1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
|
/******************************************************************************
Copyright (c) 2007-2024, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
#define DYNAMIC
#undef DYNAMIC
#define BASE_NAME bessel
#include "dpml_ux.h"
#if !defined(MAKE_INCLUDE)
# include STR(BUILD_FILE_NAME)
#endif
#if !defined(DYNAMIC)
# define DYNAMIC 0
#else
# undef DYNAMIC
# define DYNAMIC 1
#endif
/*
** This following is a discussion of the implementation of the unpacked x-float
** bessel functions. The algorithmic aspects of these routines are virtually
** identical to the existing DPML x-float bessel function routines.
** Consequently, the primary focus of the comments in this file is the
** implementation details for the unpacked x-float case. For details about the
** algorithms used, the reader should refer to the file dpml_bessel.c.
**
**
** 1.0 BACKGROUND AND BASICS
** -------------------------
**
** This note discusses the bessel functions of the first and second kind, j(n,x)
** and y(n,x) respectively. In this document, we use the notation C(n,x) to
** refer to j(n,x) and y(n,x) simultaneously. Further, we distinguish between
** the first and second arguments to C(n,x) by the names 'order' and 'argument'
** respectively.
**
** Broadly speaking, the existing DPML algorithm for C(n,x) is divided into
** three ranges:
**
** (1) |n| >= 2
** (2) asymptotic approximations to C(0,x) and C(1,x)
** (3) polynomial approximations to C(0,x) and C(1,x)
**
**
** 2.0 IMPLEMENTATION DISCUSSION
** -----------------------------
**
** In this section we present an overview of the organization of the unpacked
** x-float bessel function routines. The following sections discuss the
** implementation details on each of the ranges specified in section 1.0.
**
** Each of the six user level bessel functions call a common interface routine,
** C_BESSEL. C_BESSEL unpacks the argument and determines s = 1 or
** -1 so that C(n,x) = s*C(|n|,|x|). C(|n|,|x|) is computed in unpacked form
** by the routine UX_BESSEL, which may call out to UX_ASYMPTOTIC_BESSEL or
** UX_LARGE_ORDER_BESSEL.
**
** C_BESSEL invokes UX_BESSEL to actually determine which of the three
** evaluation ranges to use and calls UX_ASYMPTOTIC_BESSEL and
** UX_LARGE_ORDER_BESSEL for ranges (1) and (2), or processes range (3)
** directly. The reason this is not done directly by C_BESSEL is so that
** UX_BESSEL can be called recursively without having to unpack the arguments
** again.
**
**
** 2.1 ASYMPTOTIC RANGE FOR ORDER LESS THAN 2
** ------------------------------------------
**
** The simplest evaluation region is when the order less than 2 and the
** arguments are large. (See section 2.3.1 for a more precise definition of
** "large arguments".) On this range C(n,x) is be approximated as:
**
** j(n,x) = w(x)*{ P(n,z)*cos(X(n,x)) - Q(n,z)*sin(X(n,x)) } (1)
** y(n,x) = w(x)*{ P(n,z)*sin(X(n,x)) + Q(n,z)*cos(X(n,x)) }
**
** where z = 1/x, w(x) = sqrt[2/(x*pi)], X(n,x) = x - (2n+1)*(pi/4) and
** P(n,z) and Q(n,z) are rational expressions in z.
