1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
|
/******************************************************************************
Copyright (c) 2007-2024, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
#if defined(MAKE_COMMON)
# undef MAKE_INCLUDE
# define MAKE_INCLUDE
# if !defined(TABLE_NAME)
# define TABLE_NAME FOUR_OVER_PI_TABLE_NAME
# endif
# if !defined(BUILD_FILE_NAME)
# define BUILD_FILE_NAME FOUR_OVER_PI_BUILD_FILE_NAME
# endif
# if !defined(MP_FILE_NAME)
# define MP_FILE_NAME ADD_EXTENSION(FOUR_OVER_PI_BUILD_FILE_NAME,mp)
# endif
# define T_FLOAT /* Need some float type defined for dpml_private.h */
#else
# if defined(MAKE_INCLUDE)
# undef MAKE_COMMON
# endif
#
# if !defined(BASE_NAME)
# define BASE_NAME TRIG_REDUCE_BASE_NAME
# endif
#endif
/*
* If we not building the four_over_pi table, make sure that the name of the
* the table is picked up from the file that contains the table
*/
#if !defined(MAKE_COMMON) && defined(FOUR_OVER_PI_TABLE_NAME)
# error "FOUR_OVER_PI_TABLE_NAME cannot be specified without MAKE_COMMON"
#endif
#include "dpml_private.h"
#if !defined(NUM_INDEX_BITS)
# define NUM_INDEX_BITS 7
#endif
#if !defined(NUM_OCTANT_BITS)
# define NUM_OCTANT_BITS 10
#endif
# define MIN_OVERHANG 6
/*
* These flags indicate whether 'trig_reduce' has these optional
* parameters.
*/
#define VOC 0 /* have a 'variable-octant' parameter */
#define BIX 1 /* have a 'binary scaling' parameter */
/*
* BASIC ALGORITHM:
* ----------------
*
* It is assumed that this routine will be used VERY infrequently and
* consequently the implementation contained here sacrifices some performance
* for simplicity and uniformity.
*
* Let x' = x*2^bix + voc*(pi/4). We want to produce
*
* y = mod( x', pi/2 )/2^bix
*
* or equivalently,
*
* I = nint( x'/(pi/2) )
* y = ( x' - I*(pi/2) )/2^bix
*
* We also want to produce an integer result containing the low bits of I
* (called the 'octant' bits) and some 'fractional' bits of I that can be
* used as a table index (these are called the 'index' bits). We also want
* to compute and return y as two floating-point values, y = hi - lo, so
* that lo provides some additional precision to the caller.
*
* More precisely,
*
* x' = x*2^bix + voc*(pi/4)
* J = nint( x'/(pi/2) * 2^(NUM_INDEX_BITS+1) )
* I = floor( (J + 2^NUM_INDEX_BITS)/2^(NUM_INDEX_BITS+1) )
* y = ( x' - I*(pi/2) )/2^bix
* result = mod( J, 2^(NUM_OCTANT_BITS+NUM_INDEX_BITS) )
*
* [The following comments should be rewritten to be more precise.]
*
* Note that the reduce argument is in "radians". For computational
* purposes, it is convenient to first obtain the reduced argument in
* cycles - i.e. compute y as
*
* I' = trunc(x'/(pi/4))
* o = low three bits I'
* z' = x' - I'
* z = z' if o is even
* = z' - 1 if o is odd
* y = z*(pi/4)
*
* Note that z' is in fact the fraction bits of the quotient x'/(pi/4) =
* (x + n*(pi/4))/(pi/4) = x/(p/4) + n, so that the reduction process can be
* described by
*
* o = low three integer bits of [x/(pi/4) + n ]
* z' = fractional bits of (x/(pi/4))
* z = z' if o is even (1)
* = z' - 1 if o is odd
* y = z*(pi/4)
*
* We see that the key operation is to compute x/(pi/4). With this
* in mind, let x = 2^n*f, where 2^v <= f < 2^(v+1) and f has P significant
* bits. If F is defined as F = 2^(P-v-1)*f, it follows that F is an integer.
* Now
*
* x/(pi/4) = x *(4/pi)
* = (2^n*f) *(4/pi)
* = [2^(n-P+v+1)]*[2^(P-v-1)*f] *(4/pi)
* = [2^(n-P+v+1)]*F*(4/pi)
* = F*{[2^(n-P+v+1)]*(4/pi)}
*
* Suppose that we have stored a large bit string that represents the value
* of 4/pi, then we can obtain the value of 2^(n-P+v+1)*(4/pi) by moving the
* binary point in 4/pi by n-P+v+1 places. In particular, let
*
* 2^(n-P+v+1)*(4/pi) = J*8 + g
*
* That is, J is an integer formed from the first n-P+v-2 bits of 4/pi and
* g is value formed by the remaining bits. It follows that
*
* x/(pi/4) = F*{[2^(n-P+v+1)]*(4/pi)}
* = F*(J*8 + g)
* = F*J*8 + F*g
*
* Note that (1) implies that we need only compute x/(pi/4) modulo 8. Noting
* that F and J are integer, the above gives
*
* x/(pi/4) (mod 8) = (F*J*8 + F*g) (mod 8)
* = F*g (mod 8)
*
* At this point the algorithm for large argument reduction has the following
* flavor:
*
* (1) index into a precomputed bit string for 4/pi to
* obtain g
* (2) compute w = F*g (mod 8)
* (3) o <-- integer part of w + n
* (4) z' <-- fractional part of w
* (5) z = z' if o is even
* = z' - 1 if o is odd
* (6) y = z*(pi/4)
*
* Algorithm I
* -----------
*
* The following sections describe the implementation issues associated with
* each of the steps in algorithm I as well as present the code for the
* overall implementation.
*
*
* THE 4/pi TABLE
* --------------
*
* Step (1) of Algorithm I requires indexing into a bit string for 4/pi using
* the exponent field of the argument. Specifically, if n is the argument
* exponent we want to shift the binary point of 4/pi by n - (P - v - 1) bits
* to the right. Since x can be as small as 1, it is possible that n - (P -
* v - 1) is negative. Thus to facilitate the indexing operation, it is
* necessary for the bit string to have some leading 0's.
*
* Assume the bit string for 4/pi has T leading zeros and that the bits are
* numbered in increasing order starting from 0. I.e. the string looks like:
*
* bit number: 0 T
* 00...001.01000101111.....
* ^
* |
* binary point
*
* From the above discussion, we want to shift the binary point of the bit
* string P-v-1 bits to the right and extract g as some (as yet undetermined)
* number of bits, starting o bits to the left of the shifted binary point.
* Consequently, the position of the most significant bit we would like to
* access is k = (T - 1) + [n - (P - v - 1)] - o = T + n - P + v - o. Since
* we want the bit position to be greater than or equal to zero, and we are
* assuming that the argument is greater than or equal to 1 (i.e. n >= -v),
* it follows that T >= P + o. Since 4/pi is stored as bit string, it is
* data type independent. Consequently, the same table can be used for all
* supported data types. This means that the value of P used to determine T
* should represent the largest precision supported.
*/
#define TYPE_MASK(x,y) ((1 << x) | (1 << y))
#if (FLOAT_TYPES & (TYPE_MASK(h_floating, x_floating)))
# if (FLOAT_TYPES & ( 1 << x_floating))
# define MAX_PRECISION (128 + 1)
# else
# define MAX_PRECISION Q_PRECISION
# endif
# define MAX_LOG2_MAX_FLOAT (Q_MAX_BIN_EXP + Q_NORM + 1)
#elif (FLOAT_TYPES & (TYPE_MASK(g_floating, t_floating)))
# define MAX_PRECISION D_PRECISION
# define MAX_LOG2_MAX_FLOAT (D_MAX_BIN_EXP + D_NORM + 1)
#elif (FLOAT_TYPES & (TYPE_MASK(f_floating, s_floating)))
# define MAX_PRECISION S_PRECISION
# define MAX_LOG2_MAX_FLOAT (S_MAX_BIN_EXP + S_NORM + 1)
#endif
/*
* Since most architectures do not efficiently support bit addressing, the
* argument reduction routine assumes that the 4/pi bit string is stored
* in L-bit "digits", where L will be specified later. Getting the right bits
* of 4/pi requires getting the set of "digits" that begin with the digit that
* contains the leading bit and doing a sequence of shifts and logical ors.
* The index of the digit that contains the initial bit is trunc(n/L) and the
* bit position within that digit is n - L*trunc(n/L) = n % L. On some
* architectures, obtaining both the quotient and remainder of an integer
* division is faster than obtaining each one separately. Consequently we
* assume the existence of a div_rem operator.
*
* If the 4/pi table has been created, pick up the DIGIT definition from there
* to ensure consistency between the table and the generated code. Otherwise
* use the default DIGIT definitions.
