File: dpml_erf.c

package info (click to toggle)
intelrdfpmath 2.0u3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,088 kB
  • sloc: ansic: 310,558; makefile: 446; sh: 3
file content (1227 lines) | stat: -rw-r--r-- 38,904 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
/******************************************************************************
  Copyright (c) 2007-2024, Intel Corp.
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of Intel Corporation nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/

#if defined(ERFC)
#   define BASE_NAME		ERFC_BASE_NAME
#   define _F_ENTRY_NAME	F_ERFC_NAME
#   define SELECT(x,y)		y
#   define IF_ERFC(x)		x
#   define IF_ERF(x)	 
#else
#   define BASE_NAME		ERF_BASE_NAME
#   define _F_ENTRY_NAME	F_ERF_NAME
#   define SELECT(x,y)		x
#   define IF_ERFC(x)	 
#   define IF_ERF(x)		x
#endif

#if defined(MAKE_COMMON)

#   define DEFINES_ONLY
#   define COMMON_NAME	erf

#   if  !defined(BUILD_FILE_NAME)
#       define BUILD_FILE_EXTENSION     c
#       define BUILD_SUFFIX             TABLE_SUFFIX
#       define BUILD_FILE_NAME          __BUILD_FILE_NAME(COMMON_NAME)
#   endif

#   if  !defined(MP_FILE_NAME)
#       define MP_FILE_NAME		__MP_FILE_NAME(COMMON_NAME)
#   endif

#   if  !defined(TABLE_NAME)
#      define TABLE_NAME   __F_TABLE_NAME(COMMON_NAME)
#   endif

#   define IF_MAKE_COMMON(x)		x
#   define START_TABLE(name, offset)	START_GLOBAL_TABLE(TABLE_NAME, offset)

#else

#   undef  DEFINES_ONLY
#   define IF_MAKE_COMMON(x)
#   define START_TABLE(name, offset)	START_STATIC_TABLE(TABLE_NAME, offset)

#endif

#define __NEEDS_SIGNED_DENORM_TO_NORM
#define __LOG2_DENORM_SCALE		(F_PRECISION + 3)

#define  NEW_DPML_MACROS	1
#include "dpml_private.h"

/*
 *	NOTE: This routine accesses the special exp entry point.
 *	Consequently it needs to know the alignment of the scale
 *	factor.
 */

#include STR(SPECIAL_EXP_HEADER)

/*
 *  This is a hack on Alpha VMS and NT for the function
 *  F_EXP_SPECIAL_ENTRY_NAME.  In particular, the return argument 
 *  WORD *pow_of_two.  Since WORD is defined as int_32 on these two platforms
 *  and dpml_exp.c changes the WORD definition there to int_64, we need to make
 *  sure *pow_of_two is defined as int_64 (since that is what dpml_exp.c
 *  declared).  These #if defined can be removed as soon as those platforms 
 *  support 64 bits.
 */
#if ((defined(ALPHA) || defined(alpha)) && (defined(wnt) || defined(vms)))
#   define EXP_WORD_TYPE INT_64
#else
#   define EXP_WORD_TYPE WORD
#endif

#if defined(PRECISION_BACKUP_AVAILABLE)
#  	define EXP_OTHER_ARGS EXP_WORD_TYPE *pow_of_two
#else
#  	define EXP_OTHER_ARGS EXP_WORD_TYPE *pow_of_two, F_TYPE *pow2_low
#endif

extern B_TYPE F_EXP_SPECIAL_ENTRY_NAME (F_TYPE x, EXP_OTHER_ARGS);

#if !defined(IEEE_FLOATING)
#   define IEEE_FLOATING	0
#endif

/*
 * GENERAL COMMENTS:
 * -----------------
 *
 * The error function, erf(x) is defined for all values of x by the integral:
 *
 *	                  /\ x
 *	            2     |
 *	erf(x) = -------- | exp(-t^2)dt
 *		 sqrt(pi) |
 *		         \/ 0
 *
 * From the definition and the taylor expansion for exp(x) is follows that
 *
 *		erf(-x) = - erf(x)			(1)
 *
 *	                   ____
 *	            2      \    (-x)^(2k+1)
 *	erf(x) = --------  /    -----------		(2)
 *		 sqrt(pi) /____  k! (2k+1)
 *	                  k = 0
 *
 * The complementary error function, erfc(x) is defined as 1 - erf(x).  erfc(x)
 * can be approximated asymtotically by:
 *
 *	                     /       ____                \
 *	           exp(-x^2) |       \    (-1)^k (2k)!   |
 *	erfc(x) ~ ---------- | 1 +   /    -------------- |	(3)
 *		  x*sqrt(pi) |      /____  4^k k! x^(2k) |
 *	                     \      k = 1                /
 *
 * and computed directly as a continued fraction:
 *
 *	                     /                        \
 *	           exp(-x^2) |  1   1/2  2/2  3/2  4/2 |
 *	erfc(x) = ---------- | ---  ---  ---  ---  --- |	(4)
 *		   sqrt(pi)  | x +  x +  x +  x +  x + |
 *	                     \                        /
 *
 * For large values of x, computing erf(x) via (2) is time consuming and
 * incurs significant roundoff error.  Consequently, for large x, it is
 * best to compute erf(x) as 1 - erfc(x), where erfc(x) is computed via (3).
 * Similarly computing erfc(x) for small values of x is time consuming and
 * inaccurate, so it is best to compute erfc(x) = 1 - erf(x) for small x.
 * Since erf(x) and erfc(x) are bounded between 0 and 1 for positive x, there
 * is no loss of significance in computing 1 - erf(x) or 1 - erfc(x) if
 * erf(x) and erfc(x) are less than or equal to 1/2.  Let s be a point such
 * that erf(s) = 1/2.  It follows from the definition of erfc that erfc(x) =
 * 1/2.
 *
 * IMPLEMENTATION ISSUES:
 * ----------------------
 *
 * When x is small, erf(x) = 2*x/sqrt(pi) to machine precision.  In particular
 * if x satifies
 *
 *		2*x/sqrt(pi) - erf(x)
 *		---------------------- < 2^-(F_PRECISION + 1)
 *		       erf(x)
 *
 * then erf(x) = 2*x/sqrt(pi) to machine precision.  For k >= 1, let rho(k) =
 * 1 + 2^-(F_PRECISION + k), if r satifies
 *
 *			erf(r)/r = 2/(rho(k)*sqrt(pi))
 *
 * then it follows that for |x| < r, erf(x) = 2*x/sqrt(pi) to machine precision.
 * The reason for not fixing k = 1 in the above equation, is because we need
 * to consider the manner in which x*(2/sqrt(pi)) is computed.  Since
 * 2/sqrt(pi) is not exact, but close to 1, we can improve the accuracy of the
 * final approximation by computing erf(x) for small x as:
 *
 *		erf(x) = x + (2/sqrt(pi) - 1)*x
 *
 * The final error will the error in the above computation, plus the error
 * induced by truncating the series.  For k = 1, the induced error is 1/2 bit.
 * In order to keep the final error below 1 lsb, it is better to increase
 * k to 2.  This will limit the induced error to 1/4 lsb.
 *
 * Also note that for very small x, (2/sqrt(pi) - 1)*x will underflow, even
 * though the final result doesn't.  To avoid this problem, we note that
 * (2/sqrt(pi) - 1) > (1/8) and compute erf(x) for small x as:
 *
 *		erf(x) = (8*x + 8*(2/sqrt(pi) - 1)*x)*(1/8)
 *
 * Similarly, when x is small, erfc(x) = 1 to machine precision.  Specifically
 * if r' satisfies
 *
 *			erfc(r') = 1/rho(1),
 *
 * then for |x| < r', erf(x) = 1 to machine precision.
 */

