1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
|
/******************************************************************************
Copyright (c) 2007-2024, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
#if defined(ERFC)
# define BASE_NAME ERFC_BASE_NAME
# define _F_ENTRY_NAME F_ERFC_NAME
# define SELECT(x,y) y
# define IF_ERFC(x) x
# define IF_ERF(x)
#else
# define BASE_NAME ERF_BASE_NAME
# define _F_ENTRY_NAME F_ERF_NAME
# define SELECT(x,y) x
# define IF_ERFC(x)
# define IF_ERF(x) x
#endif
#if defined(MAKE_COMMON)
# define DEFINES_ONLY
# define COMMON_NAME erf
# if !defined(BUILD_FILE_NAME)
# define BUILD_FILE_EXTENSION c
# define BUILD_SUFFIX TABLE_SUFFIX
# define BUILD_FILE_NAME __BUILD_FILE_NAME(COMMON_NAME)
# endif
# if !defined(MP_FILE_NAME)
# define MP_FILE_NAME __MP_FILE_NAME(COMMON_NAME)
# endif
# if !defined(TABLE_NAME)
# define TABLE_NAME __F_TABLE_NAME(COMMON_NAME)
# endif
# define IF_MAKE_COMMON(x) x
# define START_TABLE(name, offset) START_GLOBAL_TABLE(TABLE_NAME, offset)
#else
# undef DEFINES_ONLY
# define IF_MAKE_COMMON(x)
# define START_TABLE(name, offset) START_STATIC_TABLE(TABLE_NAME, offset)
#endif
#define __NEEDS_SIGNED_DENORM_TO_NORM
#define __LOG2_DENORM_SCALE (F_PRECISION + 3)
#define NEW_DPML_MACROS 1
#include "dpml_private.h"
/*
* NOTE: This routine accesses the special exp entry point.
* Consequently it needs to know the alignment of the scale
* factor.
*/
#include STR(SPECIAL_EXP_HEADER)
/*
* This is a hack on Alpha VMS and NT for the function
* F_EXP_SPECIAL_ENTRY_NAME. In particular, the return argument
* WORD *pow_of_two. Since WORD is defined as int_32 on these two platforms
* and dpml_exp.c changes the WORD definition there to int_64, we need to make
* sure *pow_of_two is defined as int_64 (since that is what dpml_exp.c
* declared). These #if defined can be removed as soon as those platforms
* support 64 bits.
*/
#if ((defined(ALPHA) || defined(alpha)) && (defined(wnt) || defined(vms)))
# define EXP_WORD_TYPE INT_64
#else
# define EXP_WORD_TYPE WORD
#endif
#if defined(PRECISION_BACKUP_AVAILABLE)
# define EXP_OTHER_ARGS EXP_WORD_TYPE *pow_of_two
#else
# define EXP_OTHER_ARGS EXP_WORD_TYPE *pow_of_two, F_TYPE *pow2_low
#endif
extern B_TYPE F_EXP_SPECIAL_ENTRY_NAME (F_TYPE x, EXP_OTHER_ARGS);
#if !defined(IEEE_FLOATING)
# define IEEE_FLOATING 0
#endif
/*
* GENERAL COMMENTS:
* -----------------
*
* The error function, erf(x) is defined for all values of x by the integral:
*
* /\ x
* 2 |
* erf(x) = -------- | exp(-t^2)dt
* sqrt(pi) |
* \/ 0
*
* From the definition and the taylor expansion for exp(x) is follows that
*
* erf(-x) = - erf(x) (1)
*
* ____
* 2 \ (-x)^(2k+1)
* erf(x) = -------- / ----------- (2)
* sqrt(pi) /____ k! (2k+1)
* k = 0
*
* The complementary error function, erfc(x) is defined as 1 - erf(x). erfc(x)
* can be approximated asymtotically by:
*
* / ____ \
* exp(-x^2) | \ (-1)^k (2k)! |
* erfc(x) ~ ---------- | 1 + / -------------- | (3)
* x*sqrt(pi) | /____ 4^k k! x^(2k) |
* \ k = 1 /
*
* and computed directly as a continued fraction:
*
* / \
* exp(-x^2) | 1 1/2 2/2 3/2 4/2 |
* erfc(x) = ---------- | --- --- --- --- --- | (4)
* sqrt(pi) | x + x + x + x + x + |
* \ /
*
* For large values of x, computing erf(x) via (2) is time consuming and
* incurs significant roundoff error. Consequently, for large x, it is
* best to compute erf(x) as 1 - erfc(x), where erfc(x) is computed via (3).
* Similarly computing erfc(x) for small values of x is time consuming and
* inaccurate, so it is best to compute erfc(x) = 1 - erf(x) for small x.
* Since erf(x) and erfc(x) are bounded between 0 and 1 for positive x, there
* is no loss of significance in computing 1 - erf(x) or 1 - erfc(x) if
* erf(x) and erfc(x) are less than or equal to 1/2. Let s be a point such
* that erf(s) = 1/2. It follows from the definition of erfc that erfc(x) =
* 1/2.
*
* IMPLEMENTATION ISSUES:
* ----------------------
*
* When x is small, erf(x) = 2*x/sqrt(pi) to machine precision. In particular
* if x satifies
*
* 2*x/sqrt(pi) - erf(x)
* ---------------------- < 2^-(F_PRECISION + 1)
* erf(x)
*
* then erf(x) = 2*x/sqrt(pi) to machine precision. For k >= 1, let rho(k) =
* 1 + 2^-(F_PRECISION + k), if r satifies
*
* erf(r)/r = 2/(rho(k)*sqrt(pi))
*
* then it follows that for |x| < r, erf(x) = 2*x/sqrt(pi) to machine precision.
