1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
|
/******************************************************************************
Copyright (c) 2007-2024, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
#include "dpml_private.h"
#include "sqrt_macros.h"
#undef MAKE_ASINH
#undef MAKE_ACOSH
#if defined(ASINH)
# define MAKE_ASINH
# define BASE_NAME ASINH_BASE_NAME
# define _F_ENTRY_NAME F_ASINH_NAME
#elif defined(ACOSH)
# define BASE_NAME ACOSH_BASE_NAME
# define _F_ENTRY_NAME F_ACOSH_NAME
#else
# error "Must have one of ASINH, ACOSH defined"
#endif
#if !defined(F_ENTRY_NAME)
# define F_ENTRY_NAME _F_ENTRY_NAME
#endif
/*
Arcsinh & Arccosh
--------------------------------------
This source can be compiled into both Arcsine and Arccosine
routines. The definitions necessary to create the function follow.
Function Generation:
Along with any standard compile time definitions required by the dpml
the following items should be defined on the compilation command line to
create the indicated routine.
Arcsinh : ASINH
Arccosh : ACOSH
To create each routine's 'include' file an initial compilation should be
done using the following definition in addition to those above.
MAKE_INCLUDE
Selectable Build-time Parameters:
The definitions below define the minimum "overhang" limits for those
ranges of the routine with adjustable accuracy bounds. The numbers
specified in the definitions are the number of binary digits of
overhang. A complete discussion of these values and their use is
included in the individual routine documentation.
*/
#define POLY_RANGE_OVERHANG 5
#define REDUCE_RANGE_OVERHANG 5
#define ASYM_RANGE_OVERHANG 7
#define LARGE_RANGE_OVERHANG 7
#if !defined(MAKE_INCLUDE)
#include STR(BUILD_FILE_NAME)
#endif
/*
Arcsinh
--------------------------
The Arcsinh designs described here are the result of
an effort to create a fast Arcsinh routine with error bounds near 1/2
lsb. The inherent conflict is that, to create fast routines we
generally need to give up some accuracy, and conversely, to increase
accuracy we often must give up speed. As a result, the design we're
presenting defines a user (builder) configureable routine. That is, it
is set up such that the builder of a routine may choose, through the
proper setting of parameters, the degree of accuracy of the generated
routine and hence, indirectly, its speed.
The Design:
The overall domain of the Arcsinh function has been divided up into
six regions or paths as follows:
(1) (2) (3) (4) (5) (6)
|--------|------------|-----------|-----------|-------|----------|
0 small polynomial reduction asymptotic large huge
(Note: Although the domain of Arcsinh extends from -infinite to
+infinite, the problem can be considered one of only positive arguments
through the application of the identity asinh(-x) = - asinh(x). )
Within each region a unique approximation to the Arcsinh function is
used. Each is chosen for its error characteristics, efficiency and the
range over which it can be applied.
1. Small region:
asinh(x) = x (x <= max_small)
Within the "small" region the Arcsinh function is approximated as
asinh(x) = x. This is a very quick approximation but it may only be
applied to small input values. There is effectively no associated
storage costs. By limiting the magnitude of x the error bound can
be limited to <= 1/2 lsb.
2. Polynomial region:
Within the "polynomial" region the function is approximated as
asinh(x) = x (1 + x^2 P(x)) (max_small_x <x <= max_poly_x)
where P(x) is a minimax polynomial approximation to (asinh(x)/x -1)/x^2,
given by Remes' algorithm and max_poly_x is the upper bound of the
polynomial region whose value satisfies:
(asinh(x)-x)/asinh(x) <= 2^(-POLY_RANGE_OVERHANG)
3. Reduction region:
In this region, asinh(x) is computed by
asinh(x) = asinh(x0) + asinh(x*sqrt(1+x0^2)-x0*sqrt(1+x^2))
max_poly_x < x <= max_reduce_x
i.e. asinh(x) is computed as the sum of two quantities: asinh(x0),
and a reduced value asinh(t), where
t = x * sqrt(1+x0^2) - x0*sqrt(1+x^2).
This approach incurs the cost of calculating t and also an
lookup table. The values x0, asinh(x0) and sqrt(1+xo^2) are
stored in the table to reduce the run time cost. Increased accuracy
and efficiency are gained by choosing the asinh(x0) table values such
that they have a predetermined number of trailing 0's or 1's beyond
the extent of the floating point precision. This reduces the error
bound and avoids the need to perform an extended addition between
the two quantities. The error bounds here can be established at a value
close to 1/2 lsb.
4. Asymptotic region: In this region, asinh(x) is computed as:
asinh(x) = ln(2x) + 1/4 x^-2 - 3/16 x^-4
+ 5/96 x^-6 -...
where max_reduce_x < x <= max_asym_x
The upperbound of the reduction region, max_reduce_x, ( or the lowerbound
of the asymptotic region) is determined by finding a smallest x such that
((asinh(x) - ln(2x)) / asinh(x)) < 2^-(ASYM_RANGE_OVERHANG)
5. Large region: In this region, asinh(x) is computed as:
asinh(x) = ln(2x), where max_asym_x < x <= HUGE/2
where HUGE is the largest floating number represented by the machine
and max_asym_x is determined by
(asinh(x) - ln(2x))/asinh(x) < 2^-(F_PRECISION+LARGE_RANGE_OVERHANG+1)
6. Huge region: In this region, to avoid overflow, asinh(x) is computed as:
asinh(x) = ln(2) + log(x), where HUGE/2 < x <= HUGE
Special cases:
Infinities and Nans passed as input result in an Infinities or
Nans being returned.