#if defined(MAKE_INCLUDE)

    @divert divertText

    /*
     * The following subroutine "purifies" a floating point number by
     * zeroing out low order bits that will not appear when the floating
     * value is fetched as a WORD into an integer register.  We assume
     * that for VAX formats, the floating point numbers have been
     * "PDP_SHUFFLED"
     */

#   if BITS_PER_WORD < BITS_PER_F_TYPE
#      define NUM_INT_BITS	BITS_PER_WORD
#   else
#      define NUM_INT_BITS	BITS_PER_F_TYPE
#   endif
    
    function purify()
        {
        _n = bexp($1) - NUM_INT_BITS;
        _y = bldexp($1, -_n);
        _y = trunc(_y);
        _y = bldexp(_y, _n);
        return _y;
        }

    /*
     * the following macro solves the equation F(x) = c to a relative error
     * of t.  The input points a and b are two points near the solution that
     * are used as the starting points for the modified Newton's iteration
     */

#   define	FIND_ROOT(a, b, c, t, p, r) \
		old_precision = precision; \
		precision = ceil((p)/MP_RADIX_BITS) + 4; \
		x1 = (a); x2 = (b); \
		f1 = F(x1); f2 = F(x2); \
		while (1) \
		    { \
		    r = ((x1*f2 - x2*f1) + (c)*(x2 - x1))/(f2 - f1); \
		    err = 2*abs((r - x2)/(r + x2)); \
		    if (err < (t)) \
		        break; \
		    x1 = x2; x2 = r; \
		    f1 = f2; f2 = F(x2); \
		    } \
		precision = old_precision;

    /* Set working precision an start computing */
    precision = ceil(F_PRECISION/MP_RADIX_BITS) + 4;

    mu = 2/sqrt(pi);
    rho = 1 + 2^-(F_PRECISION + 2);
    c = mu/rho;

    /*
     * Find the smallest polynomial argument for erf, by solving the
     * equation erf(x)/x = 2/(rho*sqrt(pi)) using Newton's method.  The
     * starting points, a and b, are obtained by truncating the Taylor
     * series for erf(x)/x to 2 and 3 terms respectively and solving for
     * x.  Since f(x) = erf(x)/x = 2/sqrt(pi)*[1 - x^2/3 + x^4/(5*2!) ...]
     * and the solution we are looking for is on the order of 1/2^(p+1),
     * it follows that we must have something on the order of 3*p + 3bits
     * in the MP calculations to insure that f(x2) - f(x1) term in the
     * Newton's iteration has at least p + 1 bits of accuracy
     */

    lambda = 1/(2^(F_PRECISION + 1) + 1);
    a = sqrt(3*lambda);
    b = sqrt((5 - sqrt(25 - 90*lambda))/3);
    tol = 2^-(F_PRECISION + 1);

#   undef  F
#   define F(x)	(erf(x)/x)

    FIND_ROOT(a, b, c, tol, 3*(F_PRECISION + 1), smallest_erf_poly_arg);
    smallest_erf_poly_arg = purify(smallest_erf_poly_arg);

#if 0

    /*
     * Find the smallest polynomial argument for erfc, by solving the
     * equation erfc(x) = 1/rho(1).
     */

    lambda = 1/(1 + 2^(F_PRECISION + 1));
    a = lambda;
    b = a/(1 - a*a/3);

#   undef  F(x)
#   define F(x)	(erf(x))
    FIND_ROOT(a, b, lambda, tol, 2*F_PRECISION, smallest_erfc_poly_arg);

#endif

    /*
     * Find the smallest polynomial argument for erfc, by solving the
     * equation erfc(x) = 1/rho(1).  This is equivalent to solving
     * erf(x) = 1 - 1/rho(1) or letting lambda = 1/(2^(F_PRECISION + 1),
     * x = arc_erf(lambda).  Since lambda is so small, using the Newton's
     * interations for the solution is some what combersom.  However,
     * arc_erf(x) can be Taylor series of the form:
     *
     *		arc_erf(x) =
     *		   sum{ k = 0,.. | C(2k+1)*(x*sqrt(pi)/2)^(2k+1)/(2k+1)! }
     *
     * where C(k) is the constant of the polynomial P(k,x) which is defined
     * recursively by:
     *
     *		P(k+1,x) = P'(k,x) + 2*k*x*P(k,x)
     *
     * Letting z = x*sqrt(pi)/2, it follows that
     *
     *		arc_erf(x) = z + (2/2!)*z^3 + (28/5!)*z^5 + ...
     *
     * Since we are only interested in generating constants good to 
     * machine precision and since lambda < 1/2^F_PRECISION, we need only
     * take two terms in the series.
     */

    lambda = (sqrt(pi)/2)/(1 + 2^(F_PRECISION + 1));
    smallest_erfc_poly_arg = lambda*(1 + lambda*lambda);

    smallest_erfc_poly_arg = purify(smallest_erfc_poly_arg);
    

