File: dpml_pow_cons.c

package info (click to toggle)
intelrdfpmath 2.0u3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,088 kB
  • sloc: ansic: 310,558; makefile: 446; sh: 3
file content (1869 lines) | stat: -rw-r--r-- 67,727 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
/******************************************************************************
  Copyright (c) 2007-2024, Intel Corp.
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of Intel Corporation nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/

#define ENDIF	foo = 1;	/* Explain this */

/* File: dpml_pow_cons.c */
/*
**  Facility:
**
**	DPML
**
**  Abstract:
**
** 	This file is used to generate common include files for the 
**      DPML functions that are related to the exp function.  Currently
**	the generated file is shared by:
**
**		o exp (fast and accurate)
**		o pow (fast and accurate)
**		o expm1
**		o sinh and cosh
**
**	Where appropriate, this file also contains brief description of the
**	algorithms used in the above functions.
**
**  Modification History:
**
**	1-001	Initial implementation. Martha Jaffe 27-May-1994.
**
**	2-001	Initial implementation. RNH 01-Feb-95
**      2-002   Added hi-limit check const for exp2.  MJ 10-Dec-98
**      2-003   Added 'rm TMP_FILE'. RNH 04-Sep-2002
*/

/*
**  SUMMARY OF BUILD INFORMATION
**  ----------------------------
**
**  Since the total size of the constants and tables required to build the power
**  routines is large, by default we assume that the constants will be shared
**  whenever possible between data types and functions.  Switches are provided
**  to over-ride the default sharing behavior.
**
**  Also, there is a switch to determine if the argument reduction scheme for
**  the accurate power routine uses a divide operation or not.  The default is
**  to not use divide.
**
**  The following table summerizes the supportted switches
**
**	   Switch		                  Meaning
**	-----------	-------------------------------------------------
**	NO_FAST		Don't generate values for the fast routines.
**
**	NO_ACC		Don't generate values for the accurate routines.
**
**	ONE_TYPE	Only generate values for the specified type 
**
**	USE_DIVIDE	Generate constant necessary for doing the log argument
**			    reduction using division
**
**  The defualt values of the above switches are a function of data type:
**
**				     Default
**				---------------------
**		   Switch	Single  Double  Quad 
**		-----------	---------------------
**		NO_FAST		False	False	True
**		NO_ACC		False	False	False
**		ONE_TYPE	False	False	True
**		USE_DIVIDE	False	False	True
**
**
**		NOTE: when sharing the generated table between type,
**		the larger precision type must be specified when
**		processing this file.
**
**  In addition to the above build flags, users can also specify the size
**  (actually, the log2 of the size) of the exp and log tables by defining
**  POW2_K and LOG2_K respectively.  The default values are POW2_K = 8 and
**  LOG2_K = 7.  The implications of changing these values is discussed
**  below.  (Look for the string "DEFINING THE TABLE SIZES");
*/

#if defined X_FLOAT
#   define _X_FLT_DEF	1
#else
#   define _X_FLT_DEF	0
#endif

#if defined(NO_FAST)
#   undef   NO_FAST
#   define  NO_FAST	1
#else	
#   define  NO_FAST	_X_FLT_DEF
#endif

#if defined(NO_ACC)
#   undef   NO_ACC
#   define  NO_ACC	1
#else	
#   define  NO_ACC	0
#endif

#if defined(ONE_TYPE)
#   undef   ONE_TYPE
#   define  ONE_TYPE	1
#else	
#   define  ONE_TYPE	_X_FLT_DEF
#endif

#if defined(USE_DIVIDE)
#   undef   USE_DIVIDE
#   define  USE_DIVIDE	1
#else	
#   define  USE_DIVIDE	_X_FLT_DEF
#endif

#if NO_FAST && NO_ACC
#   error "ERROR:  Can't define both NO_FAST and NO_ACC"
#endif

#if USE_DIVIDE && NO_ACC
#   error "ERROR:  USE_DIVIDE only valid for accurate pow"
#endif

/*
 * MAKE_INCLUDE and MAKE_COMMON are always defined for this file.
 */

#undef  MAKE_INCLUDE
#define MAKE_INCLUDE

#undef  MAKE_COMMON
#define MAKE_COMMON

/*
 * Pick up default names
 */

#define	__POW_BASE_NAME		POW_BASE_NAME
#ifndef BASE_NAME
#    define BASE_NAME		__POW_BASE_NAME
#endif

#if defined(MAKE_COMMON)
#   define POW_TABLE_NAME	F_POW_TABLE_NAME 
#   define _BUILD_FILE_NAME	F_POW_BUILD_FILE_NAME
#else
#   define POW_TABLE_NAME	__F_TABLE_NAME(POW_TABLE_BASE_NAME)
#   define _BUILD_FILE_NAME	__BUILD_FILE_NAME(POW_TABLE_BASE_NAME)
#endif

#if !defined(BUILD_FILE_NAME)
#   define BUILD_FILE_NAME	_F_POW_BUILD_FILE_NAME
#endif

#if !defined(TABLE_NAME)
#   define TABLE_NAME		POW_TABLE_NAME
#endif

/*
 * Get default setting for table sizes
 */

#if !defined(LOG2_K)
#   define LOG2_K	7
#endif

#if !defined(POW2_K)
#   define POW2_K	8
#endif

/*
** Set types for default print macros.  Also set flag to pickup latest
** version of the mphoc macros.
*/

#define MP_T_TYPE	B_TYPE
#define MP_T_CHAR	B_CHAR
#define MP_T_PRECISION	B_PRECISION

#define NEW_DPML_MACROS	1

#include "dpml_private.h"
#include "dpml_pow.h"

#if !ONE_TYPE && (R_PRECISION + R_EXP_WIDTH + POW2_K - 1 > F_PRECISION)
#   error "ERROR: Floating types incompatible for shared tables"
#endif

/*
**  ORGANIZATION OF THE GENERATED FILE
**  ----------------------------------
**
**  The size of the table in generated file is quite large, and for the default
**  values, the single/double precision table is greater than 8k in size. In
**  order to help eliminate cache misses and ease finding problems with this
**  code and values in the tables, the table is laid out as follows:
**
**		+---------------------------------------+
**		|					|
**		|					|
**		|    table of 2^(j/2^POW2_K) values	|
**		|					|
**		|					|
**		+---------------------------------------+
**		|        Constants for fast exp		|
**		+---------------------------------------+
**		| Constants for 2^x portion of fast pow	|
**		+---------------------------------------+
**		| Constants for 2^x portion of acc pow	|
**		+---------------------------------------+
**		|         Constants for acc exp		|
**		+---------------------------------------+
**		|          Constants for expm1		|
**		+---------------------------------------+
**		|        Constants for sinh/cosh	|
**		+---------------------------------------+
**		|     Miscellaneous shared Constants 	|
**		+---------------------------------------+
**		|    Constants for log2 portion of pow	|
**		+---------------------------------------+
**		|					|
**		|					|
**		|  table of log(1 + j/2^LOG2_K) values	|
**		|					|
**		|					|
**		+---------------------------------------+
**
*/

@divert divertText

    /*
    ** GENERATING POLYNOMIAL COEFFICIENTS:
    ** -----------------------------------
    **
    ** All of the polynomial coefficients in this file are generated via the 
    ** Remes min/max error algorithm.  This algorithm takes as one of its input
    ** arguments, the function to be approximated, F(x).  For example, if we
    ** look at generating the exp and pow polynomials, F(x) can be one of e^x,
    ** (e^x - 1)/x, [e^x - (1 + x)]/x^2, 2^x, or (2^x - 1)/x.
    **
    ** In order to minimize the number of different functions defined for remes
    ** algorithm, we define F(x) as a polynomial evaluation routine, with an
    ** external (global) scale factor and initial term.  This not only reduces
    ** the number of functions that need to be defined, but also reduces the
    ** required MP precision in the calculation of the coefficients, since,
    ** the cancellation error in computations like e^x - 1 and log(x) -
    ** (x - x^2/2) have been eliminated.
    **
    ** Also, in order to insure the polynomial evaluation macro matches the
    ** coefficients, the invocation of genpoly that generates the evaluation
    ** macros is encoded as a macro definition at the time the coefficients
    ** are generated.  The macro is instantiated after the constant table is
    ** generated. 
    **
    ** Lastly, each set of coefficients is generated into the array 'coefs', so
    ** that it can be printed via a subroutine.  This requires that the 
    ** coefficients are printed immediately after they are generated.
    **/

#   define SET_POLY_GLOBALS(k, s, xs, fs)	\
		first_term       = (k);		\
		first_term_value = (s);		\
		x_scale          = (xs);	\
		final_scale      = (fs)

#   define PRINT_TBL_COM_ADEF_ARRAY(com, def, deg) \
		PRINT_TBL_COM_ADEF(com, def); \
		print_array(deg)

    procedure print_array(n)
        {
        for (i = 0; i <= n; i++)
            {
            PRINT_TBL_ITEM(coefs[i]);
            }
        }


#   define WORKING_PRECISION   (ceil(2*B_PRECISION/MP_RADIX_BITS) + 2)

    precision = WORKING_PRECISION;
    bit_precision = MP_RADIX_BITS*precision;

    /*
    ** Pick up definitions of common MP functions and print out the
    ** initial boiler plate for the generated file.  As part of the boiler
    ** plate, record the current definitions of the macro TABLE_NAME.
    ** Once that has been done, undefine TABLE_NAME so that we can define
    ** items in the generated file relative to the symbolic value TABLE_NAME
    ** rather than the actual value of TABLE_NAME
    */

#   include "mphoc_functions.h"

    printf(
         "\n"
            "/* Define default table name */\n"
         "\n"
            "#if !defined(TABLE_NAME)\n"
            "#   define TABLE_NAME\t" STR(TABLE_NAME) "\n"
            "#endif\n"
         "\n"
            "#include \"dpml_private.h\"\n"
         "\n");

#   undef TABLE_NAME

    printf("\n#if !DEFINE_SYMBOLIC_CONSTANTS\n\n");

    START_TABLE;