*/
#if !defined(MAKE_COMMON)
# undef DIGIT_TYPE
# undef SIGNED_DIGIT_TYPE
# undef BITS_PER_DIGIT
# define DEFINES
# include STR(FOUR_OVER_PI_BUILD_FILE_NAME)
# undef DEFINES
#endif
#define DIGIT_MASK(width,pos) ((( DIGIT_TYPE_CAST 1 << (width)) - 1) << (pos))
#define DIGIT_BIT(pos) ( DIGIT_TYPE_CAST 1 << (pos))
#if defined(MAKE_COMMON) || defined(MAKE_INCLUDE)
#define DIGIT_TYPE_CAST /* MPHOC doesn't do casts */
#else
#define DIGIT_TYPE_CAST (DIGIT_TYPE)
#endif
/*
* FOUR_OV_PI_ZERO_PAD_LEN is defined with the 4/pi table.
*/
#if !defined(FOUR_OV_PI_ZERO_PAD_LEN)
#define LOG2_4_OV_PI 1
#define FOUR_OV_PI_ZERO_PAD_LEN (MAX_PRECISION - LOG2_4_OV_PI + NUM_OCTANT_BITS)
#endif
#define DIGIT_HEX_FMT_SPEC PASTE_3(HEX_FORMAT_FOR_, BITS_PER_DIGIT, _BITS)
#define IS_POW_TWO(n) (((n)&((n) - 1)) == 0)
#if !defined DIV_REM_BY_L
# if IS_POW_TWO( BITS_PER_DIGIT )
# define DIV_REM_BY_L(n,q,r) (q) = (n) >> __LOG2(BITS_PER_DIGIT); \
(r) = (n) & (BITS_PER_DIGIT - 1)
# else
# define DIV_REM_BY_L(n,q,r) (q) = (n) / BITS_PER_DIGIT; \
(r) = (n) - (q)*BITS_PER_DIGIT
# endif
#endif
/*
* In case anything goes horribly wrong...
*/
#define fatal(message) { \
printf( "Fatal error: " message \
"\n" "aborting at line " STR(__LINE__)); \
/* exit(-1) */ \
this_assignment = indicates_a_fatal_error; \
}
# define sMAC2 "; \\\n\t"
# define MAC2 " \\\n\t"
# define MAC3 "\n\n"
/******************************************************************************/
/* */
/* Produce the four_ov_pi table */
/* */
/******************************************************************************/
#if defined(MAKE_COMMON)
@divert divertText
# undef TABLE_WORD
# define TABLE_WORD PASTE_2(U_INT_,BITS_PER_DIGIT)
/*
* The last issue associated with the 4/pi table is how many bits of 4/pi
* are necessary? Since the index into the table is essentially the exponent
* of the argument less the number of bits of precision, the maximum number of
* bits that can be skipped over is
*
* MAX_EXP + (1 + v - P)
*
* Further, we require that the result be accurate to P + k bits, so that
* we need at least that many additional bits. Also, we need to guarantee
* against a loss of significance. For VAX F, D, G and H data types and
* IEEE S and T data types, it has been verified that the number of leading
* 0's and 1's does not exceed 5*P/4.
*
* NOTE: The program used to establish this result along with
* a description of the algorithm is contained in a separate
* file (to be supplied at a later time.)
*
* It follows that the maximum number of bits required is
*
* MAX_EXP + MAX_LEADING_0s_OR_1s + k + v + 1
*
* Additionally, we note that the above algorithm requires that we be able
* to continually add digits to the generated product. This requires that
* we keep an extra P bit in the product for the next possible digits.
* Consequently, the total number of bits required is actually
*
* MAX_EXP + MAX_LEADING_0s_OR_1s + P + k + v + 1
*/
/*
* Determine the number of bits of 4/pi required and set number of
* digits and mp precision;
*/
max_leading_1s_or_0s = ceil(5*MAX_PRECISION/4);
num_4_ov_pi_bits = MAX_LOG2_MAX_FLOAT + max_leading_1s_or_0s + MIN_OVERHANG +
MAX_PRECISION + 1;
total_bits = num_4_ov_pi_bits + FOUR_OV_PI_ZERO_PAD_LEN;
precision = ceil(total_bits/MP_RADIX_BITS);
/*
* Get 4/pi and normalize the fraction field and adjust to include
* leading zeros
*/
t = 4/pi;
t = bldexp(t, -(FOUR_OV_PI_ZERO_PAD_LEN + bexp(t)));
/*
* Since
* bldexp(z,-bexp(z)) = z/(2*msb(z)), and
* msb(4/pi)=1,
* we now have
* t = (2/pi)/2^PAD_LEN,
* where PAD_LEN is a synonym for FOUR_OV_PI_ZERO_PAD_LEN.
*
* When the four_ov_pi table is interpreted as a fixed-point binary value,
* with binary point at the start of the table, then
*
* four_ov_pi = (2/pi)/2^PAD_LEN.
*/
/* Print out the table. */
precision = ceil(BITS_PER_DIGIT/MP_RADIX_BITS) + 4;
printf("\n#include \"dpml_private.h\"\n\n");
printf("\n#ifndef DEFINES\n\n");
START_GLOBAL_TABLE(TABLE_NAME, offset);
/* print out hex table values so they fit on an 80 column page. */
num_4_ov_pi_digits = ceil(total_bits/BITS_PER_DIGIT);
digits_per_row = floor(292/(BITS_PER_DIGIT + 16));
for (n = 0; n < num_4_ov_pi_digits; n++) {
if (mod(n,digits_per_row) == 0) printf ("\n ");
t = bldexp(t, BITS_PER_DIGIT);
digit = floor(t);
t -= digit; /* NB: precision is reduced, but this works! */
printf(" " DIGIT_HEX_FMT_SPEC ",", digit);
}
printf("\n\t");
END_TABLE;
printf("\n#else\n");
printf("\n /* Describe the trig_reduce interface */\n");
printf("# define NUM_INDEX_BITS\t\t%i\n", NUM_INDEX_BITS);
printf("# define NUM_OCTANT_BITS\t\t%i\n", NUM_OCTANT_BITS);
printf("# define VOC\t\t\t%i\n", VOC);
printf("# define BIX\t\t\t%i\n", BIX);
printf("# define MIN_OVERHANG\t\t%i\n", MIN_OVERHANG);
printf("\n /* Describe the table */\n");
printf("# define FOUR_OV_PI_ZERO_PAD_LEN\t%i\n", FOUR_OV_PI_ZERO_PAD_LEN);
printf("# define BITS_PER_DIGIT\t\t%i\n", BITS_PER_DIGIT);
printf("# define DIGIT_TYPE\t\t\tU_INT_%i\n", BITS_PER_DIGIT);
printf("# define SIGNED_DIGIT_TYPE\t\tINT_%i\n", BITS_PER_DIGIT);
printf("# undef FOUR_OVER_PI_TABLE_NAME\n");
printf("# define FOUR_OVER_PI_TABLE_NAME\t" STR(TABLE_NAME) "\n");
printf(" extern const " STR(DIGIT_TYPE) " FOUR_OVER_PI_TABLE_NAME[];\n");
printf("\n#endif\n\n");
@end_divert
@eval my $outText = MphocEval( GetStream( "divertText" ) ); \
my $headerText = GetHeaderText( STR(BUILD_FILE_NAME), \
"Table of 4/pi", \
__FILE__ ); \
print "$headerText\n\n$outText";
#endif
/******************************************************************************/
/* */
/* Generate code for multi-precision multiplication */
/* */
/******************************************************************************/
#if defined(MAKE_INCLUDE) && !defined(MAKE_COMMON)
@divert divertText
/*
* Duplicate some definitions, to ensure consistency, and to make the
* include file more self-contained for the human reader's benefit.
* None of these definitions are strictly necessary
*/
printf("\n /* Describe the trig_reduce interface */\n");
printf("# define NUM_INDEX_BITS\t\t%i\n", NUM_INDEX_BITS);
printf("# define NUM_OCTANT_BITS\t\t%i\n", NUM_OCTANT_BITS);
printf("# define VOC\t\t\t%i\n", VOC);
printf("# define BIX\t\t\t%i\n", BIX);
printf("# define MIN_OVERHANG\t\t%i\n", MIN_OVERHANG);
print;
printf("\n /* Describe the table */\n");
printf("# define FOUR_OV_PI_ZERO_PAD_LEN\t%i\n", FOUR_OV_PI_ZERO_PAD_LEN);
print;
printf("\n /* Describe the datatypes used */\n");
/*
* We print these in comments because they aren't necessarily identical to
* the definitions in dpml_private.h and/or PASTE(PLATFORM,_macros.h).