/*
 * DENORM PROCESSING:
 * ------------------
 *
 * Since 2/sqrt(pi) > 1, if x is not denormalized, then erf(x) will not be
 * denormalized.  However, for certain values of x just below the denormalized
 * threshold, erf(x) will be normalized.  Consequently, we can deal with
 * denorms by scaling up, multipling and then scaling down.  As in the small
 * case we will want to perform the multiplication as x + (2/sqrt(pi) - 1)*x,
 * so we want to scale up high enough so that (2/sqrt(pi) - 1)*x does not
 * become denormalized.  Since (2/sqrt(pi) - 1) > 1/8, we can scale up by
 * the precision + 3 and still avoid denormalized results.  Use the
 * denorm scaling macros in dpml_private.h by defining an appropriate
 * value of __LOG2_DENORM_SCALE.
 */


/*
 * ERF(x) and ERFC(x) EVALUATION FOR SMALL ARGUMENTS:
 * ---------------------------------------------------
 *
 * Using (2) to approximate erf(x) is fairly straight forward.  We assume that
 * the (2) can be written as x*R(x^2), where R is a rational function.  We note
 * that R(0) = 2/sqrt(pi) ~ 1.12837916.  So we can reformulate the computation
 * and improve the accuracy by evaluating (2) in the form x + x*S(x^2).  Since
 * 2/sqrt(pi) ~ 1.12837916, when x is small, the overhang between x and x*S(x)
 * is 3 bits unless x is close to a power of two, in which case it is 2 bits.
 * As x increases to about .617 the overhang increases to about 13 bits.  As x
 * continues to increase, the overhang decreases until it reaches a 3 bit
 * overhang at .942.  The reason for the dramatic increase in overhang near
 * .617 is that the function x*S(x^2) has zero in that region.  This means
 * that x*S(x^2) has a massive loss of significance near .617.  Fortunately,
 * for x < .617, the alignment shift between x and x*S(x^2) is sufficient to
 * compensate for the loss of significance.  For x > .617, the alignment
 * shift is not as effective at compensatating.
 *
 * We can use (2) to compute erfc(x) when x is small as:
 *
 *		erfc(x) = 1 - x*R(x^2)
 *		        = 1 - {x + x*[R(x^2) - 1]}
 *		        = (1 - x) + x*[R(x^2) - 1]
 *
 * Graphing the overhang between (1-x) and x*[R(x^2) - 1], we note the the
 * overhang decreases with x to a 4 bit overhang near .5, then increases to
 * 12 bits near .617 and then steadily decreases as x gets larger.  At x = .75
 * the overhang is 3 bits and for x > .75 the overhang is less than 3 bits.
 * Problems with loss of significance near .617 are similar to the erf case.
 *
 * The upshot of the above, is that if approximate erf(x) - x on the interval
 * [0, .617] then we can compute both erf(x) and erfc(x) using that
 * approximation and obtain (almost always) a 3 bit overhang on the last
 * add.  This should result in an error bound < 1 ulp on that interval for 
 * both functions.
 *
 * Note that when computing 1 - x in the erfc case, the subtraction is not
 * exact so some care needs to be taken.  Specifically, let z = 1 - x and 
 * y = x + (z - 1), then we can compute erfc as:
 *
 *		erfc(x) = (1 - x) + x*[R(x^2) - 1]
 *		        = (z - y) + x*[R(x^2) - 1]
 *		        = z + { x*[R(x^2) - 1] - y }
 *
 * At first glance, approximating the function on the interval [0, .617] may
 * seem quite wasteful, since the interval is relatively large and consequently
 * the evaluation will be slow.  However, the terms in the series decrease
 * as 1/n! so the convergence is fast.  Also, the alternative is to use an
 * approximation based on equations (3) or (4), both of which require an
 * evaluation of exp(-x^2).
 */


#   undef  F
#   define F(x)	(erf(x)/x)
    a = .617;
    b = .616;
    FIND_ROOT(a, b, 1, tol, 2*F_PRECISION, largest_poly_arg);
    largest_poly_arg = purify(largest_poly_arg);

    old_precision = precision;
    precision = ceil(2*F_PRECISION/MP_RADIX_BITS) + 4;

    function erf_x_over_x ()
        {
        if ($1 == 0)
            return mu;
        else
            return erf($1)/$1;
        }

    remes(REMES_FIND_POLYNOMIAL + REMES_SQUARE_ARG + REMES_RELATIVE_WEIGHT,
       0, largest_poly_arg, erf_x_over_x, F_PRECISION + 1 + 3,
       &erf_poly_degree, &erf_poly_coefs);

    precision = old_precision;

/*
 * ERF(x) and ERFC(x) EVALUATION WHEN x IS NOT SMALL:
 * --------------------------------------------------
 *
 * As x approaches infinity, erf(x) approaches 1.  Eventually, erf(x) becomes
 * indistinguishable from 1 in machine format.
 *
 * Let t satisfy the equation
 *
 *		erf(t) = 1 - 1/2^(F_PRECISION + 1)
 *
 * Then if x >= t, erf(x) = 1 correctly rounded to machine precision.  Note
 * that the above equation is equivalent to 
 *
 *		erfc(t) = 1/2^(F_PRECISION + 1)
 */


    rho = 1 - 1/2^(F_PRECISION + 1);
    a = rho/mu;
    b = a/(1 - a*a/3);