    /*
    **
    ** GENERAL DISCUSSION OF 2^x, e^x and 10^x
    ** ---------------------------------------
    **
    ** The computation of b^x for b = 2, e and 10 is based on a table look-up
    ** scheme, where the number of entries in the table is a power of 2,
    ** say 2^k.  Writing x*(lnb/ln2) as the sum of its integer, first k fraction
    ** bits and a reduced arguement we have:
    **
    **		x(lnb/ln2) = I + j/2^k + w,	|w| < 2^(k+1) 
    **
    ** Letting z = w*(ln2/lnb) = x - (I + j/2^k)*(ln2/lnb), the computation of
    ** e^x proceeds as:
    **
    **		b^x = 2^(x(lnb/ln2))
    **		    = 2^(I + j/2^k + w)
    **		    = 2^I * 2^(j/2^k) * 2^w
    **		    = 2^I * 2^(j/2^k) * e^z
    **		    = 2^I * 2^(j/2^k) * [ 1 + z*p(z) ]			(1)
    **
    ** In (1), the alignment shift between 1 and z*p(z) is at least k+1 bits,
    ** so if care is taken in computing 2^I*2^(j/2^k) high accuracy in the
    ** final answer is possible.  Toward this end, we suppose the values of 
    ** 2^(j/2^k) are stored in a table in hi and lo pieces, T(j) and L(j).
    ** Then (1) can be re-written as:
    **
    **		b^x = 2^I * 2^(j/2^k) * [ 1 + z*p(z) ]
    **		    = 2^I * [ T(j) + L(j) ] * [ 1 + z*p(z) ]
    **		    = 2^I * { T(j) + L(j) + [ T(j) + L(j) ]*z*p(z) }
    **		     
    ** There are various way to define T(j) and L(j) so that "extra"
    ** precision is obtained.  The definition we use here was chosen to
    ** optimize the performance of the fast exp and pow routines.  In
    ** particular:
    **
    **			T(j) = bround( 2^(j/2^k), F_PRECISION) 
    **			L(j) = 2^(j/2^k) - T(j)
    **
    ** With this definition, the term L(j)*z*p(z) is insignificant in the
    ** final sum and may be dropped, so that e^x can be approximated by:
    **
    **		b^x = 2^I * { T(j) + [ L(j) + T(j)*z*p(z) ] }	(2)
    **
    ** In order to expose more parallelism in the computation, rather than
    ** storing the values of T(j) and L(j) in the tables, we store T(j) and
    ** R(j) = L(j)/T(j) and write (2) as:
    **
    **		b^x = 2^I * { T(j) + [ L(j) + T(j)*z*p(z) ] }
    **		    = 2^I * { T(j) + T(j)* [ R(j) + z*p(z) ] }
    **		    = 2^I * T(j) + 2^I*T(j)* [ R(j) + z*p(z) ] 
    **		    = V(I,j) + V(I, j)* [ R(j) + z*p(z) ] 		(3)
    **
    ** where V(I,j) = 2^I * T(j).  Note that on pipelined architectures,
    ** R(j) + z*p(z) can be computed with the same latancy as z*p(z) and
    ** on architectures with multiple functional units V(I,j) can be computed
    ** in the integer unit while R(j) + z*p(z) is computed in the floating
    ** point unit.
    */

    /* 
    ** POW2 TABLE
    ** ----------
    **
    ** The pow2 table contains the 2^POW2_K th roots of 2, 2^(j/2^POW2_K).
    ** The table has a different form depending on whether backup precision
    ** is available or not.
    **
    ** When back up precision is not available, the table contain the values
    ** T(j) and R(j) as defined above.  When backup precision is available,
    ** only T(j) is stored.
    */

#   define __PRINT_TABLE_VALUE(tchar, value)			\
		printf( "\t/* %4i */ %#.4" STR(tchar) ",\n",	\
		  BYTES(MP_BIT_OFFSET), value);			\
		MP_BIT_OFFSET += CHAR_TO_BITS(tchar)

#   define __PRINT_TABLE_DEF(name, tchar, disp)				 \
		printf("#define " name "\t*((" STR(CHAR_TO_TYPE(tchar))	\
		     " *) ((char *) " STR(MP_TABLE_NAME) 		\
		     " + %i + (j)))\n",	BYTES(disp));			\
		disp += CHAR_TO_BITS(tchar)

#   if (USE_BACKUP)

#       define POW2_TABLE_BANNER					\
              "\n\t * Tj = 2^(j/2^POW2_K)"				\
              "\n\t *"							\
              "\n\t * offset                                   row"	\
	      "\n\t"	

#       define PRINT_POW2_TABLE_ACCESS_MACROS(disp)			\
        	PRINT_LOG_TABLE_DEF("GET_POW2(j)\t",   B_CHAR, disp)

#       define POW2_INDEX_POS		(__LOG2(BITS_PER_B_TYPE) - 3)

#       define PRINT_POW2_TABLE_ENTRY(j, Pj)				\
		printf( "\t/* %4i */ %#.4" STR(B_CHAR), ", /* %3i */",	\
		   BYTES(MP_BIT_OFFSET), Pj, j);			\
		MP_BIT_OFFSET += BITS_PER_B_TYPE

#   else /* USE_BACKUP */

#       define POW2_TABLE_BANNER					   \
	  "\n\t * Tj = 2^(j/2^POW2_K) and Rj = [2^(j/2^POW2_K) - Tj]/Tj."  \
          "\n\t *"							   \
          "\n\t * offset                            row"		   \
	  "\n\t"

#       define PRINT_POW2_TABLE_ACCESS_MACROS(disp)			  \
        	__PRINT_TABLE_DEF("POW2_HI(j)\t",          F_CHAR, disp); \
        	__PRINT_TABLE_DEF("POW2_LO_OV_POW2_HI(j)", F_CHAR, disp)

#       define POW2_INDEX_POS		(__LOG2(BITS_PER_F_TYPE) - 2)

#       define PRINT_POW2_TABLE_ENTRY(j, Pj)				\
		Pj_hi = bround(Pj, F_PRECISION);			\
		printf("\t/* %4i */ %#.4" STR(F_CHAR) ", /* %3i */\n",  \
		  BYTES(MP_BIT_OFFSET), Pj, j);				\
		MP_BIT_OFFSET += BITS_PER_F_TYPE;			\
		__PRINT_TABLE_VALUE(F_CHAR, (Pj - Pj_hi)/Pj)

#endif

    disp = MP_BIT_OFFSET;
    root_disp = disp;
    PRINT_POW2_TABLE_ACCESS_MACROS(disp);

    /*
    ** As noted above, the quantity V(I,j) = 2^I*T(j) is computed in an
    ** integer register.  The follow code prints out definitions for accessing
    ** T(j) an integer.  If the word size is smaller that the F_TYPE size, we
    ** need to access it in two pieces.  Make sure to take into account
    ** "endianess"
    */

    if (BITS_PER_WORD < BITS_PER_F_TYPE)
        {
        disp_lo = root_disp;
        if ((VAX_FLOATING) || (ENDIANESS == big_endian))
            disp_lo = root_disp + (BITS_PER_F_TYPE - BITS_PER_WORD);
        else
            root_disp += (BITS_PER_F_TYPE - BITS_PER_WORD);    

        /*
        ** If the word size is verfy small relative to the floating point
        ** type, get the low order bits in a F_UNION by loading the whole
        ** floating point type.  Otherwise, just load the low word
        */

        if (BITS_PER_WORD*2 < BITS_PER_F_TYPE)
            {
            printf("#define IPOW2_LO(u,j)\t\tu.f = "
              "*((B_TYPE *) ((char *) " STR(MP_TABLE_NAME)
               " + (j)))\n"); 
            }
        else
            {
            printf("#define IPOW2_LO(u,j)\t\tu.B_LO_WORD = "
              "*((WORD *) ((char *) " STR(MP_TABLE_NAME)
               " + %i + (j)))\n", BYTES(disp_lo)); 
            }
        }

    __PRINT_TABLE_DEF("IPOW2(j)\t", w, root_disp);

    printf("#define POW2_INDEX_POS\t\t%i \n",  POW2_INDEX_POS);

    TABLE_COMMENT( POW2_TABLE_BANNER );

    pow2_table_size = 2^POW2_K;
    for (j = 0; j < pow2_table_size; j++)
        {
        Pj = 2^(j/pow2_table_size);
        PRINT_POW2_TABLE_ENTRY( j, Pj);
        }

    /*
    ** Error Checking:
    ** ---------------
    **
    ** b^x can both underflow and overflow. Consequently some type of error
    ** check (screening) must eventually take place.  Since the appropriate
    ** timing and nature of the screening varies from function to function, it
    ** is discussed with the individual functions.
    **
    ** That said, all of the function using the pow2 table, have a "final"
    ** underflow/overflow check near the very end of the routine.  The check
    ** is based on the fact that the computation of V(I,j) is done in an
    ** integer register and provides a very good approximation to the final
    ** answer.  We can use integer comparisons on the bit pattern for V(I,j)
    ** to eliminate all potential overflows and underflows just prior to or
    ** just after the last floating point operation(s).
    */

    c = 2^(1/pow2_table_size);

    lo = F_HI_BITS_RND(2^(F_MIN_BIN_EXP + F_NORM + F_PRECISION + POW2_K)*c,
      MP_RP);
    hi = F_HI_BITS_RND(2^(F_MAX_BIN_EXP + F_NORM + 1)/c, MP_RM);
    PRINT_U_TBL_COM_VDEF_ITEM("F_PRECISION acc pow2 result range check",
      "POW2_LO_CHECK_F\t", lo);
    PRINT_U_TBL_VDEF_ITEM("POW2_HI_CHECK_F\t", hi - lo);
    PRINT_U_TBL_VDEF_ITEM("POW2_MAX_SCALE_F\t", hi);

    if (!ONE_TYPE)
        {
        lo = F_HI_BITS_RND(2^(R_MIN_BIN_EXP + R_NORM + R_PRECISION + POW2_K)*c,
           MP_RP);
        hi = F_HI_BITS_RND(2^(R_MAX_BIN_EXP + R_NORM + 1)/c, MP_RM);
        PRINT_U_TBL_COM_VDEF_ITEM("R_PRECISION acc pow2 result range check",
          "POW2_LO_CHECK_R\t", lo);
        PRINT_U_TBL_VDEF_ITEM("POW2_HI_CHECK_R\t", hi - lo);
        PRINT_U_TBL_VDEF_ITEM("POW2_MAX_SCALE_R\t", hi);
        }
    ENDIF