Configuring the implementation:
For polynomial, reduction, asymptotic, large and huge regions (paths 2, 3,
4, 5 and 6), the implementation has been set up so that the builder can
control the accuracy. This is accomplished by allowing the builder to
specify a lower limit to the floating-point alignment shift of the operation
which significantly affects round-off error in that range. By establishing
an alignment shift the builder determines the relative accuracy of the
approximation and thereby determines the effective rate at which the
routine will execute.
In the case of the approximations used for Arcsinh we have the following
situations:
Polynomial region:
The function is computed as
x + x^3 P(x)
where P(x) is approximately
-1/6 + 3/40 x^2 + ....
Thus overhang is
(asinh(x) - x) / asinh(x)
or approximately x^2 P(x).
Reduced region:
In this region the result are computed by
asinh(x) = asinh(xi) + asinh(ti),
where ti = x * sqrt(1+xi^2) - xi * sqrt(1+x^2). Obviously, we
have asinh(ti) = mx - mi, where mx = asinh(x) and mi = asinh(xi).
Thus the overhang is determined by
(mx-mi)/mi.
The minimum alignment shift can be properly controlled by adjusting
the size of interval (m1 - m0) and m0.
The builder of the Arcsinh routines can specify the overhang limits
for each of the above paths (The "small" regions have
error bounds pre-established to within 1/2 lsb). The larger the
overhang is, the more accurate of the results are. However, larger
overhang generates larger size of the lookup table. The values of these
overhangs are defined within the main source file header and can be set
there.
Design Specifics:
The following sections discuss the design and implementation details of
each path.
Note:
Interlaced along with the documentation is the source code necessary to
generate the boundary points, constants, etc. Understanding the design
should not require an understanding of the source.
*/
#if defined(MAKE_INCLUDE)
@divert divertText
/*
The following command establishes the working precision required for
accurate computations in the current floating point precision.
Note: For most all our work, the required precision is bounded by
the accuracy needed to generate the "accurate" table values of the
'reduce' range. There we need an accuracy equivalent of the current
floating point precision plus the number of bits in the "accurate"
value overhang.
precision =
ceil( (2*floating_precision +
bits of overhang in the reduce range +
7-bit potential shift in a normalized MP number) / MP_radix)
*/
working_prec = ceil( (2*F_PRECISION + REDUCE_RANGE_OVERHANG + MP_RADIX_BITS-1) / MP_RADIX_BITS ) + 1;
#define SET_MP_PREC(x) precision = x
#define RND_TO_FMT(x) bround(x, F_PRECISION)
#define PRINT_POLY_TERM(x) printf(" %#.4" STR(F_CHAR) ", \n", (x) )
/* INC_BIT & DEC_BIT increment and decrement x, respectively, by one
bit at position p.
*/
#if defined(MAKE_ASINH)
#define BINARY_EXP(x) (bexp(x) - 1)
#define DEC_BIT(x, p) x -= 2^(BINARY_EXP(x) - p)
#define INC_BIT(x, p) x += 2^(BINARY_EXP(x) - p)
#define TRUNCATE(x, p) bchop(x, p)
/* "index" determines the lookup index of a floating point value.
It extracts the exponent and necessary fraction bits of a
floating point number and returns them as an integer.
*/
function index()
{
v = $1;
/* get base 2 exponent of value */
n = BINARY_EXP(v);
/* get first K fraction bits of value (NOT
including the hidden bit) as an integer */
f = bextr(v, 2, K+1);
/* index = ((bias + n - norm)<< K) + f
as an integer */
return ( (F_EXP_BIAS + n - F_NORM) * 2^K) + f;
}
/* "make_accurate" determines a value, v, such that asinh(v) has
trailing 1's or 0's between the limit of the current precision
and the extent of the specified overhang.
lower_bound < v <= argument.
*/
function make_accurate()
{
v = $1; lower_bound = $2; upper_bound = $3; overhang = $4;
ones_mask = (2^overhang) - 1;
v1 = v2 = v;
while (v1 > lower_bound || v2 < upper_bound) {
if (v1 > lower_bound) {
bits = bextr( asinh(v1), (F_PRECISION + 1), (F_PRECISION + overhang) );
if ( (bits == 0) || (bits == ones_mask) )
return v1;
DEC_BIT(v1, (F_PRECISION - 1));
};
if (v2 < upper_bound) {
INC_BIT(v2, (F_PRECISION - 1));
bits = bextr( asinh(v2), (F_PRECISION + 1), (F_PRECISION + overhang) );
if ( (bits == 0) || (bits == ones_mask) )
return v2;
}
}
printf("Couldn't find an ACCURATE value \n");
return -1;
}
SET_MP_PREC(working_prec);
/*
The "small" region:
Within the "small" region asinh(x) is approximated as asinh(x) = x.
The reasoning follows:
Given the Taylor Series expansion to asinh(x)
asinh(x) = x - x^3 (1/6) + x^5 (3/40) + ..., for x < 1.
we find that successive terms of the series decrease rapidly in
magnitude, and that as x goes to 0, the relative distance between
individual terms of the series becomes greater. It is meaningful to
ask, at what point does x^3/6, and hence all succeeding terms of the
series, become irrelevant with respect to the magnitude of x given a
fixed floating point precision? I.e. when is the ratio of x^3/6 to
x less than 1 / 2^(precision + 1)? Solving we find:
let,
p = current floating point precision.