* The reason for not fixing k = 1 in the above equation, is because we need
* to consider the manner in which x*(2/sqrt(pi)) is computed. Since
* 2/sqrt(pi) is not exact, but close to 1, we can improve the accuracy of the
* final approximation by computing erf(x) for small x as:
*
* erf(x) = x + (2/sqrt(pi) - 1)*x
*
* The final error will the error in the above computation, plus the error
* induced by truncating the series. For k = 1, the induced error is 1/2 bit.
* In order to keep the final error below 1 lsb, it is better to increase
* k to 2. This will limit the induced error to 1/4 lsb.
*
* Also note that for very small x, (2/sqrt(pi) - 1)*x will underflow, even
* though the final result doesn't. To avoid this problem, we note that
* (2/sqrt(pi) - 1) > (1/8) and compute erf(x) for small x as:
*
* erf(x) = (8*x + 8*(2/sqrt(pi) - 1)*x)*(1/8)
*
* Similarly, when x is small, erfc(x) = 1 to machine precision. Specifically
* if r' satisfies
*
* erfc(r') = 1/rho(1),
*
* then for |x| < r', erf(x) = 1 to machine precision.
*/
#if defined(MAKE_INCLUDE)
@divert divertText
/*
* The following subroutine "purifies" a floating point number by
* zeroing out low order bits that will not appear when the floating
* value is fetched as a WORD into an integer register. We assume
* that for VAX formats, the floating point numbers have been
* "PDP_SHUFFLED"
*/
# if BITS_PER_WORD < BITS_PER_F_TYPE
# define NUM_INT_BITS BITS_PER_WORD
# else
# define NUM_INT_BITS BITS_PER_F_TYPE
# endif
function purify()
{
_n = bexp($1) - NUM_INT_BITS;
_y = bldexp($1, -_n);
_y = trunc(_y);
_y = bldexp(_y, _n);
return _y;
}
/*
* the following macro solves the equation F(x) = c to a relative error
* of t. The input points a and b are two points near the solution that
* are used as the starting points for the modified Newton's iteration
*/
# define FIND_ROOT(a, b, c, t, p, r) \
old_precision = precision; \
precision = ceil((p)/MP_RADIX_BITS) + 4; \
x1 = (a); x2 = (b); \
f1 = F(x1); f2 = F(x2); \
while (1) \
{ \
r = ((x1*f2 - x2*f1) + (c)*(x2 - x1))/(f2 - f1); \
err = 2*abs((r - x2)/(r + x2)); \
if (err < (t)) \
break; \
x1 = x2; x2 = r; \
f1 = f2; f2 = F(x2); \
} \
precision = old_precision;
/* Set working precision an start computing */
precision = ceil(F_PRECISION/MP_RADIX_BITS) + 4;
mu = 2/sqrt(pi);
rho = 1 + 2^-(F_PRECISION + 2);
c = mu/rho;
/*
* Find the smallest polynomial argument for erf, by solving the
* equation erf(x)/x = 2/(rho*sqrt(pi)) using Newton's method. The
* starting points, a and b, are obtained by truncating the Taylor
* series for erf(x)/x to 2 and 3 terms respectively and solving for
* x. Since f(x) = erf(x)/x = 2/sqrt(pi)*[1 - x^2/3 + x^4/(5*2!) ...]
* and the solution we are looking for is on the order of 1/2^(p+1),
* it follows that we must have something on the order of 3*p + 3bits
* in the MP calculations to insure that f(x2) - f(x1) term in the
* Newton's iteration has at least p + 1 bits of accuracy
*/
lambda = 1/(2^(F_PRECISION + 1) + 1);
a = sqrt(3*lambda);
b = sqrt((5 - sqrt(25 - 90*lambda))/3);
tol = 2^-(F_PRECISION + 1);
# undef F
# define F(x) (erf(x)/x)
FIND_ROOT(a, b, c, tol, 3*(F_PRECISION + 1), smallest_erf_poly_arg);
smallest_erf_poly_arg = purify(smallest_erf_poly_arg);
#if 0
/*
* Find the smallest polynomial argument for erfc, by solving the
* equation erfc(x) = 1/rho(1).
*/
lambda = 1/(1 + 2^(F_PRECISION + 1));
a = lambda;
b = a/(1 - a*a/3);
# undef F(x)
# define F(x) (erf(x))
FIND_ROOT(a, b, lambda, tol, 2*F_PRECISION, smallest_erfc_poly_arg);
#endif
/*
* Find the smallest polynomial argument for erfc, by solving the
* equation erfc(x) = 1/rho(1). This is equivalent to solving
* erf(x) = 1 - 1/rho(1) or letting lambda = 1/(2^(F_PRECISION + 1),
* x = arc_erf(lambda). Since lambda is so small, using the Newton's
* interations for the solution is some what combersom. However,
* arc_erf(x) can be Taylor series of the form:
*
* arc_erf(x) =
* sum{ k = 0,.. | C(2k+1)*(x*sqrt(pi)/2)^(2k+1)/(2k+1)! }
*
* where C(k) is the constant of the polynomial P(k,x) which is defined
* recursively by:
*
* P(k+1,x) = P'(k,x) + 2*k*x*P(k,x)
*
* Letting z = x*sqrt(pi)/2, it follows that
*
* arc_erf(x) = z + (2/2!)*z^3 + (28/5!)*z^5 + ...
*
* Since we are only interested in generating constants good to
* machine precision and since lambda < 1/2^F_PRECISION, we need only
* take two terms in the series.