#   undef  F
#   define F(x)	(erfc(x))
    FIND_ROOT(a, b, 1/2^(F_PRECISION + 1), tol, 3*F_PRECISION, erf_max_x);


/*
 * Similarly, ss x approaches minus infinity, erfc(x) approaches 2. Eventually,
 * erf(x) becomes indistinguishable from 2 in machine format.
 *
 * Let t satisfy the equation
 *
 *		erfc(t) = 2 - 1/2^F_PRECISION
 *
 * Then if x < t, erfc(x) = 2 correctly rounded to machine precision.
 */


    rho = 2 - 1/2^F_PRECISION;
    a = -erf_max_x;
    b = a/(1 - a*a/3);

#   undef  F
#   define F(x)	(erfc(x))
    FIND_ROOT(a, b, rho, tol, 3*F_PRECISION, erfc_min_x);


/*
 * Similarly, as x approaches infinity, erfc(x) approaches 0.  If m is the
 * smallest power of two that is representable, and v statisfies the equation
 *
 *		erfc(v) = 2^(m - 1)
 *
 * it follows that for x > v, the erfc(x) underflows to zero, while for x <= v,
 * erfc(v) is non-zero.
 *
 * For IEEE data types, there is a point at which erfc(x) becomes
 * denormalized.  If m' is the smallest power of 2 that is representable as
 * a normalized number, and u statisfies the equation
 *
 *		erfc(u) = 2^(m' - 1)
 *
 * If follows that if x > u, the erfc(x) is denormalized, while for x <= u,
 * erfc(x) is normalized.
 */


    min_bin_exp =
        IEEE_FLOATING ? (F_MIN_BIN_EXP - F_PRECISION + 1) : F_MIN_BIN_EXP;

    /* use erfc(x) ~ exp(-x^2)/(x*sqrt(pi)) to get a and b */

    a = sqrt(-((min_bin_exp - 1)*log(2) + log(pi)/2));
    b = sqrt(-((min_bin_exp - 1)*log(2) + log(pi)/2) + log(a));
    c = 2^(min_bin_exp - 1);

#   undef  F
#   define F(x)	(erfc(x))
    FIND_ROOT(a, b, c, tol, 3*F_PRECISION, erfc_underflow_x);

    if ( IEEE_FLOATING )
        { /* Compute denorm threshold */
        a = sqrt(-((F_MIN_BIN_EXP - 1)*log(2) + log(pi)/2));
        b = sqrt(-((F_MIN_BIN_EXP - 1)*log(2) + log(pi)/2) + log(a));
        c = 2^F_MIN_BIN_EXP;

        FIND_ROOT(a, b, c, tol, 3*F_PRECISION, erfc_denorm_x);
        }


/*
 * For large x, using the asymtotic approximation (3) is the most efficient
 * means of computing erfc(x) and erf(x) as 1 - erfc(x).  Since (3) is an
 * asymtotic approximation, there is a smallest x for each precision for
 * which (3) can be used to approximate erfc(x).  I.e. there is a value x0,
 * such that if x < x0, then the relative error in (3) is greater than
 * 2^(F_PRECISION + 1), regardless on how many terms are used.  As noted
 * above, there is an x1, such that if x > x1 then erf(x) = 1 to machine
 * precision.  Using equation (3) and Sterling's approximation for n!, it
 * possible to show that x0 and x1 are very close and that x0 < x1.  What
 * this implies is that the evaluation for erf(x) and erfc(x) on the
 * non-polynomial range be divided into two pieces:
 *
 *	Argument range		erf(x) evaluation	erfc(x) evaluation
 *	--------------		-----------------	------------------
 *	    x < x1		based on (4)		based on (4)
 *	   x1 <= x 		   1			based on (3)
 *
 * When evaluating erfc(x) based on (3), we include the constant 1/sqrt(pi)
 * into the polynomial coefficients and consequently the lead coefficient is
 * 1/sqrt(pi) = .5641895... = 1/2 + alpha, where alpha = 1/sqrt(pi) - .5.
 * Note that 1/2 and alpha have a 3 bit alignment shift.  Therefore we can
 * can improve the overall accuracy of the approximation by rewritting (3)
 * in the form:
 *
 *		erfc(x) = exp(-x^2)*z*[.5 + p(z^2)] where z = 1/x	(5)
 *
 */
    

    old_precision = precision;
    precision = ceil(2*F_PRECISION/MP_RADIX_BITS) + 4;

    function x_exp_x2_erfc_x()
        {
        return ($1)*exp($1*$1)*erfc($1);
        }

    erf_max_x = purify(erf_max_x);
    erfc_underflow_x = purify(erfc_underflow_x);

    remes(
       REMES_FIND_POLYNOMIAL + REMES_RECIP_SQUARE_ARG + REMES_RELATIVE_WEIGHT,
       erf_max_x, erfc_underflow_x, x_exp_x2_erfc_x, F_PRECISION + 1 + 3,
       &erfc_poly_degree, &erfc_poly_coefs);

    precision = old_precision;


/*
 * When evaluating erfc(x) using (4) it is useful to note that it can be
 * rewritten as:
 *
 *		erfc(x) = exp(-x*x)*f(x)
 *
 * where f(x) = exp(x*x)*erfc(x).  It can be shown that f(x) positive and
 * monotonicly decreasing.  Further, f(x) decreases ~ 1/x.  If we are
 * going to approximate erfc(x) on the interval [a, b], then for each
 * negative power of two between f(a) and f(b) we can find an interval
 * in [a, b], call it [c(n), c(n+1)], such that
 *
 *		1/2^n - f(c(n))   f(c(n)) - 1/2^(n+1)
 *		--------------- = --------------------
 *		     1/2^n            1/2^(n+1)
 *
 * An then approximate erfc(x) on [c(n), c(n+1)] as
 *
 *		erfc(x) = exp(-x*x)*[1/2^n + R(x)]
 *		        = exp(-x*x)/2^n*[1 + 2^n*R(x)]
 *
 * Where R(x) is a rational function, exp(-x*x)/2^n can be computed by
 * adjusting the scale factor for the special exp entry point and the scale
 * factor of 2^n can be incorporated into the coefficients of R.
 *
 *	NOTE: for the precision we are interested in (23, 53 and 113)
 *	at most 4 intervals are required.  However, time does not
 *	permit implementation of this scheme.  Instead we will use one
 *	expansion with n = 3.
 */
    

    old_precision = precision;
    precision = ceil(2*F_PRECISION/MP_RADIX_BITS) + 4;

    function exp_x2_erfc_x() { return exp($1*$1)*erfc($1); }

    erf_max_x = purify(erf_max_x);

    remes(
       REMES_FIND_RATIONAL + REMES_LINEAR_ARG +
         REMES_RELATIVE_WEIGHT + REMES_INIT_LEFT_CHEBY,
       largest_poly_arg, erf_max_x, exp_x2_erfc_x, F_PRECISION + 1 + 3,
       &erfc_num_degree, &erfc_den_degree, &erfc_rational_coefs);

    precision = old_precision;