    /*
    ** Computation of I, j and w:
    ** --------------------------
    **
    ** From the above discussion, we see that at some point in the evaluation
    ** of b^x, we need to take a floating point value and break it into its
    ** integer part, high fraction bits and low fraction bits.  If z is the
    ** value we want to break apart, then the conceptual computation that is
    ** performed is:
    **
    **		t <-- rint(2^k*z)
    **		w = z - t/2^k
    **		m <-- (WORD) t
    **		i <-- m >> k
    **		j <-- m & (2^k - 1)
    **
    ** In actuality, the first three steps of the above is performed by taking
    ** z, adding and then subtracting a large positive constant, BIG. BIG is
    ** chosen so that the low order fraction bits of z are discarded due to
    ** the alignment shift leaving only the integer and high fraction bits.
    ** Specifically:
    **
    **		BIG <-- 3*2^(B_PRECISION - k - 2)
    **		u   <-- BIG + z
    **		fm  <-- u - BIG
    **
    ** Note that if B_PRECISION > 32 and the rounding mode is round to nearest,
    ** then the low order 32 bits of t are the twos complement representation
    ** m and fm = u/2^k.
    **
    **
    ** Polynomial Generation For 2^x, e^x and 10^x:
    ** --------------------------------------------
    **
    ** The coefficients for 2^x are based on the Taylor series expansion
    ** for e^x:
    **
    **          e^x  = 1 + x + x^2/2! + x^3/3! + ....
    **
    ** with the variable x replaced by x = z * ln2:
    **
    **          2^z = 1 + ln2*z + z^2*(ln2)^2/2! + z^3*(ln2)^3/3! + ....
    **              = 1 + z*(ln2 + z*(ln2)^2/2! + z^2*(ln2)^3/3! + ....)
    **              = 1 + z*P(z)
    **
    ** In both cases, the size of the argument being evaluated is dictated
    ** by k.
    */

    ln2 = log(2.0);
    recip_ln2 = 1/ln2;
    ln2_ov_ln10 = ln2/log(10.);
    ln10_ov_ln2 = log(10.0)/ln2;

    max_exp_x = .5/pow2_table_size;
    max_pow2_x = max_exp_x*ln2;

    /*
    ** The following function is used by the Remes algorithm to generate
    ** min/max coefficients for e^x and 2^x.  We can approximate e^x, e^x - 1
    ** and e^x - (1 + x) by specifying the (first_term, first_value) parameters
    ** as (0,1), (1, 1) and (2, .5) respectively.  By changing the x_scale and
    ** last scale values from 1 to appropiate powers of ln2, we can similarly
    ** evaluate 2^x, 2^x - 1 and 2^x - (1 + x*ln2)
    **
    */


    function e_to_x_poly(x)
        {
        auto s, z, k, t;

        s = first_term_value;

        if (x != 0)
            {
            k = first_term;
            z = x*x_scale;
            t = first_term_value;

            while(1)
                {
                k++;
                t = (t*z)/k;
                if ((bexp(s) - bexp(t)) > bit_precision)
                    break;
                s += t;
                }
            }
        ENDIF
        return s*final_scale;
        }

    /*
    ** All of the Remes invocations for exp/pow2 coeffient generations have
    ** the same form, so we make the corresponding code a macro.
    */

#   define GEN_EXP_COEFS(max_x, prec, deg, com, tag)            \
                {                                                       \
                remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT +   \
                   REMES_LINEAR_ARG, -max_x, max_x, e_to_x_poly, prec,  \
                   &deg, &coefs);                                       \
                PRINT_TBL_COM_ADEF_ARRAY(com, tag, deg);                \
                }

    /*
    ** CONSTANTS FOR FAST EXP
    ** ----------------------
    **
    ** In fast exp, we use the identity e^x = 2^(x/ln2).  Since we would like
    ** to delay the screening for overflow and underflow for as long as
    ** possible (to increase parallelism) and since x/ln2 might overflow,
    ** we perform the initial calculation as:
    **
    **		w  <-- x*[ 1/(2^n*ln2) ]
    **		t  <-- BIG/2^n + w
    **		fm <-- t - BIG/2^n
    **		z  <-- w - fm
    **
    ** This produces a reduced argument, z, "scaled down" by 2^n.  We can
    ** compensate for the scale factor in z by adjusting the coefficients
    ** in the polynomial evaluation.
    **
    ** Note that if backup precision is not available, the compuation of
    ** z is more complicated that inidicate.  Specificly, we must compute
    ** w = x*[ 1/(2^n*ln2) ] to extra precision by break x and 1/(2^n*ln2)
    ** into high and low pieces.
    **
    ** Other than requiring that n >= 1, the exact choice of n in the above
    ** discussion is arbitrary.  We choose n = F_EXP_WIDTH because, we can
    ** then share the constants with the fast pow routine.  (See below)
    */

    scale_down = 2^-F_EXP_WIDTH;
    fast_big = 3*2^(B_PRECISION - POW2_K - 2 - F_EXP_WIDTH);
    printf("#define SCALE_DOWN_EXP\t%i \n",  F_EXP_WIDTH);

    if (!NO_FAST)
        {
        PRINT_TBL_COM_VDEF_ITEM("'big' for fast pow/exp rint computation",
          "FAST_BIG\t", fast_big);

        c = scale_down*recip_ln2;
        if (ONE_TYPE)
            {
            PRINT_TBL_COM_VDEF_ITEM("2^-F_EXP_WIDTH/ln2",
               "SCALE_DOWN_OVER_LN2\t", c);
            }
        else 
            {
            TABLE_COMMENT("2^-F_EXP_WIDTH/log(2) in full, hi, lo");
 
            c_hi = bround(c, F_PRECISION - F_HI_HALF_PRECISION - 2*LOG2_K + 1);
            PRINT_TBL_VDEF_ITEM("SCALE_DOWN_OV_LN2",  c);
            PRINT_TBL_VDEF_ITEM("SCALE_DOWN_OV_LN2_HI", c_hi);
            PRINT_TBL_VDEF_ITEM("SCALE_DOWN_OV_LN2_LO", c - c_hi);
            }

        /*
        ** For fast exp, we delay screening for overflow and underflow
        ** until just before the  polynomial evaluation.  At that point
        ** we have obtained the high bits of the input argument as an
        ** integer and can perform the screening with integer operations.
        */

        c = ln2*max(-(F_MIN_BIN_EXP + F_NORM), F_MAX_BIN_EXP + 1 + F_NORM);
        PRINT_U_TBL_COM_VDEF_ITEM("Fast exp F_PRECISION arg range check",
          "FAST_EXP_RANGE_CHECK_F", F_HI_BITS_RND(c, MP_RP));

        if (!ONE_TYPE)
            {
            c = ln2*max(-(R_MIN_BIN_EXP + R_NORM), R_MAX_BIN_EXP + 1 + R_NORM);
            PRINT_U_TBL_COM_VDEF_ITEM("Fast exp R_PRECISION arg range check",
              "FAST_EXP_RANGE_CHECK_R", F_HI_BITS_RND(c, MP_RP));
            }
        ENDIF

        /* 
        ** As noted above, the fast pow and exp routines scale there input
        ** argument down to avoid premature overflow and we need  to
        ** compensated for it in the polynomial coefficients.
        **
        ** The actual form of the polynomial evaluated depends on whether
        ** or not backup precision is available.  If it is, we use a polynomial
        ** for 2^x otherwise we use one for 2^x - 1
        */


        if (USE_BACKUP)
            {
            SET_POLY_GLOBALS(0, 1, ln2, 1);
            GEN_EXP_COEFS(max_pow2_x, F_PRECISION + 1, fast_pow2_deg_f,
              "F_PRECISION fast pow2 poly coeffs", "FAST_POW2_F\t")
            GENPOLY(FAST_POW2_F[%%d], FAST_POW2_POLY_F(x), fast_pow2_deg_f);
            }
        else
            {
            max_arg = max_pow2_x*scale_down;
            c = ln2/scale_down;

            SET_POLY_GLOBALS(0, 1, c, 1);
            GEN_EXP_COEFS(max_arg, F_PRECISION + 1, fast_pow2_deg_f,
              "F_PRECISION fast pow2 poly coeffs", "FAST_POW2_F\t")
            GENPOLY(FAST_POW2_F[%%d], FAST_POW2_POLY_F(x), fast_pow2_deg_f);

            if (!ONE_TYPE)
                {
                SET_POLY_GLOBALS(0, 1, ln2, 1);
                GEN_EXP_COEFS(max_pow2_x, R_PRECISION + 1, fast_pow2_deg_r,
                  "R_PRECISION fast pow2 poly coeffs", "FAST_POW2_R\t")
                GENPOLY(FAST_POW2_R[%%d], FAST_POW2_POLY_R(x), fast_pow2_deg_r);
                }
            ENDIF
            }
        }
    ENDIF