*/
printf("/*\n");
printf("# define BITS_PER_DIGIT\t\t%i\n", BITS_PER_DIGIT);
printf("# define DIGIT_TYPE\t\t\tU_INT_%i\n", BITS_PER_DIGIT);
printf("# define SIGNED_DIGIT_TYPE\t\tINT_%i\n", BITS_PER_DIGIT);
printf("# define BITS_PER_WORD\t\t%i\n", BITS_PER_WORD);
printf("*/\n");
print;
/*
* COMPUTING F*g
* -------------
*
* The goal of step (2) in Algorithm I is to produce a reduced argument that
* is accurate to P + k bits, where k is minimum overhang in the polynominal
* evaluation of the trig function. Also, we need to get the octant bits, o.
* Consequently, the value of w = F*g, must be accurately computed to P + k + 3
* bits. Note however, that if x is close to a multiple of pi/2 the reduced
* argument will have a large number of leading zeros (in fixed point) and
* consequently the actual number of required bits in w will depend upon the
* input argument. Since computing w is the most time consuming part of the
* algorithm, we would like to compute the minimum number of bits possible.
* Specifically, compute w to enough bits so that if x is not near a multiple
* of pi/2, then the reduced argument will be accurate. After w is computed,
* we can check how close the original argument was to pi/2 by examining
* the number of leading fractional 1's or 0's in w. If there are too many
* (i.e. the reduced argument will not have enough significant bits) then we
* can compute additional bits of w.
*
* In order to compute F*g to P + k + 3 bits, we must perform some form of
* extended precision arithmetic. For the sake of uniformity across data
* types and architectures, the implementation described here computes F*g by
* expressing F and g as fixed point values in "arrays" of some basic integer
* unit of computation. As indicated above, we shall refer to this integer
* unit as a digit. The choice of digit is arbitrary, however, it is best if
* the double length product of two digits is efficiently computed.
*
* Now we need to represent w to at least P + k + o bits. Since F has P
* significant bits, if we use a finite precision approximation of g, call it
* g', then the last P bits of the product F*g' are inaccurate. Therefore
* we need to represent g' to N = 2*P + k + o bits (as well as compute F*g'
* to N bits). If the number of bits in a digit is L, then F and g' must be
* represented in at least ceil(P/L) and D = ceil(N/L) digits respectively.
*/
/*
* How many digits are in F, G, and W?
* (num_req_bits is N in the dicussion above)
*/
num_f_digits = ceil(BITS_PER_F_TYPE/BITS_PER_DIGIT);
num_req_bits = (2*F_PRECISION + MIN_OVERHANG + NUM_OCTANT_BITS);
num_w_digits = ceil(NUM_REQ_BITS/BITS_PER_DIGIT);
num_g_digits = num_w_digits;
printf("#define NUM_F_DIGITS\t%i\n", num_f_digits);
printf("#define NUM_G_DIGITS\t%i\n", num_g_digits);
printf("#define NUM_W_DIGITS\t%i\n", num_w_digits);
printf("#define NUM_REQ_BITS\t%i\n", num_req_bits);
print;
/*
* Note that 'num_f_digits = ceil(F_PRECISION/BITS_PER_DIGIT)'
* doesn't suffice; we declare _u.i[NUM_F_DIGITS], and expect to
* get the sign and exponent from one of these 'f' digits.
*/
/*
* Now consider the computation of F*g' in terms of digits. For the purpose
* of discussion, suppose F requires 2 digits and g' requires 4 digits.
* Then using "black board" arithmetic F*g' looks like:
*
* binary point
* |
* |
* |
* +--------+--------+--------+--------+
* g': | g1 | g2 | g3 | g4 |
* +--------+--------+--------+--------+
* +--------+--------+
* F: | F1 | F2 |
* +--------+--------+
* ----------------------------------------------------------
* | +--------+--------+
* | | F2*g4 |
* | +--------+--------+--------+
* | | F1*g4 |
* | +--------+--------+
* | | F2*g3 |
* +--------+--------+--------+
* | F1*g3 |
* +--------+--------+
* | F2*g2 |
* +--------+--------+--------+
* | F1*g2 |
* +--------+--------+
* | F2*g1 |
* +--------+--------+--------+
* | F1*g1 | |
* +--------+--------+ |
* |
* ----------------------------------------------------------
* +--------+--------+--------+--------+--------+--------+
* | Not required | w1 | w2 | w3 | w4 |
* +--------+--------+--------+--------+--------+--------+
*
* Figure 1
* --------
*
* The high two digits of the product are not required since we are interested
* in the result modulo 8.
*
* In general the number of digits used to express g' will contain more
* than N bits. Let the number of bits in excess of N be M. Then if x is
* close to pi/2 and the number of leading fractional 0's or 1's in F*g' is
* less than M, F*g' still contains enough significant bits to return an
* accurate reduced argument. Note that x will be close to pi/2 if o is
* odd and z' has leading 1's or o is even and z' has leading 0's. Note
* further that the octant bits will be the high order 3 bits of one of the
* most significant digit of the product. Therefore there will be loss
* of significance if w1 (in the picture above) has a binary representation
* of the form
*
* +----------------------+
* |xx00000...00000xxxxxxx|
* +----------------------+
* - or -
* +----------------------+
* |xx11111...11111xxxxxxx|
* +----------------------+
* |<-- M+2 -->|
*
* These two bit patterns can be detected by add and mask operations.
*
* Assuming that M+2 0's or 1's appear in w1, we know that there are not
* enough significant bits in w to guarantee the accuracy of the answer.
* Consequently, we need to generate more bits of w. This can be done by
* getting the next digit of g, computing the product of that digit with
* F and adding it into the previous value of w. This process can be repeated
* until there are a sufficient number of significant bits. Note that each
* additional digit of g will add one digit (L bits) of significance to w.
*
* If the processes of adding additional significant bits is implemented in a
* naive fashion, each time through the loop will require an additional digit
* of storage. Consider the situation where the first addition digit has
* been added to w and there are still insufficient significant bits for
* an accurate result. This means that there are at least M + L leading
* fractional 0's or 1's. Then w must have the form
*
* |<------------ D + 1 digits ---------->|
* +----------+----------+ +----------+
* |xx########|######xxxx| ... |xxxxxxxxxx|
* +----------+----------+ +----------+
* |<-- M+L+2 -->|
*
* where the #'s indicate a string of 0's or 1's. Since there are more than
* L consecutive 0's or 1's, we can compress the representation of w by one
* digit by removing L consecutive 0's or 1's from the first two digits
* of w. If this is done w will look like
*
* |<-------------- D digits ------------>|
* +----------+----------+ +----------+
* |xx#####xxx|xxxxxxxxxx| ... |xxxxxxxxxx|
* +----------+----------+ +----------+
* -->|M+2|<--
*
* Which is the same as for when the first additional digit was added.
* It follows that we need storage for only D+1 digits of w and a counter
* indicating the number of additional digits that were added.
*
* To recap the above discussion, algorithm I is expanded as follows:
*
* (1) s <-- 0
* (2) w <-- first D digits of F*g
* (3) if w has less than or equal to M leading fractional
* 0's or 1's, go to step 9
* (4) add an additional digit of F*g to w
* (5) if w has less than L leading leading fractional 0's
* or 1's, go to step 9
* (6) Compact w by removing L 0's or 1's
* (7) s <-- s + 1
* (8) go to step 3.
* (9) o <-- integer part of w
* (10) z' <-- fractional part of w (taking into account what
* ever compaction took place, i.e. what the current
* value of s is.)
* (11) z = z' if I is even
* = z' - 1 if I is odd
* (12) y = z*(pi/4)
*
* Algorithm II
* ------------
*
* The above loop has two exits. An exit from step 3 yields an approximation
* to w containing D digits while an exit from step 5 contains D+1 digits.
* In the second case, there are fewer than L leading 0's and 1's and this
* implies that there are enough "good" bits in the first D digits to generate
* the return values. Consequently, from either exit, it is sufficient to
* use only the first D digits of w.
*
* The exposition above on the number of leading zeros was a little loose, in
* that the leading zeros and ones will not always lie entirely in the digit
* of w. In general, there can be as many as L-1 extra bits, in which case,
* we need to examine both the first and second word of w.
*/
/*
* bit_loss(s,t) prints the body of a macro definition that evaluates to true
* iff the specified bits of W are all 0's or all 1's. The bits to be tested
* are specified by 's' and 't': the highest 's' bits aren't tested, the next
* 't' bits are tested. We require s + t <= 2*BITS_PER_DIGIT, so it suffices
* to examine (at most) MSD_OF_W and SECOND_MSD_OF_W.
*
* |<--- W --->
* +----------------------------------
* |s s s s T T T T T T T u u u u u u ...