*/
lambda = (sqrt(pi)/2)/(1 + 2^(F_PRECISION + 1));
smallest_erfc_poly_arg = lambda*(1 + lambda*lambda);
smallest_erfc_poly_arg = purify(smallest_erfc_poly_arg);
/*
* DENORM PROCESSING:
* ------------------
*
* Since 2/sqrt(pi) > 1, if x is not denormalized, then erf(x) will not be
* denormalized. However, for certain values of x just below the denormalized
* threshold, erf(x) will be normalized. Consequently, we can deal with
* denorms by scaling up, multipling and then scaling down. As in the small
* case we will want to perform the multiplication as x + (2/sqrt(pi) - 1)*x,
* so we want to scale up high enough so that (2/sqrt(pi) - 1)*x does not
* become denormalized. Since (2/sqrt(pi) - 1) > 1/8, we can scale up by
* the precision + 3 and still avoid denormalized results. Use the
* denorm scaling macros in dpml_private.h by defining an appropriate
* value of __LOG2_DENORM_SCALE.
*/
/*
* ERF(x) and ERFC(x) EVALUATION FOR SMALL ARGUMENTS:
* ---------------------------------------------------
*
* Using (2) to approximate erf(x) is fairly straight forward. We assume that
* the (2) can be written as x*R(x^2), where R is a rational function. We note
* that R(0) = 2/sqrt(pi) ~ 1.12837916. So we can reformulate the computation
* and improve the accuracy by evaluating (2) in the form x + x*S(x^2). Since
* 2/sqrt(pi) ~ 1.12837916, when x is small, the overhang between x and x*S(x)
* is 3 bits unless x is close to a power of two, in which case it is 2 bits.
* As x increases to about .617 the overhang increases to about 13 bits. As x
* continues to increase, the overhang decreases until it reaches a 3 bit
* overhang at .942. The reason for the dramatic increase in overhang near
* .617 is that the function x*S(x^2) has zero in that region. This means
* that x*S(x^2) has a massive loss of significance near .617. Fortunately,
* for x < .617, the alignment shift between x and x*S(x^2) is sufficient to
* compensate for the loss of significance. For x > .617, the alignment
* shift is not as effective at compensatating.
*
* We can use (2) to compute erfc(x) when x is small as:
*
* erfc(x) = 1 - x*R(x^2)
* = 1 - {x + x*[R(x^2) - 1]}
* = (1 - x) + x*[R(x^2) - 1]
*
* Graphing the overhang between (1-x) and x*[R(x^2) - 1], we note the the
* overhang decreases with x to a 4 bit overhang near .5, then increases to
* 12 bits near .617 and then steadily decreases as x gets larger. At x = .75
* the overhang is 3 bits and for x > .75 the overhang is less than 3 bits.
* Problems with loss of significance near .617 are similar to the erf case.
*
* The upshot of the above, is that if approximate erf(x) - x on the interval
* [0, .617] then we can compute both erf(x) and erfc(x) using that
* approximation and obtain (almost always) a 3 bit overhang on the last
* add. This should result in an error bound < 1 ulp on that interval for
* both functions.
*
* Note that when computing 1 - x in the erfc case, the subtraction is not
* exact so some care needs to be taken. Specifically, let z = 1 - x and
* y = x + (z - 1), then we can compute erfc as:
*
* erfc(x) = (1 - x) + x*[R(x^2) - 1]
* = (z - y) + x*[R(x^2) - 1]
* = z + { x*[R(x^2) - 1] - y }
*
* At first glance, approximating the function on the interval [0, .617] may
* seem quite wasteful, since the interval is relatively large and consequently
* the evaluation will be slow. However, the terms in the series decrease
* as 1/n! so the convergence is fast. Also, the alternative is to use an
* approximation based on equations (3) or (4), both of which require an
* evaluation of exp(-x^2).
*/
# undef F
# define F(x) (erf(x)/x)
a = .617;
b = .616;
FIND_ROOT(a, b, 1, tol, 2*F_PRECISION, largest_poly_arg);
largest_poly_arg = purify(largest_poly_arg);
old_precision = precision;
precision = ceil(2*F_PRECISION/MP_RADIX_BITS) + 4;
function erf_x_over_x ()
{
if ($1 == 0)
return mu;
else
return erf($1)/$1;
}
remes(REMES_FIND_POLYNOMIAL + REMES_SQUARE_ARG + REMES_RELATIVE_WEIGHT,
0, largest_poly_arg, erf_x_over_x, F_PRECISION + 1 + 3,
&erf_poly_degree, &erf_poly_coefs);
precision = old_precision;
/*
* ERF(x) and ERFC(x) EVALUATION WHEN x IS NOT SMALL:
* --------------------------------------------------
*
* As x approaches infinity, erf(x) approaches 1. Eventually, erf(x) becomes
* indistinguishable from 1 in machine format.
*
* Let t satisfy the equation
*
* erf(t) = 1 - 1/2^(F_PRECISION + 1)
*
* Then if x >= t, erf(x) = 1 correctly rounded to machine precision. Note
* that the above equation is equivalent to
*
* erfc(t) = 1/2^(F_PRECISION + 1)
*/
rho = 1 - 1/2^(F_PRECISION + 1);
a = rho/mu;
b = a/(1 - a*a/3);
# undef F
# define F(x) (erfc(x))
FIND_ROOT(a, b, 1/2^(F_PRECISION + 1), tol, 3*F_PRECISION, erf_max_x);
/*
* Similarly, ss x approaches minus infinity, erfc(x) approaches 2. Eventually,
* erf(x) becomes indistinguishable from 2 in machine format.
*
* Let t satisfy the equation
*
* erfc(t) = 2 - 1/2^F_PRECISION
*
* Then if x < t, erfc(x) = 2 correctly rounded to machine precision.