(1/6) * (x^3)/x < 1/2^(p+1) ==>
x < sqrt( 6/2^(p+1) )
So, when x < sqrt( 6/2^(p+1) ), asinh(x) correctly rounded is
equivalent to x. The value sqrt( 6/2^(p+1) ) will thus be made the
upper bound of the "small" region.
error bounds:
Since x is equivalent to asinh(x) correctly rounded, the error bound
for this approximation is 1/2 lsb.
*/
max_small_x = sqrt( 6 / 2^(F_PRECISION + 1) );
/*
The "polynomial" region:
Within the "polynomial" region, Arcsinh is approximated as
asinh(x) = x - x^3/6 + x^5 (3/40) + ..., or rather a truncated
polynomial approximation to this series. This is a reasonably quick
approximation and has storage costs limited to that of the
coefficients.
error bounds:
The error bound for this approach is roughly determined by two
things:
- The overhang between the first two terms of the series (or
more exactly, between x and the sum of the remaining terms of
the series = x - asinh(x)).
- The accuracy of the term largest in magnitude.
The overhang between the terms is a function of x and, in general,
will decrease as x gets larger. The largest term is x and, as an
input argument, is assumed to be exact. This implies that we can
enforce an error bound of our choosing (greater than 1/2 lsb) by
limiting the size of our input argument such that the leading two
terms maintain a chosen overhang.
If our desired overhang limit is V, we can compute a maximum X for
which that overhang is satisfied by determining when the following
is true:
(X - asinh(X))/asinh(X) < 2^-V
This point X will be upper bound of the "polynomial" range.
Note:
Since X can not be computed analytically it must be computed
numerically (e.g Newton's method).
The following code determines the polynomial range
*/
rho = 2^-(POLY_RANGE_OVERHANG);
c = (1 - rho);
x = 0.5;
error = 1;
while (error > 2^-(2*F_PRECISION)) {
f = asinh(x) - x * c;
f1 = (1/sqrt(1+x*x)) - c;
next_x = x - f/f1;
error = abs(f);
x = next_x;
}
max_poly_x = x;
/* The following code determines the upper bound of the reduced range
(or the lower bound of the asymptotic region.) In the asymptotic region,
asinh(x) is determined by the following formula:
asinh(x) = ln(2x) + 1/4 x^-2 - 3/16 x^-4
+ 5/96 x^-6 -...
The maximum of the reduction region( or the minimum of the asymptotic
region) is determined by finding a minimal x such that
((asinh(x) - ln(2x)) / asinh(x)) < 2^-(ASYM_RANGE_OVERHANG);
*/
rho = 2^-(ASYM_RANGE_OVERHANG);
c = (1 - rho);
x = 2.5;
error = 1;
while (error > 2^-(2*F_PRECISION)) {
f = c * asinh(x) - log(2*x);
f1 = c * (1/sqrt(1+x*x)) - 1/x ;
next_x = x - f/f1;
error = abs(f);
x = next_x;
}
max_reduce_x = x;
/* The following code determines the upperbound of the asymptotic
region. ( or the lower bound of the large region.) Within this region,
asinh(x) is approximated by
sign(x) asinh(x) = ln(2|x|) + 1/4 x^-2 - 3/16 x^-4
+ 5/96 x^-6 -...
The upperbound of the asymptotic region( or the lower bound of the large
region) is determined by finding a minimal x such that
(asinh(x) - ln(2x))/asinh(x) < 2^-(F_PRECISION+LARGE_RANGE_OVERHANG+1)
*/
SET_MP_PREC(2*working_prec+1);
rho = 2^-(F_PRECISION+LARGE_RANGE_OVERHANG+1);
c = (1 - rho);
x = 2.5;
error = 1;
while (error > 2^-(2*F_PRECISION)) {
f = c * asinh(x) - log(2*x);
f1 = c * (1/sqrt(1+x*x)) - 1/x ;
next_x = x - f/f1;
error = abs(f);
x = next_x;
}
max_asym_x = x;
/* The following code determines and prints the terms of the
asymptotic expansion in the asymptotic region.
asinh(x) = ln(2x) + 1/4 x^-2 - 3/16 x^-4
+ 5/96 x^-6 -...
*/
/* Approximation to the function: x^2(asinh(x) - ln(2x)) */
function asinh_asym_func()
{
x = $1;
if (x == 0)
return 1/4;
else
return ((x*x)*(asinh(x) - ln(2*x)));
}
old_precision = precision;
precision = ceil(2*F_PRECISION/MP_RADIX_BITS) + 5;
remes(REMES_FIND_POLYNOMIAL+ REMES_RELATIVE_WEIGHT+ REMES_RECIP_SQUARE_ARG,
max_reduce_x, max_asym_x, asinh_asym_func, (F_PRECISION + 1),
&poly_deg, &poly_coef);
printf("#define NUM_ASYM_TERM %i\n", poly_deg + 1 );
printf("#define EVALUATE_ASYM_RANGE_POLYNOMIAL(x,c,y) \\\n");
printf(" POLY_%i(x,c,y)\n", poly_deg + 1);
printf("static const TABLE_UNION asym_range_coef[] = { \n");
for (i = 0; i <= poly_deg; i++)
printf("\t%#.4" STR(F_CHAR) ",\n", poly_coef[i] );
printf("}; \n\n");
precision = old_precision;
/* The "reduction" region: Within the "reduction" region asinh(x) is
approximated as
asinh(x) = asinh(m) + asinh(t),
where t = x*sqrt(1+m*m) - m*sqrt(1+x*x).
error bounds:
As in the "polynomial" regions the error bound here is
roughly a function of:
- The overhang between the final addition of asinh(m) and
asinh(t).