    /*
    ** CONSTANTS FOR 2^x EVALUATION IN FAST POW
    ** ----------------------------------------
    **
    ** In fast pow, we use the identity x^y = 2^(y*log2(x)).  As in fast exp,
    ** we would like to delay the screening for overflow and underflow for as
    ** long as possible but we need to avoid overflow when computing the
    ** product y*log2(x).  To do this, we scale y down by an appropriate
    ** power of 2 prior to performing the multiplication.  Since
    **
    **	   2^(F_MIN_BIN_EXP - F_PRECISION + 1) <= x < 2^F_MAX_BIN_EXP
    **
    ** It follows that 
    **
    **  (F_MIN_BIN_EXP - F_PRECISION + 1)*ln2 <= log2(x) < F_MAX_BIN_EXP*ln2
    **
    ** On the platforms currently supportted:
    **
    **	 2^F_EXP_WIDTH > | F_MIN_BIN_EXP-F_PRECISION+1 | >= | F_MAX_BIN_EXP |
    **
    ** So that log2(x) < 2^F_EXP_WIDTH.  Therefore, the product
    ** (y * 2^-F_EXP_WIDTH)*log2(x) is guarenteed not to overflow.  Note that
    ** (y * 2^-F_EXP_WIDTH) might underflow.  But in this case the correct
    ** result of x^y is 1 to machine precision.  So even if underflow occurs
    ** the correct result we be returned.
    **
    ** For fast pow, we delay any overflow underflow checks until just before
    ** the evaluation of exponential polynomial.  At that point we perform
    ** a gross level check on x and y to sceen out all guarenteed exceptions.
    ** Specifically we need to check for very large (positive or negative)
    ** y since these will cause guarenteed overflows or underflows.
    */

    acc_big = 3*2^(B_PRECISION - POW2_K - 2);

    if (!NO_FAST)
        {
        PRINT_TBL_COM_VDEF_ITEM(
           "Power of 2 to scale down y: 2^-F_EXP_WIDTH",
           "SCALE_DOWN\t", scale_down);

        tmp = as_int(acc_big, 32, F_EXP_WIDTH, MP_F_EXP_BIAS, MP_RZ);
        printf("#define ACC_BIG_HI_32\t\t0x%8.8.16i \n",  tmp + 1);
        tmp = as_int(fast_big, 32, F_EXP_WIDTH, MP_F_EXP_BIAS, MP_RZ);
        printf("#define FAST_BIG_HI_32\t\t0x%8.8.16i \n",  tmp + 1);
        }
    ENDIF

    /*
    ** CONSTANTS FOR 2^x EVALUATION IN ACCURATE POW
    ** ---------------------------------------------
    **
    ** In the accurate power routine, both x and y are screened prior to
    ** any computation, so it is unnecesary to scale y to avoid overflow,
    ** and consequently we don't need to compensate for the scale in the
    ** polynomial coefficients.  Also, in order to minimize the number of
    ** operations performed, the argument reduction is performed as
    ** z = (x - fm*LN2_HI) - fm*LN2_LO, when backup precision is not
    ** available.
    */

    if (!USE_BACKUP)
        { /* ln2_<hi,lo> are also used in the log2 part of pow */
        c_hi = bround(ln2, R_PRECISION);
        PRINT_TBL_COM_VDEF_ITEM("ln2 in hi/lo", "LN2_HI\t\t", c_hi);
        PRINT_TBL_VDEF_ITEM("LN2_LO\t\t", ln2 - c_hi);

        c_hi = bround(ln2_ov_ln10, R_PRECISION);
        PRINT_TBL_COM_VDEF_ITEM("ln2/ln10 in hi/lo", "LN2_OV_LN10_HI\t\t", c_hi);
        PRINT_TBL_VDEF_ITEM("LN2_OV_LN10_LO\t\t", ln2_ov_ln10 - c_hi);

        }

    if (!NO_ACC)
        {
        if (USE_BACKUP)
            { /* Approximate 2^x to extra precision */
            SET_POLY_GLOBALS(0, 1, ln2, 1);
            GEN_EXP_COEFS(max_pow2_x, F_PRECISION + POW2_K + 1, acc_pow2_deg_f,
              "F_PRECISION acc pow2 poly coeffs", "ACC_POW2_F\t")
            GENPOLY(ACC_POW2_F[%%d], ACC_POW2_POLY_F(x), acc_pow2_deg_f);
            }
        else
            { /* Approximate 2^x - 1 to base precision */
            SET_POLY_GLOBALS(1, 1, ln2, ln2);
            GEN_EXP_COEFS(max_pow2_x, F_PRECISION + 1, acc_pow2_deg_f,
              "F_PRECISION acc pow2 poly coeffs", "ACC_POW2_F\t");
            _GENPOLY(ACC_POW2_F[%%d], ACC_POW2_POLY_F(t,x), -1, c0=t,
              acc_pow2_deg_f + 1);

            if (!ONE_TYPE)
                {
                SET_POLY_GLOBALS(0, 1, ln2, 1);
                GEN_EXP_COEFS(max_pow2_x, R_PRECISION + POW2_K + 1,
                  acc_pow2_deg_r, "R_PRECISION acc pow2 poly coeffs",
                  "ACC_POW2_R\t")
                GENPOLY(ACC_POW2_R[%%d], ACC_POW2_POLY_R(x), acc_pow2_deg_r);
                }
            }
        }
    ENDIF

    /*
    ** CONSTANTS FOR ACCURATE EXP
    ** --------------------------
    **
    ** As with accurate power, accurate exp screens it argument prior to
    ** to any floating point calculation, so it is un-neccessary to scale
    ** the product x*(1/ln2).  This means that the value of BIG and the 
    ** polynomial coefficients also don't require any scaling
    */

    if (!NO_ACC)
        {
        PRINT_TBL_COM_VDEF_ITEM("'big' for accurate pow/exp rint computation",
          "ACC_BIG\t\t", acc_big);

        /*
        ** For accurate exp, the initial screening weeds out large arguments
        ** (guarenteed overflow or underflow), NaNs and Infinities and very
        ** small arguements (for which the final result is 1.)
        */

        if (IEEE_FLOATING)
            lo = (F_MIN_BIN_EXP + F_NORM - F_PRECISION)*ln2;
        else
            lo = (F_MIN_BIN_EXP + F_NORM)*ln2;
        hi = (F_MAX_BIN_EXP + F_NORM)*ln2 + log((2 - 2^-F_PRECISION));

        lo_check = F_HI_BITS_RND(2^-(F_PRECISION + 1), MP_RM);
        hi_check = F_HI_BITS_RND(max(-lo, hi),         MP_RP);

        TABLE_COMMENT("F_PRECISION argument and result sreening values");

        PRINT_U_TBL_VDEF_ITEM("EXP_LO_CHECK_F\t", lo_check);
        PRINT_U_TBL_VDEF_ITEM("EXP_HI_CHECK_F\t", hi_check - lo_check);

        if (!ONE_TYPE)
            {
            if (IEEE_FLOATING)
                lo = (R_MIN_BIN_EXP - R_NORM - R_PRECISION)*ln2;
            else
                lo = (R_MIN_BIN_EXP - R_NORM)*ln2;
            hi = (R_MAX_BIN_EXP - R_NORM)*ln2 + log((2 - 2^-R_PRECISION));

            lo_check = R_HI_BITS_RND(2^-(R_PRECISION + 1), MP_RM);
            hi_check = R_HI_BITS_RND(max(-lo, hi), MP_RP);

            TABLE_COMMENT(
              "R_PRECISION argument and result sreening values");

            PRINT_U_TBL_VDEF_ITEM("EXP_LO_CHECK_R\t", lo_check);
            PRINT_U_TBL_VDEF_ITEM("EXP_HI_CHECK_R\t", hi_check - lo_check);
            }
        ENDIF

        /*
        ** Similarly, for 2^x, initial screening to weed out large arguments
        ** (guaranteed overflow or underflow), NaNs and Infinities.
        */

        if (IEEE_FLOATING)
            lo = (F_MIN_BIN_EXP + F_NORM - F_PRECISION) ;
        else
            lo = (F_MIN_BIN_EXP + F_NORM);
        hi = (F_MAX_BIN_EXP + F_NORM) + log2((2 - 2^-F_PRECISION));

        hi_check = F_HI_BITS_RND(max(-lo, hi),         MP_RP);
        lo_check = F_HI_BITS_RND(2^-(F_PRECISION + 1), MP_RM);

        TABLE_COMMENT("F_PRECISION argument screening values for 2^x");

        PRINT_U_TBL_VDEF_ITEM("EXP2_HI_CHECK_F\t", hi_check - lo_check);

        if (!ONE_TYPE)
            {
            if (IEEE_FLOATING)
                lo = (R_MIN_BIN_EXP - R_NORM - R_PRECISION);
            else
                lo = (R_MIN_BIN_EXP - R_NORM);
            hi = (R_MAX_BIN_EXP - R_NORM) + log2((2 - 2^-R_PRECISION));

            hi_check = R_HI_BITS_RND(max(-lo, hi), MP_RP);
            lo_check = R_HI_BITS_RND(2^-(R_PRECISION + 1), MP_RM);

            TABLE_COMMENT(
              "R_PRECISION argument and result sreening values");

            PRINT_U_TBL_VDEF_ITEM("EXP2_HI_CHECK_R\t",hi_check - lo_check);
            }
        ENDIF

        /*
        ** Once again for the 10^x case
        */

        if (IEEE_FLOATING)
            lo = (F_MIN_BIN_EXP + F_NORM - F_PRECISION)*ln2_ov_ln10;
        else
            lo = (F_MIN_BIN_EXP + F_NORM)*ln2_ov_ln10;
        hi = (F_MAX_BIN_EXP + F_NORM)*ln2_ov_ln10 + log((2 - 2^-F_PRECISION));

        lo_check = F_HI_BITS_RND(2^-(F_PRECISION + 1), MP_RM);
        hi_check = F_HI_BITS_RND(max(-lo, hi),         MP_RP);

        TABLE_COMMENT("F_PRECISION argument and result sreening values for 10^x");

        PRINT_U_TBL_VDEF_ITEM("EXP10_LO_CHECK_F\t", lo_check);
        PRINT_U_TBL_VDEF_ITEM("EXP10_HI_CHECK_F\t", hi_check - lo_check);

        if (!ONE_TYPE)
            {
            if (IEEE_FLOATING)
                lo = (R_MIN_BIN_EXP - R_NORM - R_PRECISION)*ln2_ov_ln10;
            else
                lo = (R_MIN_BIN_EXP - R_NORM)*ln2_ov_ln10;
            hi = (R_MAX_BIN_EXP - R_NORM)*ln2_ov_ln10 + log((2 - 2^-R_PRECISION));

            lo_check = R_HI_BITS_RND(2^-(R_PRECISION + 1), MP_RM);
            hi_check = R_HI_BITS_RND(max(-lo, hi), MP_RP);