*/
rho = 2 - 1/2^F_PRECISION;
a = -erf_max_x;
b = a/(1 - a*a/3);
# undef F
# define F(x) (erfc(x))
FIND_ROOT(a, b, rho, tol, 3*F_PRECISION, erfc_min_x);
/*
* Similarly, as x approaches infinity, erfc(x) approaches 0. If m is the
* smallest power of two that is representable, and v statisfies the equation
*
* erfc(v) = 2^(m - 1)
*
* it follows that for x > v, the erfc(x) underflows to zero, while for x <= v,
* erfc(v) is non-zero.
*
* For IEEE data types, there is a point at which erfc(x) becomes
* denormalized. If m' is the smallest power of 2 that is representable as
* a normalized number, and u statisfies the equation
*
* erfc(u) = 2^(m' - 1)
*
* If follows that if x > u, the erfc(x) is denormalized, while for x <= u,
* erfc(x) is normalized.
*/
min_bin_exp =
IEEE_FLOATING ? (F_MIN_BIN_EXP - F_PRECISION + 1) : F_MIN_BIN_EXP;
/* use erfc(x) ~ exp(-x^2)/(x*sqrt(pi)) to get a and b */
a = sqrt(-((min_bin_exp - 1)*log(2) + log(pi)/2));
b = sqrt(-((min_bin_exp - 1)*log(2) + log(pi)/2) + log(a));
c = 2^(min_bin_exp - 1);
# undef F
# define F(x) (erfc(x))
FIND_ROOT(a, b, c, tol, 3*F_PRECISION, erfc_underflow_x);
if ( IEEE_FLOATING )
{ /* Compute denorm threshold */
a = sqrt(-((F_MIN_BIN_EXP - 1)*log(2) + log(pi)/2));
b = sqrt(-((F_MIN_BIN_EXP - 1)*log(2) + log(pi)/2) + log(a));
c = 2^F_MIN_BIN_EXP;
FIND_ROOT(a, b, c, tol, 3*F_PRECISION, erfc_denorm_x);
}
/*
* For large x, using the asymtotic approximation (3) is the most efficient
* means of computing erfc(x) and erf(x) as 1 - erfc(x). Since (3) is an
* asymtotic approximation, there is a smallest x for each precision for
* which (3) can be used to approximate erfc(x). I.e. there is a value x0,
* such that if x < x0, then the relative error in (3) is greater than
* 2^(F_PRECISION + 1), regardless on how many terms are used. As noted
* above, there is an x1, such that if x > x1 then erf(x) = 1 to machine
* precision. Using equation (3) and Sterling's approximation for n!, it
* possible to show that x0 and x1 are very close and that x0 < x1. What
* this implies is that the evaluation for erf(x) and erfc(x) on the
* non-polynomial range be divided into two pieces:
*
* Argument range erf(x) evaluation erfc(x) evaluation
* -------------- ----------------- ------------------
* x < x1 based on (4) based on (4)
* x1 <= x 1 based on (3)
*
* When evaluating erfc(x) based on (3), we include the constant 1/sqrt(pi)
* into the polynomial coefficients and consequently the lead coefficient is
* 1/sqrt(pi) = .5641895... = 1/2 + alpha, where alpha = 1/sqrt(pi) - .5.
* Note that 1/2 and alpha have a 3 bit alignment shift. Therefore we can
* can improve the overall accuracy of the approximation by rewritting (3)
* in the form:
*
* erfc(x) = exp(-x^2)*z*[.5 + p(z^2)] where z = 1/x (5)
*
*/
old_precision = precision;
precision = ceil(2*F_PRECISION/MP_RADIX_BITS) + 4;
function x_exp_x2_erfc_x()
{
return ($1)*exp($1*$1)*erfc($1);
}
erf_max_x = purify(erf_max_x);
erfc_underflow_x = purify(erfc_underflow_x);
remes(
REMES_FIND_POLYNOMIAL + REMES_RECIP_SQUARE_ARG + REMES_RELATIVE_WEIGHT,
erf_max_x, erfc_underflow_x, x_exp_x2_erfc_x, F_PRECISION + 1 + 3,
&erfc_poly_degree, &erfc_poly_coefs);
precision = old_precision;
/*
* When evaluating erfc(x) using (4) it is useful to note that it can be
* rewritten as:
*
* erfc(x) = exp(-x*x)*f(x)
*
* where f(x) = exp(x*x)*erfc(x). It can be shown that f(x) positive and
* monotonicly decreasing. Further, f(x) decreases ~ 1/x. If we are
* going to approximate erfc(x) on the interval [a, b], then for each
* negative power of two between f(a) and f(b) we can find an interval
* in [a, b], call it [c(n), c(n+1)], such that
*
* 1/2^n - f(c(n)) f(c(n)) - 1/2^(n+1)
* --------------- = --------------------
* 1/2^n 1/2^(n+1)
*
* An then approximate erfc(x) on [c(n), c(n+1)] as
*
* erfc(x) = exp(-x*x)*[1/2^n + R(x)]
* = exp(-x*x)/2^n*[1 + 2^n*R(x)]
*
* Where R(x) is a rational function, exp(-x*x)/2^n can be computed by
* adjusting the scale factor for the special exp entry point and the scale
* factor of 2^n can be incorporated into the coefficients of R.
*
* NOTE: for the precision we are interested in (23, 53 and 113)
* at most 4 intervals are required. However, time does not
* permit implementation of this scheme. Instead we will use one
* expansion with n = 3.