* +----------------------------------
* Key:
* s = high bits that are skipped
* T = these bits are tested
* u = remaining bits are untested
*/
procedure bit_loss(s,t)
{
auto b, i, m, p;
b = s + t; /* bits in both s and t together */
printf(" /* %i,%i */ ", s, t);
if (b < BITS_PER_DIGIT) {
/*
* MSD_OF_W suffices
*/
p = BITS_PER_DIGIT - b; /* position of low bit of t in MSD_OF_W */
i = DIGIT_BIT(p); /* to 'add 1' at position p */
m = DIGIT_MASK(t, p); /* mask of the t bits */
printf(
MAC2 "(((MSD_OF_W + 0x%..16i) & 0x%..16i) == 0)"
MAC3, i, m-i);
} else if (BITS_PER_DIGIT <= s && b < 2*BITS_PER_DIGIT) {
/*
* SECOND_MSD_OF_W suffices
*/
p = 2*BITS_PER_DIGIT - b;
i = DIGIT_BIT(p);
m = DIGIT_MASK(t, p);
printf(
MAC2 "(((SECOND_MSD_OF_W + 0x%..16i) & 0x%..16i) == 0)"
MAC3, i, m-i);
} else if (b <= 2*BITS_PER_DIGIT) {
/*
* Test bits in both MSD_OF_W and SECOND_MSD_OF_W.
*/
p = 2*BITS_PER_DIGIT - b;
i = DIGIT_BIT(p);
m = DIGIT_MASK(BITS_PER_DIGIT - p, p);
printf("( ");
printf(MAC2);
if (m == i) printf("/* ");
printf(
"(((SECOND_MSD_OF_W + 0x%..16i) & 0x%..16i) == 0)",
i, m-i);
printf(" && ");
if (m == i) printf(" */");
m = DIGIT_MASK(BITS_PER_DIGIT - s, 0);
printf(
MAC2 "(("
"( ((SIGNED_DIGIT_TYPE)SECOND_MSD_OF_W >> %i) - MSD_OF_W )"
" & 0x%..16i) == 0)",
p, m);
printf(" )" MAC3);
} else {
fatal("bit_loss: s + t > 2*BITS_PER_DIGIT");
}
}
/*
* Test for m+2 bits of all 0's or all 1's.
* Recall that m is the number of bits we've got in W,
* above and beyond what's required for accurate trig reduction.
*/
m = (num_w_digits*BITS_PER_DIGIT - num_req_bits);
printf("#define W_HAS_M_BIT_LOSS ");
bit_loss(0, NUM_OCTANT_BITS-1 + m+2);
#if 0
/*
* Test for L+1 bits of all 0's or all 1's.
* It's insufficient to test just L bits, because then when
* we 'collapse' L bits, we'd lose information -- we wouldn't
* know whether they were all 0's or all 1's that were removed.
*/
printf("#define W_HAS_L_BIT_LOSS ");
bit_loss(NUM_OCTANT_BITS-1, BITS_PER_DIGIT+1);
#endif
/*
* The above algorithm for computing F*g contains a number of inefficiencies.
* However, making the algorithm more efficient requires implementing
* several special code paths to capitalize on specific conditions. It was
* felt that the efficiency gained by these special code paths did not warrant
* the increase in code complexity. For the sake of completeness however,
* the possibilities are discussed here.
*
* First, the leading 0's and leading 1's cases are not symmetric. Since
* g' is obtain from g by truncation, adding more bits to w cannot increase
* the number of leading 0's. Consequently, if the initial cause for adding
* more bits to w was due to leading 0's, one can predict a priori how many
* additional digits to add to w.
*
* If, however, w initially had a string of leading 1's, than subsequent
* digits of w could bring in more 1's, so determining how many additional
* digits to process is an iterative procedure. Also, it is possible that
* computing additional digits of w will cause a leading 1's string to be
* turned into a leading 0's string.
*
* Second, for any pass through the loop it's possible there are L+1 leading
* 0's or 1's, but there are still sufficient significant bits for the result.
* In this case, the compaction and additional test could be avoided.
* (However, this will complicate the cycles to radian conversion. See below)
*
* By way of putting these inefficiencies into perspective, for VAX f and g
* format or IEEE s and t format, using a 32 bit digit, the initial
* approximation to w contains 7 and 13 extra bits for single and double
* precision respectively. That means on a random basis, the loop is entered
* less that 1% of the time in single precision and less than 1/100% of the
* time in double.
*/
/*
* DIGIT ARITHMETIC
* ----------------
*
* In step (2) of Algorithm 2, we are computing the first D digits of the
* product F*g. From figure 1, we see that, (in general) we are computing
* a 2*L bit product and incorporating it into the sum of previously computed
* 2*L bit products. If we think of F, g and w as multi-digit integers with
* their digits numbered from least significant to most significant (starting
* at zero) and denoting the i-th digit of F by F(i) and the j-th digit of
* g by g(j), then the product in figure 1 can be obtained as follows:
*
* t = 0;
* for (i = 0; i < num_g_digits; i++) {
* for (j = 0; j < num_F_digits; j++)
* t = t + F[j]*g[i]*2^(j*L)
* w[i] = t mod 2^L;
* t = (t >> L);
* }
*
* Example 1
* ---------
*
* Note that each time through the loop, t is accumulating the product g[i]*F
* plus "the high digits" of g[i-1]*F. It follows that t can be represented
* in (num_F_digits + 1) digits.
*
* If F contains n digits, then the sum in the above loops looks like:
*
* +--------+ +--------+--------+--------+--------+ +--------+
* t: | t(n) | ... | t(j+3) | t(j+2) | t(j+1) | t(j) | ... | t(0) |
* +--------+ +--------+--------+--------+--------+ +--------+
* +--------+--------+
* + | F[j]*g[i] |
* +--------+--------+
* ----------------------------------------------------------------------
* +--------+ +--------+--------+--------+--------+ +--------+
* t: | t'(n) | ... | t'(j+3)| t'(j+2)| t'(j+1)| t'(j) | ... | t(0) |
* +--------+ +--------+--------+--------+--------+ +--------+
*
* Note that t(0) through t(j-1) are unaffected and that t(j+2) through
* t(n) are affected only by the carry out when computing t'(j+1). It
* follows that if we keep the carry out of t'(j+1) as a separate quantity,
* then the addition in the inner loop only affects two digits of t. If
* we denote the separate carry by c(j), the picture on the next iteration of
* the loop (i.e. replace j by j+1) looks like:
*
* +--------+ +--------+--------+--------+--------+ +--------+
* t: | t(n) | ... | t(j+3) | t(j+2) | t(j+1) | t(j) | ... | t(0) |
* +--------+ +--------+--------+--------+--------+ +--------+
* +--------+--------+
* | F(i)*g(j+1) |
* +--------+--------+
* +--------+
* + | c(j) |
* +--------+
* ----------------------------------------------------------------------
* +--------+ +--------+--------+--------+--------+ +--------+
* t': | t(n) | ... | t(j+3) | t'(j+2)| t'(j+1)| t(j) | ... | t(0) |
* +--------+ +--------+--------+--------+--------+ +--------+
* +--------+
* + | c(k+1) |
* +--------+
*
* Figure 1
* --------
*
* The above gives rise to the notion of a multiply/add primitive that has 5
* inputs and 3 output:
*
* Inputs: N, M the most and least significant digits
* of t that are being added to
* C the carry out from the previous mul/add
* A, B The two digits that are to be multiplied
*
* Outputs: C' The carry out of the final sum
* N',M' The updated values of N and M.
*
* Recalling that the number of bits per digit is denoted by L, the mul/add
* primitive is algebraicly defined by:
*
* s <-- (N + C)*2^L + A*B
* M' <-- s % 2^L
* N' <-- floor(s/2^L) % 2^L
* C' <-- floor(s/2^(2*L)) % 2^L
*
* Note that in example 1, there are several special cases of the mul/add
* macro which might be faster depending on the values of i and j:
*
* i and j Special case
* ------------------ ---------------------------------
* 1) i = 0, j = 0 N = M = C = 0, C' = 0
* 2) i = 0, j < n-1 N = C = 0, C' = 0
* 3) i = 0, j = n-1 N = C = 0, C' = 0 and N' not needed
*
* 4) i > 0, j = 0 C = 0
* 5) i > 0, j < n-1 general case
* 6) i > 0, j = n-1 N = 0, C' not needed
*
* 7) i + j = n-2 C' not needed
* 8) i + j = n-1 C, N, C' and N' not needed
*
* Note that cases 3 and 7 are functionally identical. For purposes of this
* discussion we will use the mnemonic XMUL to refer to producing a 2*L-bit
* product from 2 L-bit digits and XADD/XADDC to refer to the addition of one
* 2*L-bit integer to another without/with producing a carry out. With this
* naming convention we denote the following 6 mul/add operations that
* correspond to the 6 special cases as follows:
*
* case mul/add operator name
* ---- ---------------------
* 1) XMUL(A,B, N',M')
* 2) XMUL_ADD(A,B,M,N',M')
* 3) MUL_ADD(A,B,M,M')
* 4) XMUL_XADDC(A,B,N,M,C',N',M')
* 5) XMUL_XADDC_W_C_IN(C,A,B,N,M,C',N',M')
* 6) XMUL_XADD_W_C_IN(N,M,C,A,B,C',N',M')
*
* [XMUL_XADD_W_C_IN is described with more parameters than are actually used.]