- The accuracy of the dominating (larger) value, asinh(m).
As for the overhang, given some value m, t will decrease
as x moves closer to m. This in turn implies asinh(t)
becomes smaller. Thus given some x in the "reduce" range we can
chose some m near x such that asinh(m) + asinh(t) has
at least the desired alignment shift.
As for the accuracy of asinh(m), we can chose the m above such that
asinh(m) has trailing 0's or 1's from the boundary of the current
precision to the extent of the chosen overhang. This will reduce
the overall error in our computation. These asinh(m) are known as
"accurate" values.
This implies that we can roughly enforce what error bound we choose
(greater than 1/2 lsb).
Determining the "m" and asinh(m) tables:
Ensuring a certain overhang, k, between asinh(m) and
asinh(t):
From the identity above, it is obvious that asinh(t) is the
difference between asinh(x) and asinh(m). Thus, if we choose a
net of equal length subintervals in [asinh(max_poly_x),
asihn(max_reduce_x)] such that the size of subinterval is sufficiently
small, we can ensure the alignment shift.
asinh(t)/asinh(m) = (ax - am)/am,
where ax = asinh(x) and am = asinh(m) and (ax-am) <= 1/2 of the
subinterval size.
The generation of these "m",s and x's divides the reduce range up
into subintervals like the following:
|--|--|---|---|----|----|-- ... --|
Xo Mo X1 M1 X2 M2 X3 Xn
For each input x such that Xi < x <= Xi+1 the asinh(x) is computed
using Mi and asinh(Mi). Note that these subdivisions are
non-uniform. As x moves to the right the relative size of these
intervals is increasing.
Indexing the "m" and asinh(m) table:
Given an x which lies within the 'reduce' range we need an efficient
way of determining which "m" and asinh(m) should be used in our our
calculations. We will accomplish this using a second table. For
each value of x such that Xi < x <= Xi+1 we will use the exponent
bits of x and a certain number of fraction bits (enough to uniquely
characterize which subinterval x lies within) to act as an index
into a second "indexing" table. The values stored within the
"indexing" table will in turn point to the appropriate value of "m"
(and asinh(m)) to use for the current x.
Mapping input arguments to the appropriate region:
As described throughout, each input argument x maps to one of the
three different approximations for asinh(x). An efficient way of
determining which approximation should be used for an input x is to
calculate the "index" of each argument x (as we do in the 'reduce'
region) and use it to make the choice of approximation.
This simply involves determining the index value for the boundary
points of each region and then comparing the index of the input
argument x to these values and branching accordingly.
The indicies:
Indices consist of exponents & fraction bits to uniquely characterize
an interval. The number of fraction bits indicates table size.
Calculation of the number of fraction bits needed for the index:
It is desirable to minimize the number of fraction bits used to
address the "indexing" table. Each additional bit we use will
increases the size of the "indexing" table by a power of 2. (This is
not completely true. Depending on what value is chosen for the
upper bound of the 'reduce' range it may not be necessary to store
indexes for values at the far end of the range. The increase in
table size, however, is still on the order of a power of 2.)
Since the size of the intervals Xi <--> Xi+1 decrease as x goes to
one, we find that the smallest interval for which we need to
uniquely specify each x is the interval X(n-1) <--> Xn. The minimum
number of fraction bits we need to characterize this interval is
given by the overhang difference between X(n-1) and Xn. Thus, the
minimum number of fraction bits, k, required to satisfy our index is
given by:
(X(n-1) - Xn)/Xn = 1/2^k
k = floor( log2 ((Xn - X(n-1))/Xn) )
as the number of fraction bits required for our index.
Mapping the index:
Realizing that an arguments exponent and fraction bits are going to
be looked at as an integer index to the "indexing" table leaves an
issue of addressing. Since we want Xo, the lower bound of the
'reduce' range, to map to the first element of the "indexing" table
it is necessary to map the generated index of Xo down to zero. This
is accomplished by predetermining the index of Xo and using it as a
offset (subtracting it off) from the generated index of Xo.
If we subtract this offset from all generated indexes we can
map the indexes of the 'reduce' range into a table look-up address
between 0 and tablesize-1.
The following code:
1. compute the minimum number of "index" bits required
to accurately determine the mapping of input values to table
values in the 'reduce' range.
2. compute the accurate table.