*/
old_precision = precision;
precision = ceil(2*F_PRECISION/MP_RADIX_BITS) + 4;
function exp_x2_erfc_x() { return exp($1*$1)*erfc($1); }
erf_max_x = purify(erf_max_x);
remes(
REMES_FIND_RATIONAL + REMES_LINEAR_ARG +
REMES_RELATIVE_WEIGHT + REMES_INIT_LEFT_CHEBY,
largest_poly_arg, erf_max_x, exp_x2_erfc_x, F_PRECISION + 1 + 3,
&erfc_num_degree, &erfc_den_degree, &erfc_rational_coefs);
precision = old_precision;
/* Copy numerator coefficients and pad out to same number as denominator */
first_den_coef = erfc_num_degree + 1;
for (i = 0; i <= erfc_num_degree; i++)
erfc_num_coefs[i] = erfc_rational_coefs[i];
while (erfc_num_degree < erfc_den_degree)
erfc_num_coefs[++erfc_num_degree] = 0;
/* Copy denominator coefficients and subtract from numerator */
for (i = 0; i <= erfc_den_degree; i++)
{
erfc_den_coefs[i] = erfc_rational_coefs[i + first_den_coef];
erfc_num_coefs[i] = 8*erfc_num_coefs[i] - erfc_den_coefs[i];
}
/*
*
* COMPUTING EXP(-x^2)
* -------------------
*
* Expansion (3) involves the compution of exp(-x^2). Since small variations
* in the argument to exp results in large errors in the result, it is
* necessary to compute -x^2 to extra precision. The basic approach is to
* compute x^2 in hi and lo pieces and note that exp(-hi) can be computed
* in extra precision (using the special exp entry point) as exp(-hi) =
* 2^I*(fhi + flo). Exp(-lo) can be computed as a polynomial of the form
* 1 - lo*Q(lo). Combining the above, we have:
*
* exp(-x^2) = exp(-(hi + lo))
* = exp(-hi) * exp(-lo)
* = 2^I*(fhi + flo) * [1 - lo*Q(lo)]
* = 2^I*{ fhi + flo - (fhi + flo)*lo*Q(lo) }
* = 2^I*{ fhi + [flo - f*lo*Q(lo)]}
* = 2^I*{ fhi + V }
*
* Noting the computation of exp(-x^2), using expansion (3) to compute erfc(x)
* results in a computation of the form:
*
* erfc(x) = exp(-x^2)*z*[.5 + P(z^2)] (5)
* = 2^I*[ fhi + V ]*z*[.5 + P(z^2)]
* = 2^(I - 1)*z*[ fhi + V ]*z*[1 + 2*P(z^2)]
* = 2^(I - 1)*z*[ fhi + V + (fhi + V)*2*P(z^2)]
* = 2^(I - 1)*z*[ fhi + U(x)]
*
* Based on the above, we have the following approach to computing erfc(x)
*
* (1) get x^2 as hi and lo pieces
* (2) call special exp entry to get I(x), fhi and flo
* (3) V <-- flo - (fhi + flo)*lo*Q(lo)
* (4) z <-- 1/x
* (4) U <-- V + (fhi + V)*2*P(z^2)
* (5) result <-- 2^(I - 1)*z*(fhi + V)
*
* Note that in step 4, the factor of 2 can be incorporated into the
* coefficients of P
*/
/* Adjust erfc coefficients */
for (i = 0; i <= erfc_poly_degree; i++)
erfc_poly_coefs[i] = 2*erfc_poly_coefs[i];
erfc_poly_coefs[0] = erfc_poly_coefs[0] - 1;
@end_divert
#endif
/*
* In the above discussion, we needed to compute x^2 = hi + lo and Q(lo).
* There are basically two ways to obtain hi and lo, depending on whether or
* not there is backup precision.
*
* If there is backup precision then
*
* t <-- ((B_TYPE) x)^2
* hi <-- (F_TYPE) t
* lo <-- (F_TYPE) (t - (B_TYPE) hi)
*
* When computed this way, the alignment shift between hi and lo is at least
* F_PRECISION + 1 bits.
*
* If there is no backup precision, then x must be broken into hi and lo
* pieces. Then
*
* x^2 = (xhi + xlo)^2
* = (xhi + xlo)*(xhi + xlo)
* = xhi*(xhi + xlo) + xlo*(xhi + xlo)
* = xhi*xhi + xhi*xlo + xlo*(xhi + xlo)
* = xhi^2 + xlo*(xhi + xhi + xlo)
* = xhi^2 + xlo*(xhi + x)
* = hi + lo
*
* There are several ways to obtain xhi and xlo, but for simplicity we will
* assume that they are obtained by conversion to R_TYPE.
*
* NOTE: the macro SPECIAL_EXP uses a temporary location _scale.
* This is to accommodate a hack in exp for Alpha VMS and NT.
* When these platforms handle 64 integers, then the use of _scale
* can be removed.
*/
#if defined(PRECISION_BACKUP_AVAILABLE)
# undef PRECISION_BACKUP_AVAILABLE
# define PRECISION_BACKUP_AVAILABLE 1
# if !defined(X_SQR_TO_HI_LO)
# define X_SQR_TO_HI_LO(x, t, hi, lo) { \
t = (B_TYPE) x; \
t = t*t; \
hi = (F_TYPE) t; \
lo = (F_TYPE)(t - (B_TYPE) hi) ; \
}
# endif
# if !defined(SPECIAL_EXP)
# define SPECIAL_EXP(x, t, i, hi, lo) { \
EXP_WORD_TYPE _scale; \
t = F_EXP_SPECIAL_ENTRY_NAME(x, &_scale); \
i = (WORD) _scale; \
hi = (F_TYPE) t; \
lo = (F_TYPE) (t - (B_TYPE)hi); \
}
# endif
#else
# define PRECISION_BACKUP_AVAILABLE 0
# if !defined(X_SQR_TO_HI_LO)
# define X_SQR_TO_HI_LO(x, t, hi, lo) { \
hi = (F_TYPE)((R_TYPE) x); \
lo = x - hi; \
lo = lo*(hi + x); \
hi = hi*hi ; \
}
# endif
# if !defined(SPECIAL_EXP)
# define SPECIAL_EXP(x, t, i, hi, lo) { \
EXP_WORD_TYPE _scale; \
hi = F_EXP_SPECIAL_ENTRY_NAME(x, &_scale, &lo); \
i = (WORD) _scale; \
}
# endif
#endif
/*
* The low order POW2_K bits in the scale factor from the special exp
* entry point contains the index into the exp table. Since its use is not
* required in erf/erfc we want to mask off the low bits. While we're at it,
* we can align it with the exponent field.