    /* Copy numerator coefficients and pad out to same number as denominator */
    first_den_coef = erfc_num_degree + 1;
    for (i = 0; i <= erfc_num_degree; i++)
        erfc_num_coefs[i] = erfc_rational_coefs[i];

    while (erfc_num_degree < erfc_den_degree)
        erfc_num_coefs[++erfc_num_degree] = 0;

    /* Copy denominator coefficients and subtract from numerator */
    for (i = 0; i <= erfc_den_degree; i++)
        {
        erfc_den_coefs[i] = erfc_rational_coefs[i + first_den_coef];
        erfc_num_coefs[i] = 8*erfc_num_coefs[i] - erfc_den_coefs[i];
        }


/*
 *
 * COMPUTING EXP(-x^2)
 * -------------------
 *
 * Expansion (3) involves the compution of exp(-x^2).  Since small variations
 * in the argument to exp results in large errors in the result, it is
 * necessary to compute -x^2 to extra precision.  The basic approach is to
 * compute x^2 in hi and lo pieces and note that exp(-hi) can be computed
 * in extra precision (using the special exp entry point) as exp(-hi) =
 * 2^I*(fhi + flo).   Exp(-lo) can be computed as a polynomial of the form
 * 1 - lo*Q(lo).  Combining the above, we have:
 *
 *	exp(-x^2) = exp(-(hi + lo))
 *	          = exp(-hi) * exp(-lo)
 *	          = 2^I*(fhi + flo) * [1 - lo*Q(lo)]
 *	          = 2^I*{ fhi + flo - (fhi + flo)*lo*Q(lo) }
 *	          = 2^I*{ fhi + [flo - f*lo*Q(lo)]}
 *	          = 2^I*{ fhi + V }
 *
 * Noting the computation of exp(-x^2), using expansion (3) to compute erfc(x) 
 * results in a computation of the form:
 *
 *	erfc(x) = exp(-x^2)*z*[.5 + P(z^2)]			(5)
 *	        = 2^I*[ fhi + V ]*z*[.5 + P(z^2)]
 *	        = 2^(I - 1)*z*[ fhi + V ]*z*[1 + 2*P(z^2)]
 *	        = 2^(I - 1)*z*[ fhi + V + (fhi + V)*2*P(z^2)]
 *	        = 2^(I - 1)*z*[ fhi + U(x)]
 *
 * Based on the above, we have the following approach to computing erfc(x)
 *
 *	(1) get x^2 as hi and lo pieces
 *	(2) call special exp entry to get I(x), fhi and flo
 *	(3) V <-- flo - (fhi + flo)*lo*Q(lo)
 *	(4) z <-- 1/x
 *	(4) U <-- V + (fhi + V)*2*P(z^2)
 *	(5) result <-- 2^(I - 1)*z*(fhi + V)
 *
 * Note that in step 4, the factor of 2 can be incorporated into the
 * coefficients of P
 */


    /* Adjust erfc coefficients */

    for (i = 0; i <= erfc_poly_degree; i++)
        erfc_poly_coefs[i] = 2*erfc_poly_coefs[i];

    erfc_poly_coefs[0] = erfc_poly_coefs[0] - 1;

    @end_divert
#endif

/*
 * In the above discussion, we needed to compute x^2 = hi + lo and Q(lo).
 * There are basically two ways to obtain hi and lo, depending on whether or
 * not there is backup precision.
 *
 * If there is backup precision then
 *
 *		t  <-- ((B_TYPE) x)^2
 *		hi <-- (F_TYPE) t
 *		lo <-- (F_TYPE) (t - (B_TYPE) hi)
 *
 * When computed this way, the alignment shift between hi and lo is at least
 * F_PRECISION + 1 bits.
 *
 * If there is no backup precision, then x must be broken into hi and lo
 * pieces.  Then
 *
 *		x^2 = (xhi + xlo)^2
 *		    = (xhi + xlo)*(xhi + xlo)
 *		    = xhi*(xhi + xlo) + xlo*(xhi + xlo)
 *		    = xhi*xhi + xhi*xlo + xlo*(xhi + xlo)
 *		    = xhi^2 + xlo*(xhi + xhi + xlo)
 *		    = xhi^2 + xlo*(xhi + x)
 *		    = hi + lo
 *
 * There are several ways to obtain xhi and xlo, but for simplicity we will
 * assume that they are obtained by conversion to R_TYPE.
 *
 *	NOTE: the macro SPECIAL_EXP uses a temporary location _scale.
 *	This is to accommodate a hack in exp for Alpha VMS and NT.
 *	When these platforms handle 64 integers, then the use of _scale
 *	can be removed.
 */

#if defined(PRECISION_BACKUP_AVAILABLE)

#   undef  PRECISION_BACKUP_AVAILABLE
#   define PRECISION_BACKUP_AVAILABLE	1
        
#   if !defined(X_SQR_TO_HI_LO)
#	define X_SQR_TO_HI_LO(x, t, hi, lo) { \
	    t = (B_TYPE) x; \
	    t = t*t; \
	    hi = (F_TYPE) t; \
	    lo = (F_TYPE)(t - (B_TYPE) hi) ; \
	    }
#   endif

#   if !defined(SPECIAL_EXP)
#	define SPECIAL_EXP(x, t, i, hi, lo) { \
	    EXP_WORD_TYPE _scale; \
	    t = F_EXP_SPECIAL_ENTRY_NAME(x, &_scale); \
	    i = (WORD) _scale; \
	    hi = (F_TYPE) t; \
	    lo = (F_TYPE) (t - (B_TYPE)hi); \
	    }
#   endif