*/
rho = 2^-REDUCE_RANGE_OVERHANG;
max_poly_ax = asinh(max_poly_x);
x0 = max_poly_x;
ax0 = max_poly_ax;
max_reduce_ax = asinh(max_reduce_x);
max_K = 1;
max_delta_ax = 0.0;
n = 0;
printf("static const TABLE_UNION asinh_tab[] = { \n");
while(ax0 < max_reduce_ax) {
delta_ax = rho * ax0;
ax1 = ax0 + delta_ax;
x1 = sinh(ax1);
if (ax1 > max_reduce_ax) {
ax1 = max_reduce_ax;
delta_ax = max_reduce_ax - ax0;
axm = ax0 + delta_ax/2;
x1 = max_reduce_x;
xm = sinh(axm);
xm = make_accurate( RND_TO_FMT(xm), x0, x1, REDUCE_RANGE_OVERHANG);
printf("\t%#.4" STR(F_CHAR) ",", xm);
printf("\t%#.4" STR(F_CHAR) ",", asinh(xm));
cosh_asinh_value = sqrt(1.0 + xm * xm);
printf("\t%#.4" STR(F_CHAR) ",\n", cosh_asinh_value);
n++;
if (max_delta_ax < delta_ax) max_delta_ax = delta_ax;
break;
}
axm = ax0 + delta_ax/2;
xm = sinh(axm);
xm = make_accurate( RND_TO_FMT(xm), x0, x1, REDUCE_RANGE_OVERHANG);
printf("\t%#.4" STR(F_CHAR) ",", xm);
printf("\t%#.4" STR(F_CHAR) ",", asinh(xm));
cosh_asinh_value = sqrt(1.0 + xm * xm);
printf("\t%#.4" STR(F_CHAR) ",\n", cosh_asinh_value);
delta_x = x1 - x0;
K = abs( floor ( log2 (delta_x/x0)));
if (max_K < K) max_K = K;
if (max_delta_ax < delta_ax) max_delta_ax = delta_ax;
ax0 = ax1;
x0 = x1;
n++;
}
count = n;
printf("}; \n\n");
printf("#define TABLE_ENTRY_SIZE %i \n", count);
max_delta_x = sinh(max_delta_ax);
K = max_K;
K = K - 1;
printf("#define K %i \n", K);
/* computation of the "index" represented by the maximum
value we will evaluate in the 'polynomial' range. Since the
'reduce' range begins beyond this value, we will use this
"index" to map all "indicies" so that those of the 'reduce'
range will take on values between 0 and the table size.
*/
offset = index( TRUNCATE(max_poly_x, K+1) );
printf("#define OFFSET_IND %i \n", offset);
DEC_BIT(max_small_x, K);
printf("#define MAX_SMALL_INDEX %i \n", (index(max_small_x)-offset));
printf("#define MAX_POLY_INDEX %i \n", (index(max_poly_x)-offset));
printf("#define MAX_REDUCE_INDEX %i \n", (index(max_reduce_x)-offset));
printf("#define MAX_ASYM_INDEX %i \n", (index(max_asym_x)-offset));
half_huge_x = MPHOC_F_POS_HUGE/2;
printf("#define HALF_HUGE_INDEX %i \n", (index(half_huge_x)-offset));
/* computation of the "accurate" table "indecies" for values
within the 'reduce' range.
*/
rho = 2^-REDUCE_RANGE_OVERHANG;
if (count <= 256)
printf("static const U_INT_8 asinh_index_table[] = { ");
else
printf("static const U_INT_16 asinh_index_table[] = { ");
bytes_used = 0;
i = 0;
j = 0;
m = 0;
x0 = max_poly_x;
ax0 = asinh(x0);
while(ax0 < max_reduce_ax) {
delta_ax = rho * ax0;
ax1 = ax0 + delta_ax;
if (ax1 > max_reduce_ax) {
ax1 = max_reduce_ax;
delta_ax = max_reduce_ax - ax0;
}
x1 = sinh(ax1);
b = TRUNCATE( x0, K+1);
next_b = TRUNCATE( x1, K+1);
cur_index = b;
while (cur_index < next_b) {
if ((j++ % 8) == 0) {
printf("\n\t");
bytes_used = 1;
}
else
bytes_used++;
printf("%i, ", i);
INC_BIT(cur_index, K);
}
i++;
ax0 = ax1;
x0 = x1;
}
i--;
/*
* Pad this table up to avoid alignment problem on HP machine.
*/
bytes_to_pad = 8 - bytes_used;
for (k = 0; k < bytes_to_pad; k++)
printf("0, " );
printf("\n}; \n\n");
/* Generate the coefficients for the 'polynomial' range polynomial */
/* Approximation to the function: (asinh(x) - x) / x^3 */
function asinh_func()
{
if ($1 == 0)
return -1/6;
else
return (asinh($1) - ($1))/($1 * $1 * $1);
}
old_precision = precision;
precision = ceil(2*F_PRECISION/MP_RADIX_BITS) + 5;
remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
0.0, max_poly_x, asinh_func, (F_PRECISION),
&poly_deg, &poly_coef);
printf("#define EVALUATE_POLY_RANGE_POLYNOMIAL(x,c,y) \\\n");
printf(" ODD_POLY_%i_U(x,c,y)\n", 2 * poly_deg + 3);
printf("static const TABLE_UNION poly_range_coef[] = { \n");
for (i = 0; i <= poly_deg; i++)
printf("\t%#.4" STR(F_CHAR) ",\n", poly_coef[i] );
printf("}; \n\n");
/* Generate the coefficients for the 'reduce' range polynomial */
remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
0.0, max_delta_x, asinh_func, (F_PRECISION + 1),
&poly_deg, &poly_coef);
printf("#define EVALUATE_REDUCE_RANGE_POLYNOMIAL(x,c,y) \\\n");
printf(" ODD_POLY_%i_U(x,c,y)\n", 2 * poly_deg + 3);
printf("static const TABLE_UNION reduce_range_coef[] = { \n");
for (i = 0; i <= poly_deg; i++)
printf("\t%#.4" STR(F_CHAR) ",\n", poly_coef[i] );
printf("}; \n\n");
precision = old_precision;
#else /* ACOSH */
/* The computation of ACOSH is devided into four regions:
1. Direct region: In this region, ACOSH(x) is computed as
acosh(x) = log(x + sqrt((x-1)*(x+1)))
where 1 < x <= max_direct_x.