*/
#define EXP_SCALE_MASK ((WORD) ~ MAKE_MASK(POW2_K, 0))
#if (F_EXP_POS >= POW2_K)
# define ADJUST_AND_ALIGN_SCALE(s) (((s) & EXP_SCALE_MASK) \
<< (F_EXP_POS - POW2_K));
#else
# define ADJUST_AND_ALIGN_SCALE(s) (((s) & EXP_SCALE_MASK) \
>> (POW2_K - F_EXP_POS));
#endif
#if defined(MAKE_INCLUDE)
@divert -append divertText
if (PRECISION_BACKUP_AVAILABLE)
{
t = bround(erfc_underflow_x*erfc_underflow_x, F_PRECISION);
n = bexp(t);
max_x_sqr_lo = bldexp(1., n - F_PRECISION);
}
else
{
n = bexp(erfc_underflow_x);
t = bround(erfc_underflow_x, R_PRECISION);
s = bldexp(1., n - (R_PRECISION + 1));
max_x_sqr_lo = s*(t + erfc_underflow_x);
}
/* Now compute the polynomial for exp(lo) */
old_precision = precision;
precision = ceil(2*F_PRECISION/MP_RADIX_BITS) + 8;
function exp_m1_ov_x()
{
if ($1 == 0)
return 1;
else
return expm1(-$1)/(-$1);
}
remes(REMES_FIND_POLYNOMIAL + REMES_LINEAR_ARG + REMES_RELATIVE_WEIGHT,
0, max_x_sqr_lo, exp_m1_ov_x, F_PRECISION + 1, &exp_poly_degree,
&exp_poly_coefs);
precision = old_precision;
# define F_PRINT_A_DEFINE(name) PRINT_TABLE_ADDRESS_DEFINE(name, \
TABLE_NAME, offset, F_TYPE)
# define F_PRINT_V_DEFINE(name) PRINT_TABLE_VALUE_DEFINE(name, \
TABLE_NAME, offset, F_TYPE)
# define F_PRINT_ENTRY(value) PRINT_1_F_TYPE_ENTRY(value, offset)
# define PRINT_COEFS(a, n, d) F_PRINT_A_DEFINE(d); \
TABLE_COMMENT(STR(a)); \
for (i = 0; i <= n; i++) \
{ F_PRINT_ENTRY(a[i]); }
printf("\n#include \"dpml_private.h\"\n\n");
IF_MAKE_COMMON( printf("\n#if !defined(DEFINES_ONLY)\n\n"); )
START_TABLE(TABLE_NAME, offset);
TABLE_COMMENT("2/sqrt(pi) - 1, 8 and 1/8" );
F_PRINT_V_DEFINE(TWO_OVER_SQRT_PI_M1);
F_PRINT_ENTRY(mu - 1);
F_PRINT_V_DEFINE(EIGHT);
F_PRINT_ENTRY(8);
F_PRINT_V_DEFINE(ONE_EIGTH);
F_PRINT_ENTRY(1/8);
erf_poly_coefs[0] = erf_poly_coefs[0] - 1;
PRINT_COEFS(erf_poly_coefs, erf_poly_degree, ERF_POLY_COEFS);
PRINT_COEFS(erfc_poly_coefs, erfc_poly_degree, ERFC_POLY_COEFS);
PRINT_COEFS(exp_poly_coefs, exp_poly_degree, EXP_POLY_COEFS);
PRINT_COEFS(erfc_num_coefs, erfc_num_degree, ERFC_NUM_COEFS);
PRINT_COEFS(erfc_den_coefs, erfc_den_degree, ERFC_DEN_COEFS);
END_TABLE;
IF_MAKE_COMMON(
printf("\n#else\n\n");
printf(" extern const " STR(F_TYPE) " " STR(TABLE_NAME) "[];\n");
printf("\n#endif\n\n");
)
printf("#define ERF_POLY(t,z)\t\tPOLY_%i_ALL(t, ERF_POLY_COEFS, z)\n",
erf_poly_degree);
printf("#define ERFC_POLY(t,z)\t\tPOLY_%i_ALL(t, ERFC_POLY_COEFS, z)\n",
erfc_poly_degree);
printf("#define EXP_POLY(t,z)\t\tPOLY_%i_ALL(t, EXP_POLY_COEFS, z)\n",
exp_poly_degree);
printf("#define ERFC_NUM_POLY(t,z)\tPOLY_%i_ALL(t, ERFC_NUM_COEFS, z)\n",
erfc_num_degree);
printf("#define ERFC_DEN_POLY(t,z)\tPOLY_%i_ALL(t, ERFC_DEN_COEFS, z)\n",
erfc_den_degree);
/*
* The following function returns an "integer" that has the same bit
* pattern as the floating point value. (NOTE: for VAX data types
* the floating point "bit pattern" is after a PDP_SHUFFLE.)