            TABLE_COMMENT(
              "R_PRECISION argument and result sreening values for 10^x");

            PRINT_U_TBL_VDEF_ITEM("EXP10_LO_CHECK_R\t", lo_check);
            PRINT_U_TBL_VDEF_ITEM("EXP10_HI_CHECK_R\t", hi_check - lo_check);
            }
        ENDIF


        /*
        ** When backup precision is available, accurate exp uses a polynomial
        ** for 2^x otherwise it uses one for e^x.
        **/

        if (USE_BACKUP)
            {
            SET_POLY_GLOBALS(0, 1, ln2, 1);
            GEN_EXP_COEFS(max_exp_x, F_PRECISION + POW2_K + 1, acc_exp_deg_f,
              "F_PRECISION acc exp poly coeffs", "ACC_EXP_F\t");
            GENPOLY(ACC_EXP_F[%%d], ACC_EXP_POLY_F(x), acc_exp_deg_f);
            }
        else
            {
            SET_POLY_GLOBALS(1, 1, 1, 1);
            GEN_EXP_COEFS(max_exp_x, F_PRECISION + 1, acc_exp_deg_f,
              "F_PRECISION acc exp poly coeffs", "ACC_EXP_F\t");
            _GENPOLY(ACC_EXP_F[%%d], ACC_EXP_POLY_F(t,x), -1, c0=t,
              acc_exp_deg_f + 1);

            /*
            **       NOTE: if (!ONE_TYPE) then ACC_EXP_POLY is identical
            **       to ACC_POW2_POLY
            */

            }
        }
    ENDIF

    /*
    ** CONSTANTS FOR EXPM1
    ** -------------------
    **
    ** For expm1, we essentially compute the accurate exp function and
    ** subtract 1.  However, to maintain accuracy in all cases, when
    ** backup precision is not available, we need to compute evaluate
    ** e^z as 1 + z + z^2*q(z) rather than as 1 + z*p(z)
    **
    ** Also, screening the input argument is a little more involved.  We need
    ** to screen for large arguments (both positive and negative) and small
    ** arguments (where a polynomial approximation is appropriate).
    **
    ** The bound for large positive arguments is the same as for exp.  For
    ** large negative arguments, we want to know where expm1(x) = -1 to 
    ** machine precision.  Because the check is done on both positive and
    ** negative arguments on a sign/magnitude value, it is done in two
    ** parts, one for the positive arguments and one for the negative
    ** arguments.
    **
    ** We arbitrarily define the polynomial range to have at least the same
    ** "effective" overhang as the table range.  ("Effective" overhang is
    ** actual overhang less the number of bits of error in the smaller term.)
    */

    expm1_max_poly_arg = 2/pow2_table_size;
    poly = F_HI_BITS_RND(expm1_max_poly_arg, MP_RM);
    lo = F_HI_BITS_RND((F_PRECISION + 1)*ln2, MP_RP);
    hi = F_HI_BITS_RND((F_MAX_BIN_EXP + F_NORM + 1)*ln2, MP_RP);

    PRINT_U_TBL_COM_VDEF_ITEM("F_PRECISION expm1 initial screening constants",
      "EXPM1_POLY_CHECK_F", poly);
    PRINT_U_TBL_VDEF_ITEM("EXPM1_HI_CHECK_F",  hi);
    PRINT_U_TBL_VDEF_ITEM("EXPM1_LO_CHECK_F",  lo);
      

    if (!ONE_TYPE)
        {
        poly = R_HI_BITS_RND(expm1_max_poly_arg, MP_RM);
        lo = R_HI_BITS_RND((R_PRECISION + 1)*ln2, MP_RM);
        hi = R_HI_BITS_RND((R_MAX_BIN_EXP + R_NORM + 1)*ln2, MP_RP);
        PRINT_U_TBL_COM_VDEF_ITEM(
          "R_PRECISION expm1 initial screening constants",
          "EXPM1_POLY_CHECK_R", poly);
        PRINT_U_TBL_VDEF_ITEM("EXPM1_HI_CHECK_R",  hi);
        PRINT_U_TBL_VDEF_ITEM("EXPM1_LO_CHECK_R",  lo);
        }
    ENDIF

    expm1_max_red_arg = 2/2^POW2_K;
    if (USE_BACKUP)
        {
        SET_POLY_GLOBALS(1, 1, 1, 1);
        GEN_EXP_COEFS(expm1_max_poly_arg, F_PRECISION + POW2_K,
          expm1_poly_deg_f, "F_PRECISION expm1 poly range poly coeffs",
          "EXPM1_F\t\t");
        _GENPOLY(EXPM1_F[%%d], EXPM1_POLY_F(x), -1, c0=0,
           expm1_poly_deg_f + 1);

        SET_POLY_GLOBALS(1, 1, ln2, ln2);
        GEN_EXP_COEFS(expm1_max_red_arg, F_PRECISION + POW2_K, expm1_red_deg_f,
          "F_PRECISION expm1 reduce range poly coeffs", "EXPM1_RED_F\t");
        _GENPOLY(EXPM1_RED_F[%%d], EXPM1_RED_POLY_F(x), -1, c0=0,
           expm1_red_deg_f + 1);
        }
    else
        {
        SET_POLY_GLOBALS(2, .5, 1, 1);

        GEN_EXP_COEFS(expm1_max_poly_arg, F_PRECISION + 1, expm1_poly_deg_f,
          "F_PRECISION expm1 poly range poly coeffs", "EXPM1_F\t\t");
        _GENPOLY(EXPM1_F[%%d], EXPM1_POLY_F(x) (x) +, -2, c0=0 c1=0,
          expm1_poly_deg_f + 2);

        GEN_EXP_COEFS(expm1_max_red_arg, F_PRECISION + 1, expm1_red_deg_f,
          "F_PRECISION expm1 reduce range poly coeffs", "EXPM1_RED_F\t");
        _GENPOLY(EXPM1_RED_F[%%d], EXPM1_RED_POLY_F(t,x), -2, c0=t c1=0,
          expm1_red_deg_f + 2);

        if (!ONE_TYPE)
            {
            SET_POLY_GLOBALS(1, 1, 1, 1);
            GEN_EXP_COEFS(expm1_max_poly_arg, R_PRECISION + POW2_K,
              expm1_poly_deg_r, "R_PRECISION expm1 poly range poly coeffs",
              "EXPM1_R\t\t");
            _GENPOLY(EXPM1_R[%%d], EXPM1_POLY_R(x), -1, c0=0,
               expm1_poly_deg_r + 1);

            SET_POLY_GLOBALS(1, 1, ln2, ln2);
            GEN_EXP_COEFS(expm1_max_red_arg, R_PRECISION + POW2_K,
              expm1_red_deg_r, "R_PRECISION expm1 reduce range poly coeffs",
              "EXPM1_RED_R\t");
            _GENPOLY(EXPM1_RED_R[%%d], EXPM1_RED_POLY_R(x), -1, c0=0,
               expm1_red_deg_r + 1);
            }
        ENDIF
        }

    /*
    ** CONSTANTS FOR SINH/COSH
    ** -----------------------
    **
    ** For sinh/cosh, we screen for large arguments (both positive and
    ** negative) and small arguments (where a polynomial approximation is
    ** appropriate).
    **
    ** The bound for large arguments is log(2*F_MAX).
    **
    ** We arbitrarily define the polynomial range to have at least the same
    ** "effective" overhang as the table range.  ("Effective" overhang is
    ** actual overhang less the number of bits of error in the smaller term.)
    */

    sinhcosh_max_poly_arg = sqrt(8/pow2_table_size);

    hi = F_HI_BITS_RND( (F_MAX_BIN_EXP + 1 + F_NORM)*ln2 +
      log((2 - 2^-(F_PRECISION - 1))), MP_RP);
    lo = F_HI_BITS_RND(sinhcosh_max_poly_arg, MP_RM);

    TABLE_COMMENT("F_PRECISION sinh/cosh argument screening constants");
    PRINT_U_TBL_VDEF_ITEM("SINHCOSH_OVERFLOW_CHECK_F", hi);
    PRINT_U_TBL_VDEF_ITEM("SINHCOSH_BIG_CHECK_F", hi - lo);
    PRINT_U_TBL_VDEF_ITEM("SINHCOSH_POLY_CHECK_F", lo);

    if (!ONE_TYPE)
        {
        hi = R_HI_BITS_RND((R_MAX_BIN_EXP + 1 - R_NORM)*ln2 +
          log((2 - 2^-(R_PRECISION - 1))), MP_RP);
        lo = R_HI_BITS_RND(sinhcosh_max_poly_arg, MP_RM);

        TABLE_COMMENT("R_PRECISION sinh/cosh argument screening constants");
        PRINT_U_TBL_VDEF_ITEM("SINHCOSH_OVERFLOW_CHECK_R", hi);
        PRINT_U_TBL_VDEF_ITEM("SINHCOSH_BIG_CHECK_R", hi - lo);
        PRINT_U_TBL_VDEF_ITEM("SINHCOSH_POLY_CHECK_R", lo);
        }
    ENDIF

    /*
    **
    ** The coefficients for sinh/cosh are based on the Taylor series expansions
    **
    **		sinh(x) = x + x^3/3! + x^5/5! ....
    **		        = x*[1 + x^2*P(x^2)]
    **
    **		cosh(x) = 1 + x^2/2! + x^4/4! ....
    **		        = 1 + x^2*Q(x^2)]
    **
    ** On the reduced range, the coefficients for accurate exp(x) are used and
    ** simply broken up into even and odd polynomials
    **
    ** The following function is used for the Remes approximation in much the
    ** same way as the e_to_x_poly() function is used.  That is by
    ** appropriately setting the values first_term, first_term_value, x_scale
    ** and final_scale, we can approximate, sinh(x), cosh(x), sinh(x) - x,
    ** cosh(x) - 1, sinh(x*ln2), cosh(x*ln2), ...
    */

    function sinh_cosh_poly(x)
        {
        auto s, z, k, t;

        s = first_term_value;

        if (x != 0)
            {
            k = first_term;
            z = (x*x)*x_scale;
            t = first_term_value;

            while(1)
                {
                k += 2;
                t = (t*z)/(k*k - k); 
                if ((bexp(s) - bexp(t)) > bit_precision)
                    break; 
                s += t; 
                }
            }
        ENDIF
        return s*final_scale;
        }