#else

#   define PRECISION_BACKUP_AVAILABLE	0

#   if !defined(X_SQR_TO_HI_LO)
#	define X_SQR_TO_HI_LO(x, t, hi, lo) { \
	    hi = (F_TYPE)((R_TYPE) x); \
	    lo = x - hi; \
	    lo = lo*(hi + x); \
	    hi = hi*hi ; \
	    }
#   endif

#   if !defined(SPECIAL_EXP)
#	define SPECIAL_EXP(x, t, i, hi, lo) { \
	    EXP_WORD_TYPE _scale; \
	    hi = F_EXP_SPECIAL_ENTRY_NAME(x, &_scale, &lo); \
	    i = (WORD) _scale; \
	    }
#   endif

#endif

/*
 * The low order POW2_K bits in the scale factor from the special exp
 * entry point contains the index into the exp table.  Since its use is not
 * required in erf/erfc we want to mask off the low bits.  While we're at it,
 * we can align it with the exponent field.
 */

#define	EXP_SCALE_MASK			((WORD) ~ MAKE_MASK(POW2_K, 0))
#if (F_EXP_POS >= POW2_K)
#   define ADJUST_AND_ALIGN_SCALE(s)	(((s) & EXP_SCALE_MASK) \
					   << (F_EXP_POS - POW2_K));
#else
#   define ADJUST_AND_ALIGN_SCALE(s)	(((s) & EXP_SCALE_MASK) \
					   >> (POW2_K - F_EXP_POS));
#endif

#if defined(MAKE_INCLUDE)
    @divert -append divertText

    if (PRECISION_BACKUP_AVAILABLE)
        {
        t = bround(erfc_underflow_x*erfc_underflow_x, F_PRECISION);
        n = bexp(t);
        max_x_sqr_lo = bldexp(1., n - F_PRECISION);
        }
    else
        {
        n = bexp(erfc_underflow_x);
        t = bround(erfc_underflow_x, R_PRECISION);
        s = bldexp(1., n - (R_PRECISION + 1));
        max_x_sqr_lo = s*(t + erfc_underflow_x);
        }


    /* Now compute the polynomial for exp(lo) */

    old_precision = precision;
    precision = ceil(2*F_PRECISION/MP_RADIX_BITS) + 8;

    function exp_m1_ov_x() 
        {
        if ($1 == 0)
            return 1;
        else
            return expm1(-$1)/(-$1);
        }

    remes(REMES_FIND_POLYNOMIAL + REMES_LINEAR_ARG + REMES_RELATIVE_WEIGHT,
       0, max_x_sqr_lo, exp_m1_ov_x, F_PRECISION + 1, &exp_poly_degree,
       &exp_poly_coefs);

    precision = old_precision;


#   define F_PRINT_A_DEFINE(name)	PRINT_TABLE_ADDRESS_DEFINE(name, \
					    TABLE_NAME, offset, F_TYPE)
#   define F_PRINT_V_DEFINE(name)	PRINT_TABLE_VALUE_DEFINE(name, \
					    TABLE_NAME, offset, F_TYPE)
#   define F_PRINT_ENTRY(value)		PRINT_1_F_TYPE_ENTRY(value, offset)
#   define PRINT_COEFS(a, n, d)		F_PRINT_A_DEFINE(d); \
					    TABLE_COMMENT(STR(a)); \
					    for (i = 0; i <= n; i++) \
					        { F_PRINT_ENTRY(a[i]); }

    printf("\n#include \"dpml_private.h\"\n\n");
    IF_MAKE_COMMON( printf("\n#if !defined(DEFINES_ONLY)\n\n"); )

    START_TABLE(TABLE_NAME, offset);

    TABLE_COMMENT("2/sqrt(pi) - 1, 8 and 1/8" );
    F_PRINT_V_DEFINE(TWO_OVER_SQRT_PI_M1);
    F_PRINT_ENTRY(mu - 1);
    F_PRINT_V_DEFINE(EIGHT);
    F_PRINT_ENTRY(8);
    F_PRINT_V_DEFINE(ONE_EIGTH);
    F_PRINT_ENTRY(1/8);

    erf_poly_coefs[0] = erf_poly_coefs[0] - 1;
    PRINT_COEFS(erf_poly_coefs, erf_poly_degree, ERF_POLY_COEFS);

    PRINT_COEFS(erfc_poly_coefs, erfc_poly_degree, ERFC_POLY_COEFS);

    PRINT_COEFS(exp_poly_coefs, exp_poly_degree, EXP_POLY_COEFS);

    PRINT_COEFS(erfc_num_coefs, erfc_num_degree, ERFC_NUM_COEFS);

    PRINT_COEFS(erfc_den_coefs, erfc_den_degree, ERFC_DEN_COEFS);

    END_TABLE;

    IF_MAKE_COMMON(
        printf("\n#else\n\n");
        printf("    extern const " STR(F_TYPE) " " STR(TABLE_NAME) "[];\n");
        printf("\n#endif\n\n");
        )
    
    printf("#define ERF_POLY(t,z)\t\tPOLY_%i_ALL(t, ERF_POLY_COEFS, z)\n",
        erf_poly_degree);

    printf("#define ERFC_POLY(t,z)\t\tPOLY_%i_ALL(t, ERFC_POLY_COEFS, z)\n",
        erfc_poly_degree);

    printf("#define EXP_POLY(t,z)\t\tPOLY_%i_ALL(t, EXP_POLY_COEFS, z)\n",
        exp_poly_degree);

    printf("#define ERFC_NUM_POLY(t,z)\tPOLY_%i_ALL(t, ERFC_NUM_COEFS, z)\n",
        erfc_num_degree);

    printf("#define ERFC_DEN_POLY(t,z)\tPOLY_%i_ALL(t, ERFC_DEN_COEFS, z)\n",
        erfc_den_degree);


    /*
     * The following function returns an "integer" that has the same bit
     * pattern as the floating point value.  (NOTE: for VAX data types
     * the floating point "bit pattern" is after a PDP_SHUFFLE.) 
     */