*/
# if IEEE_FLOATING
# define _F_SIGN_BIT_POS F_SIGN_BIT_POS
# define _F_EXP_POS F_EXP_POS
# else
# define _F_POS_ADJ (NUM_INT_BITS - 16)
# define _F_SIGN_BIT_POS (F_SIGN_BIT_POS + _F_POS_ADJ)
# define _F_EXP_POS (F_EXP_POS + _F_POS_ADJ)
# endif
# define HEX_FMT PASTE_3(HEX_FORMAT_FOR_, NUM_INT_BITS, _BITS)
function as_int()
{
_sign = 0;
if ($1 < 0) _sign = 1;
exponent = bexp($1);
_y = trunc(bldexp($1, _F_EXP_POS + 1 - exponent));
_i = (_sign << _F_SIGN_BIT_POS) +
((exponent + F_EXP_BIAS - F_NORM - 2) << _F_EXP_POS)
+ _y;
return _i;
}
printf("#define MAX_POLY_ARG\t\t" HEX_FMT "\n", as_int(largest_poly_arg));
printf("#define MIN_ERF_POLY_ARG\t" HEX_FMT "\n",
as_int(smallest_erf_poly_arg));
printf("#define MIN_ERFC_POLY_ARG\t" HEX_FMT "\n",
as_int(smallest_erfc_poly_arg));
printf("#define ERFC_MAX_CONSTANT_ARG\t(" HEX_FMT " - (U_WORD) "
HEX_FMT ")\n", as_int(-erfc_min_x), bldexp(1, _F_SIGN_BIT_POS));
printf("#define ERF_MIN_CONSTANT_ARG\t" HEX_FMT "\n", as_int(erf_max_x));
printf("#define MIN_ASYMTOTIC_ARG\t" HEX_FMT "\n", as_int(erf_max_x));
printf("#define MIN_UNDERFLOW_ARG\t" HEX_FMT "\n",
as_int(erfc_underflow_x));
@end_divert
# define TMP_FILE ADD_EXTENSION(BUILD_FILE_NAME,tmp)
@eval my $outText = MphocEval( GetStream( "divertText" ) ); \
my $defineText = Egrep( "#define", $outText, \$tableText); \
my $headerText = GetHeaderText( STR(BUILD_FILE_NAME), \
"Definitions and constants for " . \
"erf and erfc functions", __FILE__); \
print "$headerText\n\n$tableText\n\n$defineText\n";
#endif
#if !defined(MAKE_INCLUDE)
# include STR(BUILD_FILE_NAME)
#endif
#define EXP_INC SET_BIT(F_EXP_POS)
#if IEEE_FLOATING
# define HAS_ABNORMAL_EXP(e) ((((e) + EXP_INC) & \
MAKE_MASK(F_EXP_WIDTH - 1, F_EXP_POS + 1)) == 0)
# define _F_SIGN_BIT_MASK F_SIGN_BIT_MASK
#else
# if (BITS_PER_WORD <= BITS_PER_F_TYPE)
# define _F_SIGN_BIT_MASK SET_BIT(BITS_PER_WORD - 1)
# else
# define _F_SIGN_BIT_MASK SET_BIT(BITS_PER_F_TYPE - 1)
# endif
#endif
/*
* Depending on the sign of x, erfc(x) will be the "computed" value or
* 2 + the "computed" value.
*/
#if F_COPY_SIGN_IS_FAST
# define ADD_IN_ERFC_CONST(i,x,u,z) F_COPY_SIGN((F_TYPE) 1.0, x, u); \
u = (F_TYPE) 1.0 - u; \
z += u
#else
# define ADD_IN_ERFC_CONST(i,x,u,z) if ((i) < 0) z += (F_TYPE) 2.0
#endif
#if !defined F_ENTRY_NAME
# define F_ENTRY_NAME _F_ENTRY_NAME
#endif
F_TYPE F_ENTRY_NAME (F_TYPE x)
{
EXCEPTION_RECORD_DECLARATION
F_TYPE z, w, y, u, fhi, flo, hi, lo;
WORD s_exp_word, exp_word, scale;
F_UNION _u_;
# if defined(PRECISION_BACKUP_AVAILABLE)
B_TYPE t;
# endif
# if defined(ERF)
WORD exp_field, index;
# else
F_TYPE v;
# endif
_u_.f = x;
IF_IEEE(s_exp_word = _u_.F_SIGNED_HI_WORD;)
IF_VAX( s_exp_word = _u_.F_HI_WORD;
s_exp_word = SIGN_EXTENDED_PDP_SHUFFLE(s_exp_word);)
IF_IEEE(if (HAS_ABNORMAL_EXP(s_exp_word)) goto ieee_abnormal_arguments;)
/* Get "|x|" and branch to the right code for the size of x */
exp_word = s_exp_word & (~(-_F_SIGN_BIT_MASK));
if (exp_word > MAX_POLY_ARG)
goto not_a_poly_argument;
if (exp_word <= SELECT(MIN_ERF_POLY_ARG, MIN_ERFC_POLY_ARG))
goto identity_range;
/* Just need to do a polynomial evaluation for these arguments */
w = x*x;
ERF_POLY(w, z);
z = x*z;
/*
* Add in last term. For erf, add in x, for erfc, carefully add in
* 1 - x
*/
SELECT( z = x + z; , y = (F_TYPE) 1. - x;
w = x - ((F_TYPE) 1. - y);
z = y - (w + z);
)
return z;
not_a_poly_argument:
/*
* If x is large positive number (erf) or a large negative number (erfc)
* then we can just return a constant
*/
if (
SELECT(exp_word > ERF_MIN_CONSTANT_ARG ,
s_exp_word >= ERFC_MAX_CONSTANT_ARG)
) goto return_constant;
/* If x is a large positive number, erfc will underflow */
IF_ERFC( if (exp_word > MIN_UNDERFLOW_ARG) goto underflow; )
/*
* To approximate erf or erfc for arguments in this range, we need to
* compute exp(-x^2). Note that the special exp entry returns scale
* as the value 2^L*n + m, where n is the binary exponent of exp(-x^2)
* and m is the index into the exp data table. Since we only need n,
* mask of low bits and align with exponent field
*/
X_SQR_TO_HI_LO(x, t, hi, lo);
SPECIAL_EXP(-hi, t, scale, fhi, flo);
scale = ADJUST_AND_ALIGN_SCALE(scale);
/*
* For erfc, if x is really big, we need to use an asymtotic approximation
*/
IF_ERFC(if (exp_word > MIN_ASYMTOTIC_ARG) goto needs_asymtotic;)
/*
* In the medium range, we use approximation (4) in the form
*
* erfc(x) = exp(-x^2)/4*[1 + R(x)]
*
* In this range, we also need to work with |x| and restore the sign
* at the end.