#   define GEN_SINH_COSH_COEFS(max_x, prec, deg, com, tag)		\
                {							\
		remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT +	\
		   REMES_SQUARE_ARG, 0, max_x, sinh_cosh_poly,		\
		    prec, &deg, &coefs);				\
		PRINT_TBL_COM_ADEF_ARRAY(com, tag, deg);		\
		}


    if (USE_BACKUP)
        {
        SET_POLY_GLOBALS(1, 1, 1, 1);
        GEN_SINH_COSH_COEFS(sinhcosh_max_poly_arg, F_PRECISION + POW2_K,
          sinh_poly_deg_f, "F_PRECISION sinh poly range poly coeffs",
          "SINH_F\t\t");
        _GENPOLY(SINH_F[%%d], SINH_POLY_F(x), -1, odd stride=2,
           2*sinh_poly_deg_f + 1);

        SET_POLY_GLOBALS(0, 1, 1, 1);
        GEN_SINH_COSH_COEFS(sinhcosh_max_poly_arg, F_PRECISION + POW2_K,
          cosh_poly_deg_f, "F_PRECISION cosh poly range poly coeffs",
          "COSH_F\t\t");
        _GENPOLY(COSH_F[%%d], COSH_POLY_F(x), -1, even stride=2,
           2*cosh_poly_deg_f);

        _GENPOLY(ACC_POW2_F[%%d], SINHCOSH_ODD_POLY_F(x), 0, odd,
           acc_pow2_deg_f);
        _GENPOLY(ACC_POW2_F[%%d], SINHCOSH_EVEN_POLY_F(x), 0, even,
           acc_pow2_deg_f);
        }
    else
        {
        SET_POLY_GLOBALS(3, 1/6, 1, 1);
        GEN_SINH_COSH_COEFS(sinhcosh_max_poly_arg, F_PRECISION + 1,
          sinh_poly_deg_f, "F_PRECISION sinh poly range poly coeffs",
          "SINH_F\t\t");
        _GENPOLY(SINH_F[%%d], SINH_POLY_F(x) (x) +, -3, odd stride=2 c1=0,
           2*sinh_poly_deg_f + 3);

        SET_POLY_GLOBALS(2, .5, 1, 1);
        GEN_SINH_COSH_COEFS(sinhcosh_max_poly_arg, F_PRECISION + 1,
          cosh_poly_deg_f, "F_PRECISION cosh poly range poly coeffs",
          "COSH_F\t\t");
        _GENPOLY(COSH_F[%%d], COSH_POLY_F(x) ONE +, -2, even stride=2 c0=0,
           2*cosh_poly_deg_f + 2);

        _GENPOLY(ACC_EXP_F[%%d], SINHCOSH_ODD_POLY_F(x), -1, odd,
           acc_exp_deg_f + 1);
        _GENPOLY(ACC_EXP_F[%%d], SINHCOSH_EVEN_POLY_F(x), -1, even c0=0,
           acc_exp_deg_f + 1);

        if (!ONE_TYPE)
            {
            SET_POLY_GLOBALS(1, 1, 1, 1);
            GEN_SINH_COSH_COEFS(sinhcosh_max_poly_arg, R_PRECISION + POW2_K,
              sinh_poly_deg_r, "R_PRECISION sinh poly range poly coeffs",
              "SINH_R\t\t");
            _GENPOLY(SINH_R[%%d], SINH_POLY_R(x), -1, odd stride=2,
               2*sinh_poly_deg_r + 1);

            SET_POLY_GLOBALS(0, 1, 1, 1);
            GEN_SINH_COSH_COEFS(sinhcosh_max_poly_arg, R_PRECISION + POW2_K,
              cosh_poly_deg_r, "R_PRECISION cosh poly range poly coeffs",
              "COSH_R\t\t");
            _GENPOLY(COSH_R[%%d], COSH_POLY_R(x), 0, even stride=2,
               2*cosh_poly_deg_r);

            _GENPOLY(ACC_POW2_R[%%d], SINHCOSH_ODD_POLY_R(x), 0, odd,
              acc_pow2_deg_r);
            _GENPOLY(ACC_POW2_R[%%d], SINHCOSH_EVEN_POLY_R(x), 0, even,
              acc_pow2_deg_r);
            }
        ENDIF
        }

    /*
    ** MISCELLANEOUS SHARED CONSTANTS:
    ** -------------------------------
    **
    ** This section of MP code records the current build parameters that
    ** must be passed on to the functions that use the generated table and
    ** also generates constants that are not assocaiated with any particular
    ** function.  Begin by recording the current build parameters.
    */ 

    printf("#define LOG2_K\t\t\t%i\n",   LOG2_K);
    printf("#define POW2_K\t\t\t%i\n",   POW2_K);
    printf("#define NO_FAST\t\t\t%i\n",  NO_FAST);
    printf("#define NO_ACC\t\t\t%i\n",   NO_ACC);
    printf("#define USE_DIVIDE\t\t%i\n", USE_DIVIDE);

    /*
    ** Generate a floating point 1.0 for use in expm1 and scaling the input
    ** argument in the power functions.  Also generate 1/ln2 for scaling the
    ** input argument in exp, expm1 and sinh/cosh and .5 for near
    ** overflow/underflow fixup. 
    */


    PRINT_TBL_COM_VDEF_ITEM("B_PRECISION .5, 1.0 and 2.0", "HALF\t\t", .5);
    PRINT_TBL_VDEF_ITEM("ONE\t\t", 1.0);
    PRINT_TBL_VDEF_ITEM("TWO\t\t", 2.0);

    PRINT_TBL_COM_VDEF_ITEM("B_PRECISION max float", "MAX_FLOAT\t",
      MP_MAX_FLOAT);

    PRINT_TBL_COM_VDEF_ITEM("1/ln2 in B_PRECISION", "RECIP_LN2\t", recip_ln2);


    /*
    ** GENERAL DISCUSSION OF x^y AND log2(x)
    ** -------------------------------------
    **
    ** This implementation computes the power x^y in three conceptual stages:
    **   
    **     o  compute log2(x), with some extra bits of precision
    **     o  multiply  y * log2(x), maintaining the extra precision
    **     o  evaluate 2 ^ product.
    **
    ** In the actual implementations, the first two steps are combined.
    **
    **
    ** DEFINING THE TABLE SIZES:
    ** -------------------------
    **
    ** The evaluation of log2(x) and 2^product both use table look-up schemes
    ** to increase accuracy and performance.  The number of extra bits of
    ** precision required for log2(x) is F_EXP_WIDTH - 1 + POW2_K, where
    ** 2^POW2_K is the number of entries in the 2^x table (See the previous
    ** discussion on 2^x).
    **
    ** The total amount of extra precision in the log2(x) computation is a
    ** function of the log2 table size and the argument reduction scheme used.
    ** By way of explaination, consider calculating log2(f) for f in the
    ** interval [1,2).  Let the table size for the log2 evaluation be 2^LOG2_K
    ** and let j the integer such that Fj = 1 + j/2^LOG2_K is closest to f. 
    ** With the above definitions, we consider two possible argument reduction
    ** schemes:
    **
    **	With  :     z = (f - Fj)/(f + Fj)
    **	divide:	    log2(f) = log2(Fj) + (2/ln2)*[z + z^3/3 + z^5/5 + ...]
    **		 
    **	Without:    w = (f - Fj)/Fj
    **   divide:    log2(f) = log2(Fj) + (1/ln2)*[w - w^2/2 + w^3/3 - ... ]
    **		
    ** The worst case senario for accuracy is when f = 1 + 1/2^(LOG2_K + 1).
    ** This implies that log2(Fj) = 0 and that we can only get extended
    ** precision in the log2 computation by computing the first "few" terms
    ** of the series in extended precision.
    **
    ** In the "with divide" case, we compute z in extended precision, and the
    ** amount of extra precision in the final result is (essentially) the
    ** alignment shift between z and z^3/3, or 2*LOG2_K + 5.
    **
    ** In the "without divide" case, we compute s = w - w^2/2 in extended
    ** precision,  and the amount of extra precision in the final result is
    ** (essentially) the alignment shift between s and w^3/3, or 2*LOG2_K + 3.
    **
    ** If we are only considering accuracy, then we should chose LOG2_K and
    ** POW2_K according to the relationship:
    **
    **		2*LOG2_K + R = F_EXP_WIDTH - 1 + POW2_K
    **
    ** where R is 5 or 3 depending on whether the argument reduction is uses a
    ** divide or not.  However, since the power table is used for fast exp and
    ** regular exp (and possibly log2 and fast log2) the values of LOG2_K and
    ** POW2_K may be taken to be bigger than those prescribed by the above
    ** relation to increase the performance of any or all of the routines
    ** dependent upon the table.  In particular, the default values of LOG2_K
    ** and POW2_K do not satify the above relationship, but were chosen to
    ** optimize the performance of fast exp and fast pow.
    **
    **
    ** COMPUTATION OF LOG2(x)
    ** ----------------------
    **
    ** The computation of log2(x) proceeds as follows:
    **
    **		log2(2^I*f) = I + log2(f)
    **		            = I + log2(Fj) + log2(f/Fj)
    **			    = I + log2(Fj) + p(z)
    **
    ** where f is in [1, 2 ), Fj = 1 + j/2^LOG2_K and z is the "reduced"
    ** argument (using one of the two methods described above) and p is
    ** is a polynomial.  The form of p depends on the reduction methods.
    **
    ** 		NOTE: A more detailed discussion of the follow
    **		two sections is contained in dpml_pow.c
    **
    ** 
    ** Reduction With Divides:
    ** -----------------------
    **
    ** If the argument reduction for log2(x) is going to use a divide, then
    ** we need to compute z = [(f - Fj)/(f + Fj)]*(2/ln2) and p(z) is evaluated
    ** as:
    **
    **		p(z) = z + z^3*q(z^2)
    **
    ** where
    **
    **	    q(t) = (ln2/2)^2 * sum{ [t*(ln2/2)^2]^n/(2n+3) | n = 0, 1, ... }
    **
    ** It is necessary to compute z extra precision.  If no backup precision
    ** is available, then z must be computed in hi and lo pieces in order to
    ** obtain required accuracy for log2(x).  In this case the computation
    ** proceeds as follows:
    **
    **		t    = f - Fj
    **		s    = (f + Fj)
    **		r    = 1/s
    **		z    = t*r
    **		z_hi = hi_bits(z)
    **		f_hi = hi_bits(f)
    **		f_lo = lo_bits(f)
    ** 		z_lo = {([(f_hi - Fj)*hi_bits(2/ln2) - z_hi*s] +
    **		          f_lo*hi_bits(2/ln2)) +
    **		             [t*lo_bits(2/ln2) - z_hi*f_lo]}*g;
    **
    **
    ** Reduction Without Divides:
    ** --------------------------
    **
    ** If the argument reduction for log2(x) is not going to use a divide, then
    ** we need to compute z = (f - Fj)/(Fj*ln2) and p(z) is evaluated
    ** as:
    **
    **		p(z) = z - z^2*ln2/2 + z^3*q(z)
    **
    ** where
    **
    **	    q(t) = -(ln2)^2 * sum{ [-t*ln2]^n/(n+3) | n = 0, 1, ... }
    **
    ** It is necessary to compute s = z - z^2*ln2/2 to extra precision.  If no
    ** backup precision is available, then s must be computed in hi and lo
    ** pieces in order to obtain required accuracy for log2(x).  In this case
    ** the computation proceeds as follows:
    **
    **		t    = f - Fj
    **		z    = t*(1/(Fj*ln2))
    **		g    = Fj*Fj*(ln2/2)
    **		u    = 2*Fj
    **		s    = (u - t)*t*g
    **		s_hi = hi_bits(s)
    **		v    = Fj*s_hi
    **		t_hi = hi_bits(t)
    **		t_lo = lo_bits(t)
    **          s_lo = {[u*(t - v*hi_bits(ln2)) + t_hi^2] +
    **                     [t_lo*(t + t_hi) - u*v*lo_bits(ln2))]}*g
    **
    ** For the fast pow routine, we use the "no divide" reduction.  However,
    ** we "cheat" on the accuracy of final result by computing the polynomial
    ** as
    **		p(z) = z_hi + z_lo  - z*q(z)
    **
    ** where
    **
    **	    q(t) = ln2 * sum{ [-t*ln2]^n/(n+2) | n = 0, 1, ... }
    **
    */

