCTANT_MASK	MAKE_MASK(3, BITS_PER_DIGIT - 3)

        MSD_OF_W =  (MSD_OF_W & OCTANT_MASK) |
                       (SECOND_MSD_OF_W & ~OCTANT_MASK);
        LEFT_SHIFT_W_LOW_DIGITS_BY_ONE(EXTRA_W_DIGIT);
        EXTRA_W_DIGIT = 0;
        scale += BITS_PER_DIGIT;

    } while (1);

    /*
    ** "Sign extend" w and get the quadrant.  In the process, if the MSD_OF_W
    ** is "all" 0's or 1's, we need to shift up one digit in order to insure
    ** the proper number of significant bits in the final result. 
    */

    quadrant = MSD_OF_W;
    MSD_OF_W = MSD_OF_W << 2;
    MSD_OF_W = ((SIGNED_DIGIT_TYPE) MSD_OF_W) >> 2;
    TMP_DIGIT = MSD_OF_W;
    quadrant -= MSD_OF_W;

    if ( MSD_OF_W == ((SIGNED_DIGIT_TYPE) MSD_OF_W >> (BITS_PER_DIGIT - 1)) )
        {
        MSD_OF_W = SECOND_MSD_OF_W;
        LEFT_SHIFT_W_LOW_DIGITS_BY_ONE(EXTRA_W_DIGIT);
        scale += BITS_PER_DIGIT;
        }

    /*
    ** If the sign bit of the original MSD of w is set, then "negate" the
    ** result
    */

    sign =  ((SIGNED_DIGIT_TYPE) TMP_DIGIT) < 0 ? UX_SIGN_BIT : 0;
    if (sign)
        NEGATE_W

    /*
    ** Put w into unpacked format and normalize.  Make up for any zero bits
    ** that were shift in during the normalization.  Note that by the way the
    ** reduced argument was constructed, normalization shift cannot be bigger
    ** than the digit size.
    */

    quadrant = G_UX_SIGN(x) ? -quadrant : quadrant;
    P_UX_SIGN(reduced_argument, sign ^ sign_x);
    P_UX_EXPONENT(reduced_argument, 3);
    PUT_W_DIGITS(reduced_argument);
    NORMALIZE(reduced_argument);

    exponent = G_UX_EXPONENT(reduced_argument);
    offset = exponent - 3;
    if (offset)
        {
        offset += BITS_PER_DIGIT;
        TMP_DIGIT = G_UX_LSD( reduced_argument);
        TMP_DIGIT |= (LSD_OF_W >> offset);
        P_UX_LSD(reduced_argument, TMP_DIGIT);
        }

    P_UX_EXPONENT(reduced_argument, exponent - scale);
    MULTIPLY(reduced_argument, UX_PI_OVER_FOUR, reduced_argument);

    return quadrant >> (BITS_PER_DIGIT - 2);
    }