*/
F_ABS(x, z);
ERFC_NUM_POLY(z, u);
ERFC_DEN_POLY(z, y);
y = u/y;
EXP_POLY(lo, u);
flo = flo - (fhi + flo)*lo*u;
z = fhi + (flo + (fhi + flo)*y);
/* z = fhi*y + flo*y; */
_u_.f = z;
_u_.F_HI_WORD += (scale - 3*EXP_INC);
z = _u_.f;
IF_ERF(z = (F_TYPE) 1.0 - z;)
if (s_exp_word >= 0) goto return_z;
/* Negate for erf, subtract from 2 for erfc */
z = SELECT(-z, (F_TYPE) 2.0 - z);
return_z:
return z;
#if defined(ERFC)
needs_asymtotic:
z = ((F_TYPE) 1.)/x;
EXP_POLY(lo, u);
v = flo - (fhi + flo)*lo*u;
u = fhi + v;
w = z*z;
ERFC_POLY(w, y);
u = v + u*y;
z = (z*fhi) + (z*u); /* Slightly better error bound this way */
/* Scale by power of two, looking out for underflows and denorms */
_u_.f = z;
scale -= EXP_INC; /* Adj for factor of 2 in ERFC_POLY */
s_exp_word = _u_.F_HI_WORD;
_u_.F_HI_WORD = s_exp_word + scale;
scale = (s_exp_word & F_EXP_MASK) + scale;
if (scale <= 0) goto denorm_or_underflow;
z = _u_.f;
return z;
denorm_or_underflow:
# if IEEE_FLOATING
if ((WORD) (scale + ALIGN_W_EXP_FIELD(F_PRECISION - 1)) >= 0)
{
/*
** At this point, we have z = 2^n*f is in the denormalized range.
** Redefine z to be 2^0*f.
*/
s_exp_word = (s_exp_word & ~F_SIGN_EXP_MASK) |
ALIGN_W_EXP_FIELD(F_EXP_BIAS);
_u_.F_HI_WORD = s_exp_word;
z = _u_.f;
/* Get 'w' = 2^k, where k is the number of bits "of denormalization" */
CLEAR_LOW_BITS(_u_);
s_exp_word = (s_exp_word & F_SIGN_EXP_MASK) - scale + EXP_INC;
_u_.F_HI_WORD = s_exp_word;
/*
** compute 2^k + z and unscale the exponent field to get the correct
** denormalized result
*/
_u_.f += z;
_u_.F_HI_WORD -= (s_exp_word & F_EXP_MASK);
z = _u_.f;
if ( (z != (F_TYPE) 0.) && PROCESS_DENORMS)
return z;
}
# endif
#endif
#if defined(ERFC)
underflow:
#endif
GET_EXCEPTION_RESULT_1(ERFC_UNDERFLOW, x, z);
return z;
identity_range:
SELECT( z = EIGHT*x;
z = (z + TWO_OVER_SQRT_PI_M1*z)*ONE_EIGTH, z = (F_TYPE) 1.0);
return z;
#if IEEE_FLOATING
ieee_abnormal_arguments:
if ((s_exp_word & F_EXP_MASK) == F_EXP_MASK)
goto nan_or_inf;
/* If we get here, x is either 0 or denorm. */
# if defined(ERFC)
return (F_TYPE) 1.0;
# else
/* Scale up argument so that we can safely muliply by 2/sqrt(pi) - 1 */
DENORM_TO_NORM(x, z);
z = z + TWO_OVER_SQRT_PI_M1*z;
/*
* Now unscale. Underflow is not possible here but the result may
* be denormal. So we need to check the exponent field.
*/
_u_.f = z;
exp_word = _u_.F_HI_WORD;
exp_field = exp_word & F_EXP_MASK;
exp_word ^= exp_field;
index = exp_field - __LOG2_DENORM_SCALE_ALIGNED_W_EXP;
if (index <= 0) goto erf_denorm;
_u_.F_HI_WORD = exp_word | index;
z = _u_.f;
return z;
erf_denorm:
exp_field -= (index - ALIGN_W_EXP_FIELD(1));
_u_.F_HI_WORD = (exp_word | exp_field) & F_SIGN_EXP_MASK;
CLEAR_LOW_BITS(_u_);
_u_.f += z;
_u_.F_HI_WORD -= exp_field;
z = _u_.f;
return z;
# endif
nan_or_inf:
/* If x is a NaN, return it. */
if ((s_exp_word & F_MANTISSA_MASK) OR_LOW_BITS_SET(_u_))
return x;
/* Otherwise, x is an infinity. Fall through to return_constant. */
#endif
return_constant:
if (s_exp_word & _F_SIGN_BIT_MASK)
z = (F_TYPE) SELECT( -1.0, 2.0);
else
z = (F_TYPE) SELECT( 1.0, 0.0);
return z;
}
|