2. Asymptotic regions: In this region, ACOSH(x) is computed as
acosh(x) = ln(2x) - 1/4 x^-2 - 3/16 x^-4
- 5/96 x^-6 -...
where max_direct_x < x <= max_asym_x.
3. Large region: In this region, ACOSH(x) is computed as
acosh(x) = log(2x).
where max_asym_x < x <= HUGE/2.
4. Huge region: In this region, ACOSH(x) is computed as
acosh(x) = ln(2) + log(x).
where HUGE/2 < x <= HUGE.
*/
/* The following code determines the upper bound of the direct region
(or the lower bound of the asymptotic region). In the asymptotic region,
asinh(x) is determined by the following formula:
acosh(x) = ln(2x) - 1/4 x^-2 - 3/16 x^-4
- 5/96 x^-6 -...
The upper bound of the direct region region is determined by finding
the smallest x such that
((ln(2x)-acosh(x)) / acosh(x)) < 2^-(ASYM_RANGE_OVERHANG);
*/
function root_func() {
acosh_x = acosh($1);
return (ln(2*($1)) - acosh_x)/acosh_x;
}
lo = binc(1,(F_PRECISION - 1));
hi = 10;
rho = 2^-(ASYM_RANGE_OVERHANG);
max_direct_x = find_root(MP_FIND_ROOT_NO_DERIV, lo, hi, rho, root_func);
printf("static const TABLE_UNION max_direct_x[] = { %#.4" STR(F_CHAR) " };\n\n", max_direct_x);
/* The following code determines the the upper bound of the asymptotic
region.(or the lower bound of the large region.) In the large region,
acosh(x) is approximated by
acosh(x) = ln(2x).
Thus, the lower bound of the large region (or max_asym_x) is determined
by finding the smallest x such that
-(ln(2x)-acosh(x))/acosh(x) < 2^(-F_PRECISION+LARGE_RANGE_OVER_HANG+1)
*/
SET_MP_PREC(2 * working_prec+1);
rho = 2^-(F_PRECISION+LARGE_RANGE_OVERHANG+1);
c = (1 + rho);
x = 2.5;
error = 1;
while (error > 2^-(2*F_PRECISION)) {
f = log(2*x) - c * acosh(x);
f1 = 1/x - c * (1/sqrt(x*x-1));
next_x = x - f/f1;
error = abs(f);
x = next_x;
}
max_asym_x = x;
printf("static const TABLE_UNION max_asym_x[] = { %#.4" STR(F_CHAR) " };\n\n", max_asym_x);
/* The computation in asymptotic and large region is more efficient
than the computation in the direct region if the number of the
terms in the asymptotic expansion is kept reasonably small. The
following procedure computes and prints the terms of the
asymptotic series.
*/
/* Approximation to the function: -[x^2(acosh(x) - ln(2x))] */
function acosh_func()
{
x = $1;
if (x == 0)
return 1/4;
else
return -((x*x)*(acosh(x) - ln(2*x)));
}
old_precision = precision;
precision = ceil(2*F_PRECISION/MP_RADIX_BITS) + 5;
remes(REMES_FIND_POLYNOMIAL+ REMES_RELATIVE_WEIGHT+ REMES_RECIP_SQUARE_ARG,
max_direct_x, max_asym_x, acosh_func, (F_PRECISION + 1),
&poly_deg, &poly_coef);
printf("#define EVALUATE_ASYM_RANGE_POLYNOMIAL(x,c,y) \\\n");
printf(" POLY_%i(x,c,y)\n", poly_deg + 1);
printf("static const TABLE_UNION asym_range_coef[] = { \n");
for (i = 0; i <= poly_deg; i++)
printf("\t%#.4" STR(F_CHAR) ",\n", poly_coef[i] );
printf("}; \n\n");
precision = old_precision;
half_huge_x = MPHOC_F_POS_HUGE/2;
printf("static const TABLE_UNION half_huge_x[] = { %#.4" STR(F_CHAR) " };\n\n", half_huge_x);
#endif /* MAKE_ASINH */
/* compute correctly rounded "high" and "low" parts of log(2) */
SET_MP_PREC(2 * working_prec);
log_2 = log(2);
printf("static const TABLE_UNION log_2[] = {\n");
printf(" %#.4" STR(F_CHAR) " \n", log_2);
printf("};\n\n");
SET_MP_PREC(working_prec);
/* the following values are defined for use in performing
automated testing with MTC.