**
** In order to make the processing of C(n,x) more uniform, we note that
** cos(x + pi/2) = -sin(x) and sin(x + pi/2) = cos(x), so that we can replace
** the cos and sin terms in (1) with sin(pi/2+X(n,x)) and cos(pi/2+X(n,x))
** respectively. But pi/2 + X(n,x) = x - (pi/4)*(2n-1) = X(n-1,x) so that we
** have
**
** j(n,x) = w(x)*{ P(n,z)*sin(X(n-1,x)) + Q(n,z)*cos(X(n-1,x)) }
** y(n,x) = w(x)*{ P(n,z)*sin(X(n,x)) + Q(n,z)*cos(X(n,x)) }
**
** Since we are only dealing the cases n = 0 and 1, in order to ease the
** implementation, we pad the coefficients of P(0,z), Q(0,z), P(1,z) and Q(1,z)
** with zeros to insure they all have the same degree. Further, we assume
** that the coefficients are laid out in memory in the order presented.
*/
#if !defined(UX_ASYMPTOTIC_BESSEL)
# define UX_ASYMPTOTIC_BESSEL __INTERNAL_NAME(ux_asymptotic_bessel__)
#endif
static void
UX_ASYMPTOTIC_BESSEL( UX_FLOAT * unpacked_argument, WORD order, WORD kind,
UX_FLOAT * unpacked_result)
{
UX_FLOAT tmp[5];
WORD p_degree, q_degree;
FIXED_128 * p_coefs, * q_coefs;
/* Get reciprocal */
DIVIDE( NOT_USED, unpacked_argument, FULL_PRECISION, &tmp[4]);
/*
** Compute P(x, n) and Q(x,n) as rational functions in z = 2^t/x, where
** t = MIN_ASYMPTOTIC_EXPONENT - 1. Since we eventually need to multiply
** the final result by w = sqrt[2/(x*pi)] = sqrt(z)/sqrt[ pi*2^(t-1) ],
** we actually compute tmp[0,1] = P and Q respectively, with P = c*P(x,n)
** and Q = c*Q(x,n), where c = 1/sqrt[ pi*2^(t-1) ]
*/
if (0 == order)
{
p_degree = P0_DEGREE;
q_degree = Q0_DEGREE;
p_coefs = P0_COEFFICIENTS;
q_coefs = Q0_COEFFICIENTS;
}
else
{
p_degree = P1_DEGREE;
q_degree = Q1_DEGREE;
p_coefs = P1_COEFFICIENTS;
q_coefs = Q1_COEFFICIENTS;
}
EVALUATE_RATIONAL(
&tmp[4],
p_coefs,
p_degree,
NUMERATOR_FLAGS( SQUARE_TERM )
| DENOMINATOR_FLAGS( SQUARE_TERM ) |
P_SCALE(4),
&tmp[0]);
/*
** Because the value of q0 is negative and the value of q1 is positive,
** and EVALUATE_RATIONAL only deal with positive coefficients, tmp[1]
** contains (-1)^(order+1)*Q rather than Q
*/
EVALUATE_RATIONAL(
&tmp[4], /* Already been scaled by previous call */
q_coefs,
q_degree,
NUMERATOR_FLAGS( SQUARE_TERM | POST_MULTIPLY )
| DENOMINATOR_FLAGS( SQUARE_TERM ),
&tmp[1]);
/* get tmp[2,3] = sin and cos values respectively */
UX_SINCOS(
unpacked_argument,
1 - kind - 2*order,
SINCOS_FUNC,
&tmp[2]);
/* Now multiply the results */
MULTIPLY(&tmp[0], &tmp[2], &tmp[0]); /* tmp[0] = P*sin */
MULTIPLY(&tmp[1], &tmp[3], &tmp[1]); /* tmp[1] = +/-Q*cos */
ADDSUB(&tmp[0], &tmp[1], order ? ADD : SUB, &tmp[0]);
/* Get sqrt and do final multiply */
UX_SQRT(&tmp[4], &tmp[1]);
MULTIPLY(&tmp[0], &tmp[1], unpacked_result);