#   if IEEE_FLOATING

#       define _F_SIGN_BIT_POS	F_SIGN_BIT_POS
#       define _F_EXP_POS	F_EXP_POS

#   else

#       define _F_POS_ADJ	(NUM_INT_BITS - 16)
#       define _F_SIGN_BIT_POS	(F_SIGN_BIT_POS + _F_POS_ADJ)
#       define _F_EXP_POS	(F_EXP_POS + _F_POS_ADJ)

#   endif

#   define	HEX_FMT	PASTE_3(HEX_FORMAT_FOR_, NUM_INT_BITS, _BITS)

    function as_int()
        {
        _sign = 0;
        if ($1 < 0) _sign = 1;
        exponent = bexp($1);

        _y = trunc(bldexp($1, _F_EXP_POS + 1 - exponent));
        _i = (_sign << _F_SIGN_BIT_POS) +
             ((exponent + F_EXP_BIAS - F_NORM - 2) << _F_EXP_POS)
             + _y;
        return _i;
        }

    printf("#define MAX_POLY_ARG\t\t" HEX_FMT "\n", as_int(largest_poly_arg));
    printf("#define MIN_ERF_POLY_ARG\t" HEX_FMT "\n",
      as_int(smallest_erf_poly_arg));
    printf("#define MIN_ERFC_POLY_ARG\t" HEX_FMT "\n",
      as_int(smallest_erfc_poly_arg));
    printf("#define ERFC_MAX_CONSTANT_ARG\t(" HEX_FMT " - (U_WORD) "
      HEX_FMT ")\n", as_int(-erfc_min_x), bldexp(1, _F_SIGN_BIT_POS));
    printf("#define ERF_MIN_CONSTANT_ARG\t" HEX_FMT "\n", as_int(erf_max_x));
    printf("#define MIN_ASYMTOTIC_ARG\t" HEX_FMT "\n", as_int(erf_max_x));
    printf("#define MIN_UNDERFLOW_ARG\t" HEX_FMT "\n",
      as_int(erfc_underflow_x));

    @end_divert

#   define TMP_FILE             ADD_EXTENSION(BUILD_FILE_NAME,tmp)
    @eval my $outText = MphocEval( GetStream( "divertText" ) );		\
          my $defineText = Egrep( "#define", $outText, \$tableText);	\
          my $headerText = GetHeaderText( STR(BUILD_FILE_NAME),     	\
                       "Definitions and constants for " .       	\
                       "erf and erfc functions", __FILE__);		\
          print "$headerText\n\n$tableText\n\n$defineText\n";

#endif

#if !defined(MAKE_INCLUDE)
#   include STR(BUILD_FILE_NAME)
#endif

#define	EXP_INC		SET_BIT(F_EXP_POS)

#if IEEE_FLOATING
#    define HAS_ABNORMAL_EXP(e)	((((e) + EXP_INC) & \
				MAKE_MASK(F_EXP_WIDTH - 1, F_EXP_POS + 1)) == 0)
#    define _F_SIGN_BIT_MASK	F_SIGN_BIT_MASK
#else
#    if (BITS_PER_WORD <= BITS_PER_F_TYPE)
#        define _F_SIGN_BIT_MASK	SET_BIT(BITS_PER_WORD - 1)
#    else
#        define _F_SIGN_BIT_MASK	SET_BIT(BITS_PER_F_TYPE - 1)
#    endif
#endif

/*
 * Depending on the sign of x, erfc(x) will be the "computed" value or
 * 2 + the "computed" value.
 */

#if F_COPY_SIGN_IS_FAST
#   define ADD_IN_ERFC_CONST(i,x,u,z)	F_COPY_SIGN((F_TYPE) 1.0, x, u); \
					u = (F_TYPE) 1.0 - u; \
					z += u
#else
#   define ADD_IN_ERFC_CONST(i,x,u,z)	if ((i) < 0) z += (F_TYPE) 2.0
#endif

#if !defined F_ENTRY_NAME
#   define F_ENTRY_NAME	_F_ENTRY_NAME
#endif

F_TYPE F_ENTRY_NAME (F_TYPE x)
    {
    EXCEPTION_RECORD_DECLARATION
    F_TYPE z, w, y, u, fhi, flo, hi, lo;
    WORD s_exp_word, exp_word, scale;
    F_UNION _u_;

#   if defined(PRECISION_BACKUP_AVAILABLE)
        B_TYPE t;
#   endif

#   if defined(ERF)
        WORD exp_field, index;
#   else
        F_TYPE v;
#   endif

    _u_.f = x;

    IF_IEEE(s_exp_word = _u_.F_SIGNED_HI_WORD;)
    IF_VAX( s_exp_word = _u_.F_HI_WORD;
            s_exp_word = SIGN_EXTENDED_PDP_SHUFFLE(s_exp_word);)

    IF_IEEE(if (HAS_ABNORMAL_EXP(s_exp_word)) goto ieee_abnormal_arguments;)

    /* Get "|x|" and branch to the right code for the size of x */
    exp_word = s_exp_word & (~(-_F_SIGN_BIT_MASK));

    if (exp_word > MAX_POLY_ARG)
        goto not_a_poly_argument;

    if (exp_word <= SELECT(MIN_ERF_POLY_ARG, MIN_ERFC_POLY_ARG))
        goto identity_range;

    /* Just need to do a polynomial evaluation for these arguments */
    w = x*x;
    ERF_POLY(w, z);
    z = x*z;

    /*
     * Add in last term.  For erf, add in x, for erfc, carefully add in 
     * 1 - x
     */

    SELECT( z = x + z; , y = (F_TYPE) 1. - x;
                         w = x - ((F_TYPE) 1. - y);
                         z = y - (w + z);
          )

    return z;

not_a_poly_argument:

    /*
     * If x is large positive number (erf) or a large negative number (erfc)
     * then we can just return a constant
     */

    if (
       SELECT(exp_word   >  ERF_MIN_CONSTANT_ARG ,
              s_exp_word >= ERFC_MAX_CONSTANT_ARG)
       ) goto return_constant;

    /* If x is a large positive number, erfc will underflow */
  
    IF_ERFC( if (exp_word > MIN_UNDERFLOW_ARG) goto underflow; )