*/
#ifdef MTC_DEFS
huge_x = (MPHOC_F_POS_HUGE/10)*9;
half_huge_x = MPHOC_F_POS_HUGE/2;
#ifdef MAKE_ASINH
printf("#define MAX_SMALL_PT m:%m\n", max_small_x );
printf("#define MAX_POLY_PT m:%m\n", max_poly_x );
printf("#define MAX_REDUCE_PT m:%m\n", max_reduce_x );
printf("#define MAX_ASYM_PT m:%m\n", max_asym_x );
printf("#define HUGE_PT m:%m\n", huge_x );
printf("#define HALF_HUGE_PT m:%m\n", half_huge_x );
#else
printf("#define MAX_DIRECT_PT m:%m\n", max_direct_x );
printf("#define MAX_ASYM_PT m:%m\n", max_asym_x );
printf("#define HUGE_PT m:%m\n", huge_x );
printf("#define HALF_HUGE_PT m:%m\n", half_huge_x );
#endif
#endif
@end_divert
@eval my $outText = MphocEval( GetStream( "divertText" ) ); \
my $headerText = GetHeaderText( STR(BUILD_FILE_NAME), \
"Definitions and constants for " . \
STR(F_ENTRY_NAME), __FILE__); \
print "$headerText\n$outText";
#endif /* MAKE_INCLUDE */
typedef struct { F_TYPE x_value, asinh_value, cosh_asinh_value;} TABLE_ENTRY;
/* macros specific to asinh */
#define MAX_DIRECT_X *(F_TYPE *)max_direct_x
#define MAX_ASYM_X *(F_TYPE *)max_asym_x
#define HALF_HUGE_X *(F_TYPE *)half_huge_x
#define POLY_RANGE_COEF (F_TYPE *)poly_range_coef
#define REDUCE_RANGE_COEF (F_TYPE *)reduce_range_coef
#define ASYM_RANGE_COEF (F_TYPE *)asym_range_coef
#define ASINH_TABLE(indx) *((TABLE_ENTRY *)asinh_tab + indx)
#define LOG_2 *(F_TYPE *)log_2
#if VAX_FLOATING
# if BITS_PER_WORD == 32
# define INDEX_SHIFT (F_EXP_POS + (BITS_PER_WORD - 16) - K)
# else
# define INDEX_SHIFT (F_EXP_POS + (BITS_PER_F_TYPE - 16) - K)
# endif
# define IEEE_ONLY(x)
#elif IEEE_FLOATING
# define INDEX_SHIFT (F_EXP_POS - K)
# define IEEE_ONLY(x) x
#endif
#define GET_INDEX(exp_word, indx) (indx) = (exp_word >> INDEX_SHIFT) - OFFSET_IND;
#define GET_MID_POINT(indx, m, sqrt_one_add_m2) \
(indx) = asinh_index_table[(indx)]; \
(m) = (ASINH_TABLE(indx)).x_value; \
(sqrt_one_add_m2) = (ASINH_TABLE(indx)).cosh_asinh_value
#define ADD_ASINH_TABLE_VALUE(x, indx, y) \
(y) = (F_TYPE)((ASINH_TABLE(indx)).asinh_value + (x))
#if defined(MAKE_ASINH)
F_F_PROTO( F_LN_NAME ) ;
F_TYPE
F_ENTRY_NAME (F_TYPE x)
{
EXCEPTION_RECORD_DECLARATION
F_TYPE z, m, t, u, sqrt_one_add_m2, sqrt_one_add_z2, one_add_z2;
F_SIGN_TYPE sign;
WORD indx;
U_WORD exp_word_z;
F_SAVE_SIGN_AND_GET_ABS(x, sign, z);
GET_EXP_WORD(z, exp_word_z);
exp_word_z = PDP_SHUFFLE(exp_word_z);
if (F_EXP_WORD_IS_INFINITE_OR_NAN(exp_word_z)) return(x);
GET_INDEX(exp_word_z, indx);
if (indx >= MAX_REDUCE_INDEX) goto asym_or_ln2x;
/* Reduced region */
if (indx > MAX_POLY_INDEX) {
GET_MID_POINT(indx, m, sqrt_one_add_m2);
one_add_z2 = ((F_TYPE) 1.0 + z*z);
t = (z - m)*(z + m);
F_HW_OR_SW_SQRT(one_add_z2, sqrt_one_add_z2);
t = t/(z * sqrt_one_add_m2 + m * sqrt_one_add_z2);
EVALUATE_REDUCE_RANGE_POLYNOMIAL(t, REDUCE_RANGE_COEF, z);
ADD_ASINH_TABLE_VALUE(z, indx, t);
F_NEGATE_IF_SIGN_NEG(sign, t);
return t;
}
/* Polynomial region */
else if (indx > MAX_SMALL_INDEX) {
EVALUATE_POLY_RANGE_POLYNOMIAL(z, POLY_RANGE_COEF, t);
F_NEGATE_IF_SIGN_NEG(sign, t);
return(t);
}
/* Small region */
else return (x);
asym_or_ln2x:
/* Asymptotic region */
if (indx < MAX_ASYM_INDEX) {
u = 1/(z*z);
EVALUATE_ASYM_RANGE_POLYNOMIAL(u, ASYM_RANGE_COEF, t);
t += F_LN_NAME(2*z);
F_NEGATE_IF_SIGN_NEG(sign, t);
return(t);
}
/* Large region */
else if ( indx < HALF_HUGE_INDEX) {
t = F_LN_NAME(2*z);
F_NEGATE_IF_SIGN_NEG(sign, t);
return(t);
}
/* Huge region */
else {
t = LOG_2
+ F_LN_NAME(z);
F_NEGATE_IF_SIGN_NEG(sign, t);
return t;
}
}
#else /* ACOSH */
F_F_PROTO( F_LN_NAME ) ;
F_F_PROTO( F_LOG1P_NAME ) ;
F_TYPE
F_ENTRY_NAME (F_TYPE x)
{
EXCEPTION_RECORD_DECLARATION
F_TYPE t, x2_sub_one, sqrt_x2_sub_one;
F_TYPE u;
U_WORD exp_word_x;