}
/*
** 2.2 LARGE ORDER RANGE
** ---------------------
**
** The implementation of bessel functions of large order are based on the
** recurrence relations
**
** 2n
** C(n+1,x) = --- C(n,x) - C(n-1,x) (2)
** x
**
** For y(n,x), (2) is used by first computing y(0,x) and y(1,x) and iterating
** until y(n,x) is obtained. This approach is referred as a "forward"
** recurrence. The same approach can by used for j(n,x), if x > n.
**
** When x <= n, the forward recurrence for j(n,x) is unstable, and a backward
** recurrence must be used. This technique is a little more subtle. It is
** based on the identity
**
** 1 = j(0,x) + 2*{ j(2,x) + j(4,x) + j(6,x) ... } (3)
**
** and the fact that j(n+1,x)/j(n,x) --> 0 as n gets large.
**
** The process begins by chosing an integer, N, and two real values, t(N+1,x)
** and t(N,x) and define t(k,x) for 0 <= k < N by
**
** t(k-1,x) = (2k/x)*t(k,x) - t(k+1,x)
**
** Now, we can find two real numbers, A and B such that
**
** t(N+1,x) = A*j(N+1,x) + B*y(N+1,x) (4)
** t(N,x) = A*j(N,x) + B*y(N,x)
**
** It follows from (2) and the definition of t(k,x), that
**
** t(k,x) = A*j(k,x) + B*y(k,x)
**
** Ultimately, we want to find j(n,x) for a given n and x. If we could
** arrange it so that the term B*y(n,x) was insignificant to A*j(n,x), then
** to machine precision t(n,x) = A*j(n,x). Further, if we could estimate
** A, then we could compute j(n,x) to machine precision as t(n,x)/A.
** Toward this end, we solve (4) for A and B:
**
** A = [t(N+1,x)*y(N,x) - t(N,x)*y(N+1,x)]/[2/(pi*x)]
** B = - [t(N+1,x)*j(N,x) - t(N,x)*j(N+1,x)]/[2/(pi*x)]
**
** NOTE: The above expressions for A and B make use of the identity
** j(n+1,x)*y(n,x) - j(n,x)*y(n+1,x) = 2/(pi*z)
**
** Now consider the ratio:
**
** | B*y(n,x) | | [t(N+1,x)*j(N,x) - t(N,x)*j(N+1,x)]*y(n,x) |
** r = | -------- | = | ------------------------------------------ |
** | A*j(n,x) | | [t(N+1,x)*y(N,x) - t(N,x)*y(N+1,x)]*j(n,x) |
**
** Now the choice of t(N+1,x) and t(N,x) was arbitrary, so to simplify things,
** we take t(N+1,x) = 0 and t(N,x) = 1. Then
**
** A = - (pi*x/2)*y(N+1,x)]
** B = (pi*x/2)*j(N+1,x)]
**
** | j(N+1,x)]*y(n,x) |
** r = | ---------------- |
** | y(N+1,x)]*j(n,x) |
**
** Using asymptotic approximations for large orders (See Abramowitz and Stegun,
** page 365, eq 9.3.1), we get
**
** [ex/(2N+2)]^(2N+2)
** r = ------------------ (5)
** [ex/(2n)]^2n
**
** So, if given x and n, we can find N, such that (5) is less that 1/2^(p+1)
** then B*y(n,x) will be insignificant to A*j(n,x). What we need to do
** now is estimate A. This is done via the identity in (3). Specifically,
** letting N' = 2*floor(N/2), we "replace" the j(k,x)'s in (3) with the
** t(k,x)'s to get
**
** S = t(0,x) + 2*[ t(2,x) + t(4,x) + t(6,x) ... + t( 2N',x) ]
** = A*{ j(0,x) + 2*[ j(2,x) + j(4,x) + j(6,x) ... + j( 2N',x) ] } +
** B*{ y(0,x) + 2*[ y(2,x) + y(4,x) + y(6,x) ... + y( 2N',x) ] }
** = A*J + B*Y
**
** The assumption here is that if N is chosen large enough, then J will equal
** 1 to machine precision and that B*Y will be insignificant to A*J. If this
** true, then j(n,x) = t(n,x)/S. So the key here is to choose N large enough
** to the process work.
**
** Brent uses the solution to (5) in his MP package. However, this choice
** of N does not guarantee that that B*Y is small enough. The DPML bessel
** functions assume that if j(N,x) is insignificant compared to 1, then N is
** big enough. So the DPML routines use that asymptotic approximation for
** j(n,x) and "solve"
**
** (ex/(2N))^N
** ------------ < 1/2^(p+1)
** sqrt(2*pi*N)
**
** for N. This choice of N "works" in the sense that the answer is accurate,
** however, N chosen this way is much larger than is necessary, especially for
** small n.
**
** There is a passing comment in Abramowitz and Stegun (pg. 386) that
**
** "The number of correct significant figures in the final
** values [ i.e. j(n,x) ] is the same as the number of digits
** in the respective trial values. [ i.e. t(n,x) ]"
**
** Using the asymptotic estimates for j(n,x) and y(n,x) and noting that
** t(n,x) ~ A*j(n,x), we can try to find N such that
**
** (x/2)* [ 2N/(ex) ]^N * [ ex/(2n) ]^n = 2^t * sqrt(N*n) (6)
**
** with t = p + 1. This seems to give accurate results without making N unduly
** large.