* [There are 8 cases, two of which are "functionally identical". That leaves
* 7 cases, but only 6 have a "mul/add operator name".]
*
* The mphoc code following these comments generates macros for computing the
* initial multiplication of F*g as a function of the number of digits in both
* F and g. It assumes that NUM_F_DIGITS <= NUM_G_DIGITS
*/
/*
* The description of digit arithmetic above indicates that we need
* NUM_F_DIGITS + 1 temporary locations to hold the intermediate products
* and sums plus one extra for dealing with carries. For adding
* additional digits of the product F*g, we need at least 3 temporary
* locations.
*/
num_t_digits = max(3, num_f_digits + 2);
/*
* Print macros for declaring the appropriate number of digits
*/
# define PRINT_DECL_DEF(tag,name,k) \
/* define 'name'0 thru 'name''k-1' */ \
printf("#define " tag STR(name) "0"); \
for (i = 1; i < k; i++) printf(", " STR(name) "%i", i); \
printf("\n")
PRINT_DECL_DEF("G_DIGITS\t", g, num_g_digits);
PRINT_DECL_DEF("F_DIGITS\t", F, num_f_digits);
PRINT_DECL_DEF("TMP_DIGITS\t", t, num_t_digits);
# undef PRINT_DECL_DEF
print;
/*
* Print macros for referencing the most significant digits of F and g
* as well as declaring the high temporary as the carry digit.
*/
printf("#define MSD_OF_F\tF%i\n", num_f_digits - 1);
printf("#define MSD_OF_W\tg%i\n", num_w_digits - 1);
if (num_w_digits == 1)
printf("#define SECOND_MSD_OF_W\tEXTRA_W_DIGIT\n");
else
printf("#define SECOND_MSD_OF_W\tg%i\n", num_w_digits - 2);
printf("#define CARRY_DIGIT\tt%i\n", num_t_digits - 1);
print;
/*
* _PDP_SHUFFLE's will be needed for VAX floating-point datatypes
* if a DIGIT_TYPE crosses a 16-bit boundary.
*/
# if (VAX_FLOATING && BITS_PER_DIGIT > 16)
needs_pdp_shuffle = 1;
# else
needs_pdp_shuffle = 0;
# endif
/*
* GET_F_DIGITS(x) fetches the initial digits of f from x
*/
printf("#define GET_F_DIGITS(x)"
MAC2 "{"
MAC2 "union { DIGIT_TYPE i[NUM_F_DIGITS]; F_TYPE f; } _u;"
MAC2 "_u.f = x;");
if (BITS_PER_F_TYPE < BITS_PER_DIGIT) {
printf(MAC2 "F0 = _u.i[0] & DIGIT_MASK(%i, 0);", BITS_PER_F_TYPE);
if (needs_pdp_shuffle) printf("_PDP_SHUFFLE(F0);");
} else {
# if (ENDIANESS == big_endian) || (VAX_FLOATING)
j = 0;
j_inc = 1;
# else
j = num_f_digits - 1;
j_inc = -1;
# endif
for (i = num_f_digits - 1; i >= 0; i--) {
printf(MAC2 "F%i = _u.i[%i]; ", i, j);
if (needs_pdp_shuffle) printf("_PDP_SHUFFLE(F%i);", i);
j += j_inc;
}
}
printf(MAC2 "}");
printf(MAC3);
/*
* GET_G_DIGITS_FROM_TABLE fetches the initial digits of g
* (and the extra_digit) from the table.
*/
printf("#define GET_G_DIGITS_FROM_TABLE(p, extra_digit)");
#if 0
/* Better performance with DEC C -- don't auto-increment! */
for (i = num_g_digits - 1; i >= 0; i--)
printf(MAC2 "g%i = p[%i]; ", i, num_g_digits - 1 - i);
printf(MAC2 "extra_digit = p[%i]; ", num_g_digits);
printf(MAC2 "p = p[num_g_digits]");
#else
for (i = num_g_digits - 1; i >= 0; i--)
printf(MAC2 "g%i = *p++; ", i);
printf(MAC2 "extra_digit = *p++");
#endif
printf(MAC3);
/*
* Generate macro that aligns g bits
*
* LEFT_SHIFT_G_DIGITS(lshift,BITS_PER_WORD-lshift,extra_digit) ==
* g = (g << lshift) | (extra_digit >> (BITS_PER_WORD-lshift)
*/
printf("#define LEFT_SHIFT_G_DIGITS(lshift, rshift, extra_digit)");
for (i = num_g_digits - 1; i > 0; i--)
printf(MAC2 "g%i = (g%i << (lshift)) | (g%i >> (rshift));",
i, i, i-1);
printf(MAC2 "g0 = (g0 << (lshift)) | (extra_digit >> (rshift))");
printf(MAC3);
/*
* MULTIPLY_F_AND_G_DIGITS(c) ==
* g = F * g
*/
printf("#define MULTIPLY_F_AND_G_DIGITS(c)");
if (num_g_digits == 1)
printf("\t" "g0 = F0*g0\n");
else if (num_f_digits == 1) {
printf(MAC2 "XMUL(F0,g0,t0,g0)");
for (i = 1; i < num_w_digits - 1; i++)
printf(sMAC2 "XMUL_ADD(F0,g%i,t0,t0,g%i)", i, i);
printf(sMAC2 "MUL_ADD(F0,g%i,t0,g%i)", i, i);
} else {
/* Get first product */
printf(MAC2 "XMUL(g0,F0,t1,t0)");
/*
* Accumulate additional products until we use up all of the F
* digits, or we no longer need the high digit of the XMUL.
*/
msd_of_mul_add = 1;
for (i = 1; i < num_f_digits; i++) {
msd_of_mul_add++;
if (msd_of_mul_add >= num_w_digits)
break;
printf(sMAC2 "XMUL_ADD(g0,F%i,t%i,t%i,t%i)", i, i, i+1, i);
}
/*
* If we no longer needed the high digit of the XMUL before using
* all of the F digits, add in the low bits of the final product.
*/
if (msd_of_mul_add >= num_w_digits)
printf(sMAC2 "MUL_ADD(g0,F%i,t%i)", i, i);
/* Move the low bits of t to w */
printf(sMAC2 "g0 = t0");
/*
* Now multiply by the remaining digits of g. In the code that
* follows, the digits of t are reused each time through the loop
* modulo (NUM_F_DIGITS + 1). For example, suppose NUM_F_DIGITS
* is 3. In the multiplications above, the digits of t (in most to
* least significant order were t[3]:t[2]:t[1]:t[0]. In the first
* iterations below the order is t[0]:t[3]:t[2]:t[1], and on the
* next iteration t[1]:t[0]:t[3]:t[2], and so on. The variables
* hi, lo and first are used to track the order of the digits and
* the least significant digit. Note that the high tmp digit is
* used as a carry digit.
*/
for (i = 0; i < num_t_digits - 1; i++)
next_index[i] = i + 1;
next_index[num_t_digits - 2] = 0;
# define UPDATE_DIGIT_INDEX(lo,hi) lo = hi; hi = next_index[hi]
first = 0;
for (i = 1; i < num_w_digits; i++) {
first = next_index[first];
lo = first;
hi = next_index[lo];
msd_of_mul_add = i + 2; /* msd is the carry out */
if (msd_of_mul_add < num_w_digits)
printf(sMAC2 "XMUL_XADDC(g%i,F0,t%i,t%i,c,t%i,t%i)",
i, hi, lo, hi, lo);
else if (msd_of_mul_add <= num_w_digits)
printf(sMAC2 "XMUL_XADD(g%i,F0,t%i,t%i,t%i,t%i)",
i, hi, lo, hi, lo);
else
printf(sMAC2 "MUL_ADD(g%i,F0,t%i,t%i)",
i, lo, lo);
UPDATE_DIGIT_INDEX(lo,hi);
for (j = 1; j < num_f_digits; j++) {
msd_of_mul_add++;
if (msd_of_mul_add < num_w_digits) {
if (j == (num_f_digits - 1))
printf(sMAC2
"XMUL_XADDC(g%i,F%i,c,t%i,c,t%i,t%i)",
i, j, lo, hi, lo);
else
printf(sMAC2
"XMUL_XADDC_W_C_IN(g%i,F%i,t%i,t%i,c,c,t%i,t%i)",
i, j, hi, lo, hi, lo);
} else if (msd_of_mul_add <= num_w_digits) {
if (j == (num_f_digits - 1))
printf(sMAC2
"XMUL_XADD(g%i,F%i,c,t%i,t%i,t%i)",
i, j, lo, hi, lo);
else
printf(sMAC2
"XMUL_XADD_W_C_IN(g%i,F%i,t%i,t%i,c,t%i,t%i)",
i, j, hi, lo, hi, lo);
} else if (msd_of_mul_add <= num_w_digits + 1) {
printf(sMAC2 "MUL_ADD(g%i,F%i,t%i,t%i)",
i, j, lo, lo);
} else
break;
UPDATE_DIGIT_INDEX(lo,hi);
}
/* Move low digit of t to W */
printf(sMAC2 "g%i = t%i", i, first);
}
}
print;
print;
/*
* Generate the macro that multiplies F by an additional digit of g
* and adds the product to w.