GET_EXP_WORD(x, exp_word_x);
IEEE_ONLY(if (F_EXP_WORD_IS_ABNORMAL(exp_word_x)) goto non_finite_x;)
if (x <= 1.0) goto out_of_range_or_one;
if (x > MAX_DIRECT_X) goto asym_or_ln2x;
else {
/* Direct region */
x2_sub_one = (x - (F_TYPE)1.0) * (x + (F_TYPE)1.0);
F_HW_OR_SW_SQRT(x2_sub_one, sqrt_x2_sub_one);
u = x - (F_TYPE)1.0;
u += sqrt_x2_sub_one;
t = F_LOG1P_NAME(u);
return(t);
}
asym_or_ln2x:
if (x < MAX_ASYM_X) {
/* Asymptotic region */
u = 1/(x*x);
EVALUATE_ASYM_RANGE_POLYNOMIAL(u, ASYM_RANGE_COEF, t);
t = F_LN_NAME(2*x) - t;
return(t);
}
else if ( x < HALF_HUGE_X) {
/* Large region */
t = F_LN_NAME(2*x);
return(t);
}
else {
/* Huge region */
t = LOG_2
+ F_LN_NAME(x);
return t;
}
out_of_range_or_one:
if (x != 1.0) goto invalid_argument;
return (F_TYPE) 0.0;
#if IEEE_FLOATING
non_finite_x:
F_CLASSIFY(x, exp_word_x);
if ((exp_word_x == F_C_POS_INF) || (F_C_BASE_CLASS(exp_word_x) == F_C_NAN))
return x;
#endif
invalid_argument:
GET_EXCEPTION_RESULT_1(ACOSH_ARG_LT_ONE, x, t);
return t;
}
#endif /* MAKE_ASINH */
#ifdef MTC
#ifdef MAKE_ASINH
@divert > dpml_asinh.mtc
#else
@divert > dpml_acosh.mtc
#endif
/*
** accuracy and key point tests for single
** and double precision asinh or acosh functions.
*/
#ifdef MAKE_ASINH
#if (F_PRECISION==24)
build asinh_build = STR(PASTE(F_ENTRY_NAME , .o)) "my_asinh.o" "my_logf.o"
"my_log.o" "dpml_globals.o" "dpml_exception.o" "dpml_sqrt_s_table.o"
"dpml_sqrt_t_table.o";
function asinh_func = F_CHAR F_ENTRY_NAME( F_CHAR.v.r );
comparison_function asinh_backup = B_CHAR my_asinh( B_CHAR.v.r );
#else
build asinh_build = STR(PASTE(F_ENTRY_NAME , .o)) "my_log.o"
"dpml_globals.o" "dpml_exception.o" "dpml_sqrt_t_table.o";
function asinh_func = F_CHAR F_ENTRY_NAME( F_CHAR.v.r );
comparison_function asinh_backup = void mp_asinh(m.r.r, m.r.w);
#endif
domain asinh_accuracy =
{ [ 0 , MAX_SMALL_PT ):uniform:1000 }
{ [ MAX_SMALL_PT, MAX_POLY_PT ):uniform:4000 }
{ [ MAX_POLY_PT, MAX_REDUCE_PT):uniform:4000 }
{ [ MAX_REDUCE_PT, MAX_ASYM_PT):uniform:4000 }
{ ( MAX_ASYM_PT, HALF_HUGE_PT):uniform:4000 }
{ ( HALF_HUGE_PT, HUGE_PT):uniform:1000 }
;
domain asinh_keypoint =
lsb = 0.5;
{ -1.0 | der }
{ 0.0 | der }
;
test asinh_acc =
type = accuracy
error = lsb;
stats = max;
points = 1024;
;
function = asinh_func;
comparison_function = asinh_backup;
domain = asinh_accuracy;
build = asinh_build;
output =
file = STR(PASTE(F_ENTRY_NAME , _acc.out));
;
;
test asinh_key =
type = key_point;
function = asinh_func;
comparison_function = asinh_backup;
domain = asinh_keypoint;
build = asinh_build;
output =
file = STR(PASTE(F_ENTRY_NAME, _key.out));
style = verbose;
;
;
/* For testing acosh */
#else
build acosh_build = STR(PASTE(F_ENTRY_NAME, .o)) "my_log.o" "my_logf.o"
"logp.o" "logpf.o" "dpml_globals.o" "dpml_exception.o" "dpml_sqrt_s_table.o" "dpml_sqrt_t_table.o";
function acosh_func = F_CHAR F_ENTRY_NAME( F_CHAR.v.r );
comparison_function acosh_backup = void mp_acosh(m.r.r, m.r.w);
domain acosh_accuracy =
{ [ 1.0, MAX_DIRECT_PT):uniform:4000 }
{ [ MAX_DIRECT_PT, MAX_ASYM_PT):uniform:4000 }
{ [ MAX_ASYM_PT, HALF_HUGE_PT):uniform:4000 }
{ [ HALF_HUGE_PT, HUGE_PT):uniform:4000 }
;
domain acosh_keypoint =
lsb = 0.5;
{ 1.0 | der }
{ -1.0 | der }
;
test acosh_acc =
type = accuracy
error = lsb;
stats = max;
points = 1024;
;
function = acosh_func;
comparison_function = acosh_backup;
domain = acosh_accuracy;
build = acosh_build;
output =
file = STR(PASTE(F_ENTRY_NAME, _acc.out));
;
;
test acosh_key =
type = key_point;
function = acosh_func;
comparison_function = acosh_backup;
domain = acosh_keypoint;
build = acosh_build;
output =
file = STR(PASTE(F_ENTRY_NAME , _key.out));
style = verbose;
;
;
#endif /* MAKE_ASINH */
@end_divert
#endif /* MTC */
|