**
** Solving (6) for N is difficult and requires an iterative numerical approach.
**
**
** 2.2.1 ERROR CHECKING
** --------------------
**
** For large orders and small arguments, y(n,x) can overflow and j(n,x) can
** underflow. Using the relationships:
**
** | y(n,x) | > (n-1)!*(2/x)^n | j(n,x) | < (x/2)^n/n!
**
** We can screen out guaranteed overflow and underflow conditions via the
** comparisons:
**
** (n-1)!*(2/x)^n >= 2^EMAX (x/2)^n/n! <= 2^EMIN
**
** where EMAX = F_MAX_BIN_EXP + 1 and EMIN = F_MIN_BIN_EXP - F_PRECISION + 1.
** The above comparisons are equivalent to:
**
** log2[(n-1)!] + n*[1 - log2(x)] >= EMAX
** n*[log2(x) - 1] - log2(n!) <= EMIN
**
** Noting that x = 2^k*f, f in [1/2, 1) and that log2(n!) = log2[(n-1)!] +
** log2(n), the two comparisons are equivalent to:
**
** log2[(n-1)!] + n*[1 - k - log2(f)] >= EMAX (7)
** n*[k + log2(f) - 1] - log2[(n-1)!] - log2(n) <= EMIN (8)
**
** Now we need to estimate the value of log2[(n-1)!]. Since doing this
** precisely is equivalent to evaluating the lgamma function, we will use an
** upper and lower bound for log2[(n-1)!] in (7) and (8) to get comparisons
** that give less precise error range boundaries, but are easier to compute.
**
** From Hart, we show that if n = 2^E*g, where g is in the interval [1/2, 1),
** then,
**
** (n-.5)*bexp(n) - n*(1/ln2 + 1) + (1 + .5*log2(pi)) <= log2((n-1)!)
** log2((n-1)!) <= (n-.5)*E - n/ln2 + .5 + .5*log2(pi)
**
** Noting that -1 <= log2(f) < 0, and using the bounds for log2[(n-1)!], we
** can transform (7) and (8) to:
**
** (n-.5)*E - n*(1/ln2+1) + 1 +.5*log2(pi) + n*(1-k) - EMAX >= 0 (9)
** n*(k-1) - (n-.5)*E + n/ln2 - .5 - .5*log2(pi) - (E-1) - EMIN <= 0 (10)
**
** If we denote the left hand sides of (9) and (10) as A and B respectively,
** the we can define c = (A + B)/2 and d = (A - B)/2 and the above comparisons
** are equivalent to
**
** c + d >= 0
** c <= 0
**
** where
**
** c = .5*(3/2 - EMAX - EMIN) - .5*(n + E)
** d = n*[ E - k + (1/2 - 1/ln2) ] + [ 1/2 + log2(pi) - EMAX + EMIN ]/2
**
**
** 2.2.2 COMPUTING 2*N
** -------------------
**
** For both the forward and backward recurrence, the computation of 2*k for
** k increasing or decreasing is required. In the process of creating the
** unpacked representation for the initial value of 2*k, we can create an
** integer value that is an unnormalized representation of 2. This integer
** can be added/subtracted to the high word of 2*k to get the unpacked
** representation of the next value of 2*k. If the addition/subtraction
** results in a carry out or borrow from the MSB of the fraction, then the
** exponent of the result and the unnormalized representation of two needs to
** be adjusted.
*/
#define J_BESSEL 0
#define Y_BESSEL 2
#if !defined UX_LARGE_ORDER_BESSEL
# define UX_LARGE_ORDER_BESSEL __INTERNAL_NAME(ux_large_order_bessel__)
#endif
#if !defined(UX_BESSEL)
# define UX_BESSEL __INTERNAL_NAME(ux_bessel__)
#endif
static void UX_BESSEL( UX_FLOAT *, WORD, WORD, UX_FLOAT *);
#if (OP_SYSTEM == vms)
# define S_SUFFIX PASTE_2(_, S_CHAR)
#else
# define S_SUFFIX f
#endif
#ifndef S_LOG2_NAME
#define S_LOG2_NAME PASTE_2(__SYSTEM_NAME(LOG2_BASE_NAME), S_SUFFIX)
#endif
extern S_TYPE S_LOG2_NAME( S_TYPE );
static void
UX_LARGE_ORDER_BESSEL(
UX_FLOAT * unpacked_argument,
WORD order,
WORD kind,
UX_FLOAT * unpacked_result)
{
double c, d;
float forder, fN, fx, log2_n, delta, ftmp, A, B;
WORD n_exponent, exp_diff, i;
UX_EXPONENT_TYPE exponent;
UX_FRACTION_DIGIT_TYPE f_hi, incr, N;
UX_FLOAT tmp[4], *C0, *C1, *C2, twice_n, sum, *save;
/*
** For both the forward and backward recurrence we need 1/x
** and pointers into the tmp[] array to hold the results of
** recursion.
*/
DIVIDE( NOT_USED, unpacked_argument, FULL_PRECISION, &tmp[3]);
C0 = &tmp[0];
C1 = &tmp[1];
C2 = &tmp[2];