*/
printf("#define GET_NEXT_PRODUCT(g, w, c)");
if (num_g_digits == 1)
printf("\t" "XMUL_XADD(g,F0,g0,w,g0,w)");
else {
printf(MAC2 "XMUL_XADDC(g,F0,g0,(DIGIT_TYPE)0,c,g0,w)");
msd_of_mul_add = 1;
for (i = 1; i < num_f_digits; i++) {
j = i-1;
if (msd_of_mul_add < num_w_digits)
printf(sMAC2
"XMUL_XADDC_W_C_IN(g,F%i,g%i,g%i,c,c,g%i,g%i)",
i, i, j, i, j);
else if (msd_of_mul_add <= num_w_digits + 1)
printf(sMAC2
"XMUL_XADD_W_C_IN(g,F%i,g%i,g%i,c,g%i,g%i)",
i, i, j, i, j);
else if (msd_of_mul_add <= num_w_digits + 2)
printf(sMAC2
"MUL_ADD(g,F%i,g%i,g%i)",
i, j, j);
else
break;
msd_of_mul_add++;
}
printf(";");
/*
* If there was a carry out on the last add and we are not past the
* last w digit, then the carry has to be propagated to the remaining
* w digits as necessary.
*/
if (msd_of_mul_add < num_w_digits) {
if (msd_of_mul_add != (num_w_digits - 1)) {
printf(MAC2 "if (c) ");
i = msd_of_mul_add;
while (i < num_w_digits - 1)
printf(MAC2 "if (++g%i == 0) ", i++);
printf(MAC2 "g%i++", i);
} else
printf(MAC2 "g%i += c", i);
}
}
printf(MAC3);
/* Generate the macro that shifts w left by 1 digit */
printf("#define LEFT_SHIFT_W_ONE_DIGIT(extra_w_digit)");
for (i = num_w_digits - 1; i > 0; i--)
printf(MAC2 "g%i = g%i;", i, i-1);
printf(MAC2 "g0 = extra_w_digit" MAC3);
print;
@end_divert
#endif
/*
* CONVERTING W TO FLOATING POINT
* ------------------------------
*
* In converting w to floating point, we have to convert one digit at a
* time in something like a Horner's scheme polynomial evaluation.
*
* floating_w = S*S2*(w1 + S1*(w2 + S1*(w3 + S1*w4)))
*
* where S1 is 1/2^L and S2 = 1/2^(L-o) and S is the scale factor required
* to compensate for the compaction of w during the looping phase.
*
* In addition to converting w to floating point format, we want to convert
* from cycles to radians. This involves multiplying by pi/4. Thus the
* reduced argument looks something like
*
* reduced_arg = (pi/4)*S*S2*(w1 + S1*(w2 + S1*(w3 + S1*w4)))
*
* Since S2 and pi/4 are compile time constants, we can combine them and
* eliminate one multiply. Thus
*
* reduced_arg = (S2*pi/4)*S*(w1 + S1*(w2 + S1*(w3 ... S1*wn))) (2)
*
* Finally, note that S and S2 will be powers of two, so that the multiply
* can be done either by adjusting the exponent or by multiplication.
*
* Recall that we would like to return the reduced argument with at least k
* extra bits. If there is a back-up data type, then the reduced argument
* can be returned in that data type and equation (2) can be applied directly.
* If there is no back-up data type, then both the conversion to floating
* point and the conversion to radians must be carried out with some care
* in the base precision. Specifically the approach we will take will be to
* break the floating point value of w and pi/4 into hi and lo pieces and
* compute the reduced argument as
*
* reduced_arg = (pi/4)*w
* = (pi_ov_4_hi + pi_ov_4_lo)*(w_hi + w_lo)
* = pi_ov_4_hi*w_hi + (pi_ov_4_lo*w_hi +
* pi_ov_4_hi*w_lo + pi_ov_4_lo*w_lo)
* = pi_ov_4_hi*w_hi + (pi_ov_4_lo*w_hi + pi_ov_4*w)
* = r1 + r2
*
* where pi_over_4_hi and w_hi are chosen so that r1 is exact. Having obtained
* r1 and r2, we compute the high p bits of the reduced argument, r_hi, and the
* remaining low bits, r_lo, as
*
* r_hi = r1 + r2, r_lo = r2 - (r_hi - r1)
*
* Recall from the description above, that at the point where the conversion to
* floating point takes place, w has less than L leading 0's or 1's. If the
* digit size and precision have the "right" relationship, it is relatively
* easy to determine a short sequence of int ==> float converts that implement
* the above algorithm. However, if the digit size is small, since the number
* of leading zeros is not known at compile time, the necessary sequence of
* conversions can be complicated. To alleviate this complication, we will
* normalize the bits of w. This costs a little in performance in the case
* where there is backup precision, but it greatly enhances portability. The
* normalization we will use has the "octant" bits in the high 3 bits of the
* msd of w. Assuming this normalization, the first n digits of w will
* contain n*L - o good bits. Since we want p + k good bits in the final
* result, it follows that n = ceil(p+k+o).
*/
#if defined(MAKE_INCLUDE) && !defined(MAKE_COMMON)
@divert -append divertText
num_significant_w_digits = ceil((F_PRECISION + MIN_OVERHANG +
NUM_OCTANT_BITS)/BITS_PER_DIGIT);
n = min(num_significant_w_digits + 1, num_w_digits);
lsd_of_w = num_w_digits - num_significant_w_digits;
printf("#define LEFT_SHIFT_SIGNIFICANT_W_DIGITS(lshift,rshift)");
if (num_w_digits == 1) {
printf(MAC2 "g0 = (g0 << (lshift)) | (SECOND_MSD_OF_W >> (rshift));");
printf(MAC2 "SECOND_MSD_OF_W <<= (lshift)\n\n");
} else {
for (i = num_w_digits - 1; i > lsd_of_w; i--)
printf(MAC2 "g%i = (g%i << (lshift)) | (g%i >> (rshift));",
i, i, i-1);
if (i > 0)
printf(MAC2 "g%i = (g%i << (lshift)) | (g%i >> (rshift))",
i, i, i-1);
else
printf(MAC2 "g0 = (g0 << (lshift)) | (EXTRA_W_DIGIT >> (rshift))");
printf(MAC3);
}
# if PRECISION_BACKUP_AVAILABLE
/*
* CVT_W_TO_B_TYPE(t) does as it says -- w is converted to a B_TYPE t.
* The 'binary point' in this conversion is just after MSD_OF_W (which
* is treated as a signed digit).
*/
printf("#define CVT_W_TO_B_TYPE(t)");
printf(MAC2 "t = TO_B_TYPE((SIGNED_DIGIT_TYPE) g%i)", num_w_digits-1);
j = 0;
for (i = num_w_digits-2; i >= lsd_of_w; i--)
printf(MAC2 " + SCALE_TAB(%i)*TO_B_TYPE(g%i)", j++, i);
printf(MAC3);
overhang = B_PRECISION - F_PRECISION;
# else
/*
* CVT_W_TO_HI_LO(hi, lo, tmp_digit) converts w to two F_TYPEs:
* hi and lo, with the same conventions as CVT_W_TO_B_TYPE.
* The high part is 'shortened' to half_precision, to make
* hi*PI_OVER_4_HI exact (PI_OVER_4_HI = bround(pi/4,half_precision).
*
* For hi, we'll take the 1+half_precision high bits of w (recall
* that the highest bit is just a 'sign' bit).
*/
half_precision = floor(F_PRECISION/2);
hi_bits = 1+half_precision;
num_digits_per_half_precision = ceil(hi_bits/BITS_PER_DIGIT);
extra_bits = num_digits_per_half_precision*BITS_PER_DIGIT - hi_bits;
/*
* The digit containing the lowest of the hi_bits is split --
* move the low bits to tmp_digit, and keep the rest.