    /*
    ** CONSTANTS FOR LOG2
    ** ------------------
    **
    ** When no backup is available, computing the reduced arguement requires
    ** 2/ln2 in hi an lo pieces or ln2/2 in full precision and ln2 in hi
    ** and lo pieces, depending on whether divide is used or not.
    */

    if (!USE_BACKUP)
        {
        if (USE_DIVIDE)
            {
            c = 2*recip_ln2;
            PRINT_TBL_COM_VDEF_ITEM("2/ln2 in F_PRECISION and hi/lo",
              "TWO_OVER_LN2\t", c);
            c_hi = bround(c, R_PRECISION);
            PRINT_TBL_VDEF_ITEM("TWO_OVER_LN2_HI\t", c_hi);
            PRINT_TBL_VDEF_ITEM("TWO_OVER_LN2_LO\t", c - c_hi);
            }
        else
            {
            PRINT_TBL_COM_VDEF_ITEM("ln2/2 in F_PRECISION",
              "LN2_OVER_TWO\t", .5*ln2);
            }
        }
    ENDIF


    /*
    ** Log Polynomials:
    ** ----------------
    **
    ** As indicated above, we use two different polynomial log evaluations
    ** depending on whether division is used or not.  when using a divide:
    **
    **        ln(F/Fj) =  2z + 2*z^3/3 + 2*z^5/5 + ....,  z = (F - Fj)/(x + Fj)
    **
    **  or letting u = 2*z/ln2,
    **
    **	      log2(F/Fj) = u + u^3*ln2^2/12 + u^5*ln2^4/80 + ....,
    **	         =  u + u^3*(ln2^2/12 + u^2*ln2^4/80 + u^4*ln2^6/448....)
    **	         =  u + u^3*P(u^2)	( if no backup precision )
    **	         =  u*Q(u^2)		( if backup precision    )
    */

    function divide_log2_poly(x)
        {
        auto s, z, k, u, t;

        s = first_term_value;

        if (x != 0)
            {
            k = 2*first_term + 1;
            z = (x*x)*x_scale;
            t = z;

            while(1)
                {
                k += 2;
                u = t/k; 
                if ((bexp(s) - bexp(u)) > bit_precision)
                    break; 
                s += u; 
                t *= z;
                }
            }
        ENDIF
        return s*final_scale;
        }

    /*
    ** When not using a divide:
    **
    **        ln(F/Fj) = w - w^2/2 + w^3/3 ... , w = (F - Fj)/Fj
    **
    ** For the accurate pow, we let v = w/ln2, and write the above as:
    **
    **        log2(F/Fj) = v - v^2*ln2/2 + v^3*ln2^2/3 ... 
    **	                 = (v - v^2*ln2/2) + v^3*(ln2^2/3 - v*ln2^3/4  ...)
    **	                 = (v - v^2*ln2/2) + v^3*P(v)   ( if no backup prec )
    **
    ** For fast pow we write the power series as:
    **
    **        log2(F/Fj) = v - v^2*ln2/2 + v^3*ln2^2/3 ... 
    **	                 = v + v^2*(-ln2/2 + v*ln2^2/3 - v^2*ln2^2/4 + ...)
    **	                 = v + v^2*P(v)   ( if no backup prec )
    **
    ** If backup precision is available we can write the series as
    **
    **        log2(F/Fj) = v - v^2*ln2/2 + v^3*ln2^2/3 ... 
    **	                 = v*P(v)
    **
    ** Note that whether using the divide or non-divide form, the reduced
    ** argument is most negative, when j = 1 and F = F0; and is most positive
    ** when j = 0 and F = F1.
    */

    function no_divide_log2_poly(x)
        {
        auto s, z, k, u, t;

        s = first_term_value;
        if (x != 0)
            {
            k = first_term + 2;
            z = x*x_scale;
            t = z;
            while(1)
                {
                u = t/k; 
                if (bexp(s) - bexp(u) > bit_precision)
                    break; 
                s += u; 
                t *= z;
                k++;
                }
            }
        ENDIF
        return s*final_scale;
        }

#   define __GEN_LOG_COEFS(term, min, max, func, prec, deg, com, tag)	\
		{							\
		remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT + 	\
		  (term), min, max, func, prec, &deg, &coefs);		\
		PRINT_TBL_COM_ADEF_ARRAY(com, tag, deg);		\
		}

#   define GEN_DIV_LOG_COEFS(max, prec, deg, com, tag)			\
			__GEN_LOG_COEFS(REMES_SQUARE_ARG, 0., max,	\
			    divide_log2_poly, prec, deg, com, tag)

#   define GEN_NO_DIV_LOG_COEFS(min, max, prec, deg, com, tag)	\
			__GEN_LOG_COEFS(REMES_LINEAR_ARG, min, max,	\
			     no_divide_log2_poly, prec, deg, com, tag)

    log2_table_size = 2^LOG2_K;
    min_arg = -1/((2*log2_table_size + 2)*ln2);
    max_arg =  1/(2*log2_table_size*ln2);

    if (!NO_ACC)
        {
        if (USE_DIVIDE)
            {
            c = ln2/2;
            max_div_arg = 2/((4*log2_table_size + 1)*ln2);
            if (USE_BACKUP)
                {
                SET_POLY_GLOBALS(0, 1, c*c, 1);
                GEN_DIV_LOG_COEFS(max_div_arg, F_PRECISION + 2*LOG2_K + 3,
                  acc_log2_deg_f, "F_PRECISION acc log2 poly coeffs",
                  "ACC_LOG2_F\t");
                _GENPOLY(ACC_LOG2_F[%%d], ACC_LOG2_POLY_F(t,x), 0,
                  odd stride=2 c0=t, 2*acc_log2_deg_f + 1);
                }
            else
                {
                SET_POLY_GLOBALS(1, 1/3, c*c, c*c);
                GEN_DIV_LOG_COEFS(max_div_arg, F_PRECISION + 1, acc_log2_deg_f,
                  "F_PRECISION acc log2 poly coeffs", "ACC_LOG2_F\t");
                _GENPOLY(ACC_LOG2_F[%%d], ACC_LOG2_POLY_F(t,x), -3,
                  odd stride=2 c0=t c1=0, 2*acc_log2_deg_f + 3);

                if (!ONE_TYPE)
                    {
                    /* Get R_PRECISION coefficients - backup prec assumed. */
                    SET_POLY_GLOBALS(0, 1, c*c, 1);
                    GEN_DIV_LOG_COEFS(max_div_arg, R_PRECISION + 2*LOG2_K + 3,
                      acc_log2_deg_r, "R_PRECISION acc log2 poly coeffs",
                      "ACC_LOG2_R\t");
                    _GENPOLY(ACC_LOG2_R[%%d], ACC_LOG2_POLY_R(t,x), 0,
                      odd stride=2 c0=t, 2*acc_log2_deg_r + 1);
                    }
                ENDIF
                }
            }
        else /* !USE_DIVIDE */
            {
            if (USE_BACKUP)
                {
                SET_POLY_GLOBALS(0, 1, -c, 1);
                GEN_NO_DIV_LOG_COEFS(min_arg, max_arg, F_PRECISION + LOG2_K + 3,
                  acc_log2_deg_f, "F_PRECISION acc log2 poly coeffs",
                  "ACC_LOG2_F\t");
                 _GENPOLY(ACC_LOG2_F[%%d], ACC_LOG2_POLY_F(t,x), -1, c0=t,
                   acc_log2_deg_f);
                 }
            else
                {
                SET_POLY_GLOBALS(2, 1/3, -ln2, ln2*ln2);
                GEN_NO_DIV_LOG_COEFS(min_arg, max_arg, F_PRECISION + 1,
                  acc_log2_deg_f, "F_PRECISION acc log2 poly coeffs",
                  "ACC_LOG2_F\t");
                _GENPOLY(ACC_LOG2_F[%%d], ACC_LOG2_POLY_F(t,x), -3,
                  c0=t c1=0 c2=0, acc_log2_deg_f + 3);
                }

            if (!ONE_TYPE)
                {
                /*
                ** backup precision is assumed. Also, we can combine the
                ** addition of the hi bits of log2(x) with the polynomial
                ** evaluation.
                */