    /*
     * To approximate erf or erfc for arguments in this range, we need to
     * compute exp(-x^2).  Note that the special exp entry returns scale
     * as the value 2^L*n + m, where n is the binary exponent of exp(-x^2)
     * and m is the index into the exp data table.  Since we only need n,
     * mask of low bits and align with exponent field
     */

    X_SQR_TO_HI_LO(x, t, hi, lo);
    SPECIAL_EXP(-hi, t, scale, fhi, flo);
    scale = ADJUST_AND_ALIGN_SCALE(scale);

    /*
     * For erfc, if x is really big, we need to use an asymtotic approximation
     */

    IF_ERFC(if (exp_word > MIN_ASYMTOTIC_ARG) goto needs_asymtotic;)

    /*
     * In the medium range, we use approximation (4) in the form
     *
     *		erfc(x) = exp(-x^2)/4*[1 + R(x)]
     *
     * In this range, we also need to work with |x| and restore the sign
     * at the end.
     */

    F_ABS(x, z);
    ERFC_NUM_POLY(z, u);
    ERFC_DEN_POLY(z, y);
    y = u/y;
    EXP_POLY(lo, u);
    flo = flo - (fhi + flo)*lo*u;

    z = fhi + (flo + (fhi + flo)*y);
    /* z = fhi*y + flo*y; */
    _u_.f = z;
    _u_.F_HI_WORD += (scale - 3*EXP_INC);
    z = _u_.f;
    IF_ERF(z = (F_TYPE) 1.0 - z;)
    if (s_exp_word >= 0) goto return_z;

    /* Negate for erf, subtract from 2 for erfc */
    z = SELECT(-z,  (F_TYPE) 2.0 - z);

return_z:
    return z;

#if defined(ERFC)

needs_asymtotic:

    z = ((F_TYPE) 1.)/x;
    EXP_POLY(lo, u);
    v = flo - (fhi + flo)*lo*u;
    u = fhi + v;
    w = z*z;
    ERFC_POLY(w, y);
    u = v + u*y;
    z = (z*fhi) + (z*u);	/* Slightly better error bound this way */

    /* Scale by power of two, looking out for underflows and denorms */
    _u_.f = z;
    scale -= EXP_INC;	/* Adj for factor of 2 in ERFC_POLY */
    s_exp_word = _u_.F_HI_WORD;
    _u_.F_HI_WORD = s_exp_word + scale;
    scale = (s_exp_word & F_EXP_MASK) + scale;
    if (scale <= 0) goto denorm_or_underflow;
    z = _u_.f;
    return z;
       
denorm_or_underflow:

#   if IEEE_FLOATING

    if ((WORD) (scale + ALIGN_W_EXP_FIELD(F_PRECISION - 1)) >= 0)
        {

        /*
        ** At this point, we have z = 2^n*f is in the denormalized range.
        ** Redefine z to be 2^0*f.
        */

        s_exp_word = (s_exp_word & ~F_SIGN_EXP_MASK) |
          ALIGN_W_EXP_FIELD(F_EXP_BIAS);
        _u_.F_HI_WORD = s_exp_word;
        z = _u_.f;

        /* Get 'w' = 2^k, where k is the number of bits "of denormalization" */

        CLEAR_LOW_BITS(_u_);
        s_exp_word = (s_exp_word & F_SIGN_EXP_MASK) - scale + EXP_INC;
        _u_.F_HI_WORD = s_exp_word;

        /*
        ** compute 2^k + z and unscale the exponent field to get the correct
        ** denormalized result
        */

        _u_.f += z;
        _u_.F_HI_WORD -= (s_exp_word & F_EXP_MASK);
        z = _u_.f;

        if ( (z != (F_TYPE) 0.) && PROCESS_DENORMS)
            return z;
        }

#   endif

#endif

#if defined(ERFC)
underflow:
#endif
    GET_EXCEPTION_RESULT_1(ERFC_UNDERFLOW, x, z);
    return z;

identity_range:
    SELECT(  z = EIGHT*x;
             z = (z + TWO_OVER_SQRT_PI_M1*z)*ONE_EIGTH, z = (F_TYPE) 1.0);
    return z;


#if IEEE_FLOATING

    ieee_abnormal_arguments:

        if ((s_exp_word & F_EXP_MASK) == F_EXP_MASK)
            goto nan_or_inf;

        /* If we get here, x is either 0 or denorm. */

#    if defined(ERFC)
        return (F_TYPE) 1.0;
#    else
        /* Scale up argument so that we can safely muliply by 2/sqrt(pi) - 1 */
        DENORM_TO_NORM(x, z);
        z = z + TWO_OVER_SQRT_PI_M1*z;

        /*
         * Now unscale.  Underflow is not possible here but the result may
         * be denormal.  So we need to check the exponent field.
         */

        _u_.f = z;
        exp_word = _u_.F_HI_WORD;
        exp_field = exp_word & F_EXP_MASK;
        exp_word ^= exp_field;
        index = exp_field - __LOG2_DENORM_SCALE_ALIGNED_W_EXP;
        if (index <= 0) goto erf_denorm;
        _u_.F_HI_WORD = exp_word | index;
        z = _u_.f;
        return z;

    erf_denorm:
        exp_field -= (index - ALIGN_W_EXP_FIELD(1));
        _u_.F_HI_WORD = (exp_word | exp_field) & F_SIGN_EXP_MASK;
        CLEAR_LOW_BITS(_u_);
        _u_.f += z;
        _u_.F_HI_WORD -= exp_field;
        z = _u_.f;
        return z;

#   endif


nan_or_inf:

	/* If x is a NaN, return it. */

	if ((s_exp_word & F_MANTISSA_MASK) OR_LOW_BITS_SET(_u_))
		return x;

	/* Otherwise, x is an infinity. Fall through to return_constant. */

#endif


return_constant:

	if (s_exp_word & _F_SIGN_BIT_MASK)
		z = (F_TYPE) SELECT( -1.0, 2.0);
	else
		z = (F_TYPE) SELECT( 1.0, 0.0);
	return z;

    }