*/
half_precision_digit = num_w_digits - num_digits_per_half_precision;
printf("#define CVT_W_TO_HI_LO(hi, lo, tmp_digit)");
printf(MAC2 "tmp_digit = g%i & " DIGIT_HEX_FMT_SPEC ";",
half_precision_digit, (1 << extra_bits) - 1);
printf(MAC2 "g%i ^= tmp_digit;", half_precision_digit);
/*
* Now compute hi and lo. Note that we needn't worry about inexact
* conversions from DIGIT_TYPE to F_TYPE.
*/
if (half_precision_digit < lsd_of_w) fatal("we never set lo");
j = 0;
for (i = num_w_digits - 1; i >= lsd_of_w; i--) {
if (j == 0)
printf(MAC2 "hi = TO_F_TYPE((SIGNED_DIGIT_TYPE) g%i)", i);
else
printf(MAC2 " + SCALE_TAB(%i)*g%i", j-1, i);
if (i == half_precision_digit) {
printf(sMAC2 "lo = TO_F_TYPE(tmp_digit)");
if (j > 0) printf("*SCALE_TAB(%i)", j-1);
}
j++;
}
printf(MAC3);
overhang = half_precision + F_PRECISION;
#endif
if (MIN_OVERHANG >= overhang)
fatal("MIN_OVERHANG too big");
/* Make sure there are enough good bits in pi/4 */
precision = ceil(3/2*(F_PRECISION+MIN_OVERHANG)/MP_RADIX_BITS) + 4;
pi_over_4 = pi/4;
START_STATIC_TABLE(TABLE_NAME, offset);
pi_offset = BYTES(offset);
# if PRECISION_BACKUP_AVAILABLE
# define PRINT_ENTRY(value) PRINT_1_TYPE_ENTRY(B_CHAR,value,offset)
# define ENTRY_TYPE B_TYPE
TABLE_COMMENT("pi/4");
PRINT_ENTRY(pi_over_4);
# else
# define PRINT_ENTRY(value) PRINT_1_TYPE_ENTRY(F_CHAR,value,offset)
# define ENTRY_TYPE F_TYPE
hi = bround(pi_over_4, half_precision);
lo = pi_over_4 - hi;
TABLE_COMMENT("pi/4 in hi and lo pieces");
PRINT_ENTRY(hi);
pi_lo_offset = BYTES(offset);
PRINT_ENTRY(lo);
# endif
scale_offset = BYTES(offset);
s1 = 2^(-BITS_PER_DIGIT);
t = s1;
TABLE_COMMENT("Powers of 2^-BITS_PER_DIGIT");
for (i = 1; i < num_significant_w_digits; i++) {
PRINT_ENTRY(t);
t *= s1;
}
END_TABLE;
printf("#define TRIG_RED_TABLE_NAME\t" STR(TABLE_NAME) "\n");
# define AT_OFFSET "(((char*)TRIG_RED_TABLE_NAME) + %i)"
# if PRECISION_BACKUP_AVAILABLE
printf("#define PI_OVER_4 "
"*((" STR(ENTRY_TYPE) "*)" AT_OFFSET ")\n", pi_offset);
# else
printf("#define PI_OVER_4_HI "
"*((" STR(ENTRY_TYPE) "*)" AT_OFFSET ")\n", pi_offset);
printf("#define PI_OVER_4_LO "
"*((" STR(ENTRY_TYPE) "*)" AT_OFFSET ")\n", pi_lo_offset);
# endif
printf("#define SCALE_TAB(j) "
"*(((" STR(ENTRY_TYPE) "*)" AT_OFFSET ") + j)\n", scale_offset);
@end_divert
@eval my $outText = MphocEval( GetStream( "divertText" ) ); \
my $headerText = GetHeaderText( STR(BUILD_FILE_NAME), \
"Definitions multi-preicion arithmetic " ., \
"used for large argument reduction", \
__FILE__ ); \
print "$headerText\n\n$outText";
#endif
#if !defined(MAKE_INCLUDE)
# define DEFINES
# include STR(BUILD_FILE_NAME)
#endif
#define TMP_DIGIT t0
#define EXTRA_W_DIGIT t1
#define TO_B_TYPE(x) ((B_TYPE) (x))
#define TO_F_TYPE(x) ((F_TYPE) (x))
/*
* If the DIGIT_TYPE and WORD are not the same size, or VAX data types are
* being used, then the bit positions and masks used for accessing the fields
* of floating point values must be adjusted. I.e. we can't use the definitions
* in f_format.h, we need to have new definitions, relative to the digit size.
*/
#define DIV_UP(x,y) (((x)+(y)-1)/(y)) /* = ceil(x/y) */
#define _F_EXP_POS (BITS_PER_F_TYPE - F_EXP_WIDTH - 1)
#define DIGITS_PER_F_TYPE DIV_UP(BITS_PER_F_TYPE, BITS_PER_DIGIT)
#define EXP_DIGIT_POS (_F_EXP_POS - (DIGITS_PER_F_TYPE - 1)*BITS_PER_DIGIT)
#if (EXP_DIGIT_POS < 0) || (EXP_DIGIT_POS + F_EXP_WITDH > BITS_PER_DIGIT)
# error "Digit size inappropriate for floating point data type"
#endif
#if !defined F_ENTRY_NAME
# define F_ENTRY_NAME F_TRIG_REDUCE_NAME
#endif
/*
* For VAX data types, the fraction field needs to be "unshuffled" if the
* digit size is greater than 16 bits. The following definitions are
* essentially the same as the code in f_format.h that defines the
* PDP_SHUFFLE macro, except that here, the choices are made on DIGIT_SIZE
* rather than word size.
*/
#if (VAX_FLOATING && BITS_PER_DIGIT > 16)
# if (BITS_PER_DIGIT == 32)
# define _PDP_SHUFFLE(i) \
(i) = ( ((DIGIT_TYPE)(i)<<16) \
| ((DIGIT_TYPE)(i)>>16) )
# elif (BITS_PER_F_TYPE == 32 && 32 <= BITS_PER_DIGIT)
# define _PDP_SHUFFLE(i) \
(i) = ( ((DIGIT_TYPE)((i) & 0xffff) << 16) \
| ((DIGIT_TYPE)(i) >> 16) )
# elif (BITS_PER_DIGIT == 64)
# define _PDP_SHUFFLE(i) \
(i) = ( ((DIGIT_TYPE)(i) << 48) \
| ((DIGIT_TYPE)(i) >> 48) \
| (((DIGIT_TYPE)(i) >> 16) & ((DIGIT_TYPE)0xffff << 16)) \
| (((DIGIT_TYPE)(i) << 16) & ((DIGIT_TYPE)0xffff << 32)) )
# else
# error "_PDP_SHUFFLE macro not defined for this digit size."
# endif
#else
# define _PDP_SHUFFLE(i) /* a No-op */
#endif
/*
* After the initial multiply, we'll grab some bits, either one or two digits,
* depending on what will fit in a WORD. We expect these bits will suffice
* for 'result', but we check to be sure.
*/
#if BITS_PER_WORD >= 2*BITS_PER_DIGIT
# define GRAB_HIGH (((WORD)MSD_OF_W << BITS_PER_DIGIT) | SECOND_MSD_OF_W)
# define NUM_GRABBED_BITS (2*BITS_PER_DIGIT)
#else
# define GRAB_HIGH MSD_OF_W
# define NUM_GRABBED_BITS BITS_PER_DIGIT
#endif
#if NUM_OCTANT_BITS + NUM_INDEX_BITS > NUM_GRABBED_BITS
# error -- NUM_OCTANT_BITS + NUM_INDEX_BITS > NUM_GRABBED_BITS
#endif
/*
* This is a refugee from dpml_private.h
*/
#define F_EXP_OF_ONE (F_EXP_BIAS - F_NORM)
/******************************************************************************/
WORD
F_ENTRY_NAME(F_TYPE x,
# if VOC
WORD voc,
# endif
# if BIX
WORD bix,
# endif
F_TYPE *hi, F_TYPE *lo)
{
WORD octant, offset, scale, j;
DIGIT_TYPE F_DIGITS; /* declare F0, ... Fm */
DIGIT_TYPE G_DIGITS; /* declare g0, ... gn */
DIGIT_TYPE TMP_DIGITS; /* declare t0, ... tm+1 */
DIGIT_TYPE next_g_digit;
const DIGIT_TYPE *p;
/*
* We have the following definitions and identities:
*
* 2^bexp(t) = 2*msb(t) = 2*2^floor(log2(abs(t))), and
* bldexp(x,k) = x*2^k.
*/
/*
* Get the fraction bits and exponent field as integers into F.
* Isolate the biased exponent and sign.
* Clear the sign and exponent bits and restore the hidden bit.
* Get the exponent (sans sign), and add in bix.