                SET_POLY_GLOBALS(0, 1, -ln2, 1);
                GEN_NO_DIV_LOG_COEFS(min_arg, max_arg, R_PRECISION + LOG2_K + 3,
                  acc_log2_deg_r, "R_PRECISION acc log2 poly coeffs",
                  "ACC_LOG2_R\t");
                _GENPOLY(ACC_LOG2_R[%%d], ACC_LOG2_POLY_R(t,x), -1, c0=t,
                   acc_log2_deg_r + 1);
                }
            ENDIF
            }
        }
    ENDIF

    if (!NO_FAST)
        {
        /*
        ** We assume that we are not using the divide reduction for the
        ** fast case.  Additionally, we assume that if backup precision
        ** is available, the fast polynomial is the same as the accurate
        ** polynomial except that the first two terms are computed
        ** separately and added in afterwards.
        */

        if (USE_BACKUP)
            printf("#define FAST_LOG2_POLY_F\t\tACC_LOG2_POLY_F\n");
        else
            {
            SET_POLY_GLOBALS(1, 1/2, -ln2, -ln2);
            GEN_NO_DIV_LOG_COEFS(min_arg, max_arg, F_PRECISION + 1,
              fast_log2_deg_f, "F_PRECISION fast log2 poly coeffs",
              "FAST_LOG2_F\t");
            _GENPOLY(FAST_LOG2_F[%%d], FAST_LOG2_POLY_F(t,x), -2,
              c0=t c1=0 c2=0, fast_log2_deg_f + 2);

            if (!ONE_TYPE)
                {
                _GENPOLY(ACC_LOG2_R[%%d], FAST_LOG2_POLY_R(t,x), -1,
                   c0=t c1=0 c2=0, acc_log2_deg_r + 1);
                }
            }
        }
    ENDIF

    /*
    ** THE LOG2 TABLE
    ** ----------------
    **
    ** The actual format of the log2 table depends on whether it will be shared
    ** between functions and/or data types and whether or not backup precision
    ** is available.  In general, for j = 0, 1, ... 2^LOG2_K, the table needs to
    ** contain the following values:
    **
    ** 		Fj = 1 + j/2^LOG2_K
    **		Rj = 1/(Fj*ln2)
    **		Lj = log2(Fj)
    **
    ** If there is no back-up data type available, then the values Rj and Lj
    ** need to be stored in hi and lo pieces.  The following table gives the
    ** required table values:
    **
    **		Function		  Fj  Rj  Rj_hi Rj_lo Lj  Lj_hi Lj_lo
    **	---------------------------------+---+---------------+---------------+
    **	fast pow / backup		 | x | x             | x             |
    **	acc pow  / backup / divide	 | x |               | x             |
    **	acc pow  / backup / no divide	 | x | x             | x             |
    **	fast pow / no backup		 | x |      x     x  |      x     x  |
    **	acc pow  / no backup / divide	 | x |               |      x     x  |
    **	acc pow  / no backup / no divide | x | x             |      x     x  |
    **	---------------------------------+---+---------------+---------------+
    ** 
    ** Based on the above table and the number of possible combinations
    ** for sharing of the table, the log table can have many different formats.
    ** In the interest of time and simplicity, only the two combination
    ** suitable for building the DPML on Alpha are inlcude here.
    */

#   if (ONE_TYPE && NO_FAST && !USE_BACKUP && USE_DIVIDE)

        /*
        ** These macros build the log table for a single, accurate power
        ** function when backup precision is not available and division is
        ** used.  (This is the quad-precision case)
        */

#       define LOG_TABLE_BANNER						\
	  "\n\t * Fj, hi(log2(Fj)) and lo(log2(Fj) in base precision"	\
          "\n\t *\n\t * offset"						\
          "                                                     row"	\
	  "\n\t"

#       define PRINT_LOG_TABLE_ACCESS_MACROS(disp)			\
		printf("#define POW_EVAL_FLAGS\t\tUSE_DIVIDE\n");	\
        	__PRINT_TABLE_DEF("GET_F(j)\t",     F_CHAR, disp);	\
        	__PRINT_TABLE_DEF("LOG_F_HI(j)\t",  F_CHAR, disp);	\
        	__PRINT_TABLE_DEF("LOG_F_LO(j)\t",  F_CHAR, disp)

#       define LOG_INDEX_BASE_POS	(__LOG2(BITS_PER_F_TYPE) - 3)
#       define LOG_INDEX_SCALE		3

#       define PRINT_LOG_TABLE_ENTRY(j, Fj, Rj, Lj)			\
		printf( "\t/* %4i */ %#.4" STR(F_CHAR) ", /* %3i */\n",	\
		    BYTES(MP_BIT_OFFSET), Fj, j);			\
		MP_BIT_OFFSET += BITS_PER_F_TYPE;			\
		Lj_hi = bround(Lj, F_HI_HALF_PRECISION);		\
		__PRINT_TABLE_VALUE(F_CHAR, Lj_hi);			\
		__PRINT_TABLE_VALUE(F_CHAR, Lj - Lj_hi)

#   elif !(ONE_TYPE || NO_FAST || NO_ACC || USE_DIVIDE)

        /*
        ** These macros build the log table for a shared table for both
        ** accurate and fast pow in two types, the larger of which has no
        ** backup precision and no divide is used.
        */

#       define LOG_TABLE_BANNER						    \
	  "\n\t * Fj, Rj = 1/(Fj*ln2) and Lj = log2(Fj).  Lj and Rj are"    \
	  "\n\t * given in hi and low parts.  Fj and the hi part or Lj are" \
	  "\n\t * in reduced precision; Rj, lo(Rj) and lo(Lj) in standard"  \
          "\n\t * precision with hi(Rj) = Rj - lo(Rj)"			    \
          "\n\t *"							    \
          "\n\t * offset                             row"		    \
	  "\n\t"

#       define PRINT_LOG_TABLE_ACCESS_MACROS(disp)			\
        	__PRINT_TABLE_DEF("GET_F(j)\t",      R_CHAR, disp);	\
        	__PRINT_TABLE_DEF("LOG_F_HI(j)\t",   R_CHAR, disp);	\
        	__PRINT_TABLE_DEF("RECIP_F(j)\t",    F_CHAR, disp);	\
        	__PRINT_TABLE_DEF("RECIP_F_LO(j)\t", F_CHAR, disp);	\
        	__PRINT_TABLE_DEF("LOG_F_LO(j)\t",   F_CHAR, disp)

#       define LOG_INDEX_BASE_POS	(__LOG2(BITS_PER_F_TYPE) - 1)
#       define LOG_INDEX_SCALE		1

#       define PRINT_LOG_TABLE_ENTRY(j, Fj, Rj, Lj)			\
		Lj_hi = bround(Lj, R_PRECISION);			\
		printf( "\t/* %4i */ %#.4" STR(R_CHAR) ", %#.4"		\
		  STR(R_CHAR) ", /* %3i */\n", BYTES(MP_BIT_OFFSET),	\
		  Fj, Lj_hi, j);					\
		MP_BIT_OFFSET += 2*BITS_PER_R_TYPE;			\
		__PRINT_TABLE_VALUE(F_CHAR, Rj);			\
		__PRINT_TABLE_VALUE(F_CHAR, Rj - bround(Rj, LOG2_K));	\
		__PRINT_TABLE_VALUE(F_CHAR, Lj - Lj_hi)
#   else

#       error "ERROR: Log table generation for this set of switches NYI"

#   endif

    disp = MP_BIT_OFFSET;
    PRINT_LOG_TABLE_ACCESS_MACROS(disp);

    printf("#define LOG_INDEX_BASE_POS\t%i \n",  LOG_INDEX_BASE_POS);
    printf("#define LOG_INDEX_SCALE\t\t%i \n",   LOG_INDEX_SCALE);

    TABLE_COMMENT( LOG_TABLE_BANNER );

    for (i = 0; i <= log2_table_size; i++)
        {
        Fj = 1 + (i/log2_table_size);
        Rj = 1/(Fj*ln2);
        Lj = log2(Fj);
        PRINT_LOG_TABLE_ENTRY( i, Fj, Rj, Lj);
        }

    END_TABLE;

    printf(  "#else\n"
           "\n    extern const "STR(B_TYPE)" "STR(MP_TABLE_NAME)"[%i]; \n"
           "\n#endif\n\n",
        MP_BIT_OFFSET/BITS_PER_F_TYPE - 1);

@end_divert
@eval my $outText = MphocEval( GetStream( "divertText" ) );		\
      my $defineText = Egrep( "#define",  $outText, \$tableText );	\
      my $polyText   = Egrep( STR(GENPOLY_EXECUTABLE), $tableText, 	\
                              \$tableText );				\
         $polyText = GenPoly( $polyText );				\
         $outText  = "$tableText\n\n$defineText\n\n$polyText";		\
      my $headerText = GetHeaderText( STR(BUILD_FILE_NAME),		\
                       "Definitions and constants for " .		\
                       "power and related functions", __FILE__);	\
         print "$headerText\n\n$outText";

   /*  end of the MAKE_INCLUDE mphoc code section */