*/
GET_F_DIGITS(x);
#if 0
TMP_DIGIT = MSD_OF_F & DIGIT_MASK(F_EXP_WIDTH + 1, EXP_DIGIT_POS);
#else
TMP_DIGIT = MSD_OF_F & DIGIT_MASK(BITS_PER_DIGIT - EXP_DIGIT_POS,
EXP_DIGIT_POS);
#endif
MSD_OF_F = (MSD_OF_F ^ TMP_DIGIT) | DIGIT_BIT(EXP_DIGIT_POS);
TMP_DIGIT = (TMP_DIGIT >> EXP_DIGIT_POS) & DIGIT_MASK(F_EXP_WIDTH,0);
# if BIX
TMP_DIGIT += bix;
# endif
/*
* As a multi-precision integer,
* F == abs(x)/msb(x) * 2^(F_PRECISION-1)
* == abs(x)*2^(1-bexp(x)) * 2^(F_PRECISION-1)
* == abs(x)*2^(F_PRECISION-bexp(x))
* TMP_DIGIT == bexp(x)-1 + F_EXP_OF_ONE + bix
*/
/*
* Use the exponent to get the bit offset of the first
* interesting bit in the 4/pi table.
*/
offset = TMP_DIGIT - F_EXP_OF_ONE - (F_PRECISION-1)
- (NUM_OCTANT_BITS-1)
+ FOUR_OV_PI_ZERO_PAD_LEN;
/*
* A negative offset would have us access memory before the start of
* the 4/pi table. This indicates that the x was pretty small already,
* so we'll make a quick exit.
* NB: We neither test nor account for negative x. Nut we should.
*/
if (offset < 0) {
*hi = x;
*lo = 0;
# if VOC
return voc << NUM_INDEX_BITS;
# else
return 0;
# endif
}
/*
* Get the address of the digit containing the first interesting bit,
* and its bit offset within that digit. Load G from the the table,
* shifting the digits by that bit offset, so that the interesting bit
* will become the high bit of G.
*/
DIV_REM_BY_L(offset, j, offset);
p = &FOUR_OVER_PI_TABLE_NAME[j];
GET_G_DIGITS_FROM_TABLE(p, next_g_digit);
if (offset) {
j = BITS_PER_DIGIT - offset;
LEFT_SHIFT_G_DIGITS(offset, j, next_g_digit);
}
/*
* When g is interpreted as a fixed-point binary number,
* with binary point at the left, we now have: ...TBS....
*
* We'll multiply g by F, modulo 1. Recall that
* F == abs(x)*2^(F_PRECISION-bexp(x))
*
* mod(F*g,1) == ...TBS....
*/
/*
* The extended-precision multiply: w = F*g.
*/
MULTIPLY_F_AND_G_DIGITS( /* F_DIGITS, G_DIGITS, T_DIGITS, */ CARRY_DIGIT );
/*
* Add in the variable octant.
*/
# if VOC
MSD_OF_W += (DIGIT_TYPE)voc << (BITS_PER_DIGIT - NUM_OCTANT_BITS);
# endif
/*
* Grab the high bits of w (save them in octant).
* Then sign-extend the low octant bit.
*/
octant = GRAB_HIGH;
TMP_DIGIT = MSD_OF_W << (NUM_OCTANT_BITS - 1);
MSD_OF_W = ((SIGNED_DIGIT_TYPE) TMP_DIGIT) >> (NUM_OCTANT_BITS - 1);
scale = 0;
do {
/*
* If there isn't enough significance in w, then:
* get more bits from the table, form the new digit into TMP_DIGIT,
* and add the partial product F*TMP_DIGIT to w.
*
* Once W_HAS_M_BIT_LOSS becomes false, it'll stay false, and we'll
* do no more partial products. But we'll stay in the loop so the
* left shifts will ensure MSD_OF_W is not all 0's or 1's.
*/
if (W_HAS_M_BIT_LOSS) {
TMP_DIGIT = next_g_digit;
next_g_digit = *p++;
if (offset) TMP_DIGIT = (TMP_DIGIT << offset) | (next_g_digit >> j);
GET_NEXT_PRODUCT(TMP_DIGIT, EXTRA_W_DIGIT, CARRY_DIGIT);
}
/*
* We're done if the there are fewer than L+1 bits of 0's or 1's.
*/
TMP_DIGIT = (SIGNED_DIGIT_TYPE)SECOND_MSD_OF_W >> (BITS_PER_DIGIT-1);
if (MSD_OF_W != TMP_DIGIT) break;
/*
* Shift w left a digit, and keep w*2^scale invariant.
*/
LEFT_SHIFT_W_ONE_DIGIT(EXTRA_W_DIGIT);
scale -= BITS_PER_DIGIT;
} while (1);
/*
* GET_NEXT_PRODUCT may have produced carrys into MSD_OF_W which need to
* be reflected in 'octant'. First, get the high bits of w, aligning the
* binary point with what we have in 'octant'.
*/
# define smaller_of(a,b) ((a) < (b) ? (a) : (b))
offset = GRAB_HIGH;
offset >>= smaller_of(-scale, BITS_PER_WORD-1);
/*
* Determine the amount by which to increase 'octant', and increase it.
* Then shift 'octant' right, to discard the extra bits it's carrying.
*/
offset = (offset - octant) & MAKE_MASK(NUM_GRABBED_BITS-NUM_OCTANT_BITS, 0);
octant += offset;
octant >>= NUM_GRABBED_BITS - (NUM_OCTANT_BITS + NUM_INDEX_BITS);
/*
* Increase the significant bits in w by shifting it left until (so that)
* the two high bits of w differ. For 'positive' MSD_OF_W, the high 1 bit
* is at bit position floor(log2(MSD_OF_W)); for 'negative' MSD_OF_W, the
* high 0 bit is at bit position floor(log2(~MSD_OF_W)). We compute
* j = bit position + 2, so the sign-extended low j bits equal MSD_OF_W;
* thus, we can safely shift w left by BITS_PER_DIGIT - j bits.
*
* [In truth, if the conversion to F_TYPE rounds up to the next 'octave',
* the two high bits of w won't differ, but the third will; we'll have
* one less bit of significance, but that's okay].
*
* The standard trick for finding the highest bit set in an unsigned int
* is to convert to floating, and extract the exponent. This trick won't
* work if the integer is zero.
*/
TMP_DIGIT = MSD_OF_W ^ ((SIGNED_DIGIT_TYPE)MSD_OF_W >> (BITS_PER_DIGIT-1));
j = 1;
if (TMP_DIGIT) {
F_TYPE f_type_tmp;
f_type_tmp = (SIGNED_DIGIT_TYPE)TMP_DIGIT;
GET_EXP_WORD(f_type_tmp, j);
j = ((j >> F_EXP_POS) & MAKE_MASK(F_EXP_WIDTH, 0)) - F_EXP_OF_ONE + 2;
}
offset = BITS_PER_DIGIT - j;
if (offset) {
LEFT_SHIFT_SIGNIFICANT_W_DIGITS(offset, j);
scale -= offset;
}
/*
* We scaled x up by 2^bix; now scale down by bix.
*/
# if BIX
scale -= bix;
# endif
/*
* Originally the 'binary point' was after the high NUM_OCTANT_BITS in w.
* CVT_W_TO_{B_TYPE,HI_LO} places it after the high BITS_PER_DIGIT bits.
*/
scale -= BITS_PER_DIGIT - NUM_OCTANT_BITS;
/*
* We're almost done. Just convert to floating point and then to radians.
*/
#if PRECISION_BACKUP_AVAILABLE
{
B_UNION ub;
B_TYPE t;
ub.f = PI_OVER_4;
ub.B_HI_WORD += (scale << B_EXP_POS);
CVT_W_TO_B_TYPE(t);
t *= ub.f;
if (x >= (F_TYPE)0.0) {
*hi = t;
*lo = *hi - t;
} else {
*hi = -t;
*lo = t + *hi;
octant = ((1 << (NUM_OCTANT_BITS+NUM_INDEX_BITS))-1) - octant;
}
}
#else
{
F_UNION uf;
F_TYPE t, s, u, v, r;
CVT_W_TO_HI_LO(t, s, TMP_DIGIT);
uf.f = 0.;
uf.F_HI_WORD = ALIGN_W_EXP_FIELD(F_EXP_OF_ONE + scale);
u = uf.f;
v = u*PI_OVER_4_LO;
u = u*PI_OVER_4_HI;
s = s*(u + v) + t*v;
r = t*u;
t = r + s;
s = (t - r) - s;
if (x >= (F_TYPE)0.0) {
*hi = t;
*lo = s;
} else {
*hi = -t;
*lo = -s;
octant = ((1 << (NUM_OCTANT_BITS+NUM_INDEX_BITS))-1) - octant;
}
}
#endif
return octant;
}
|