/*
** Determine if a forward or backward recurrence is needed.
** In the process, do underflow and overflow screening.
*/
n_exponent = BITS_PER_UX_FRACTION_DIGIT_TYPE - U_WORD_TO_UX(order, &tmp[0]);
exponent = G_UX_EXPONENT(unpacked_argument);
c = .5*( 111.5 - (double) (n_exponent + order));
exp_diff = n_exponent - exponent;
d = ((double) order)*( (double) exp_diff + .942)
-16437.924251;
/*
** if evaluating Y_BESSEL functions or if x >= n, use a
** forward recurrence.
*/
if (kind == Y_BESSEL)
{ /* Check for certain overflow */
if (c + d > 0)
{
exponent = UX_OVERFLOW_EXPONENT;
goto return_exception;
}
}
else
{ /* J_BESSEL, check for underflow */
if (c < 0 )
{
exponent = UX_UNDERFLOW_EXPONENT;
goto return_exception;
}
/*
** if x < n use backward recurrence. Use N as a temporary location
** to hold the "aligned" fraction part of x
*/
f_hi = G_UX_MSD(unpacked_argument);
N = f_hi >> (BITS_PER_UX_FRACTION_DIGIT_TYPE - n_exponent);
if ((0 < exp_diff) || ((0 == exp_diff) && (N < order)))
goto backward_recurrence;
}
//forward_recurrence:
/*
** We want to compute C(k+1,x) = (2k/x)*C(k,x) - C(k-1,x)
** for k = 1,2, ... n-1. The initialization phase requires
** the computation of 2, C(1,x) and C(0,x)
*/
UX_BESSEL(unpacked_argument, 0, kind, C0);
UX_BESSEL(unpacked_argument, 1, kind, C1);
UX_SET_SIGN_EXP_MSD(&twice_n, 0, 2, UX_MSB);
incr = UX_MSB;
order--;
/* Now do the recursions */
while(1)
{
MULTIPLY(&tmp[3], &twice_n, C2);
MULTIPLY(C1, C2, C2);
ADDSUB(C2, C0, SUB, C2);
if ((--order) <= 0)
break;
/* Adjust pointers, check for overflow or underflow */
save = C0;
C0 = C1;
C1 = C2;
C2 = save;
f_hi = G_UX_MSD(&twice_n) + incr;
if (f_hi < incr)
{ /* carry out occurred on the addition */
UX_INCR_EXPONENT(&twice_n, 1);
f_hi = (f_hi >> 1) + UX_MSB;
incr >>= 1;
}
P_UX_MSD(&twice_n, f_hi);
}
/* Copy result of iteration to unpacked result */
UX_COPY(C2, unpacked_result);
return;
backward_recurrence:
/*
** In order to solve (11) iteratively to find the starting point N, we
** set up the recursion
**
** t*ln2 - log(x/2) - n*log(.5*e*x/n) + .5*log(N*n)
** N = ------------------------------------------------
** log(2N/(ex))
**
** B + .5*log2(N)
** = --------------
** log2(N) - A
**
** where
**
** A = log2(.5*e*x) and
** B = t - .5*A - (n + .5)*[ A - log2(n)] + 1/ln2
**
** The initial choice of N is important for the iteration. It can be
** shown analytically, that n+1 <= N < n + 1 + t. Experimentally, we
** have found that taking N = n + 1 + (x/n)*(C*log2(n) + D) yields
** very good results.
**
** Start by computing x/n to get the initial value for N.
*/
# define MSD_TO_FLOAT(p) \
(float)(( UX_SIGNED_FRACTION_DIGIT_TYPE) (G_UX_MSD(p) >> 1))
# define SCALE_DOWN ((float) 1./ S_POW_2(BITS_PER_UX_FRACTION_DIGIT_TYPE - 1))
fx = MSD_TO_FLOAT(unpacked_argument);
forder = MSD_TO_FLOAT(&tmp[0]);
delta = fx/forder;
exp_diff = (BITS_PER_UX_FRACTION_DIGIT_TYPE - 1) - exp_diff;
exp_diff = (exp_diff < 0) ? 0 : exp_diff;
ftmp = (float) (((UX_FRACTION_DIGIT_TYPE) 1) << exp_diff);
ftmp = delta*ftmp*SCALE_DOWN;
/* ftmp = x/n at this point. Get initial value of N */
#define SLOPE ((float) 8.9740928556490771841809829330372159128901 )
#define INTERCEPT ((float) 20.4831861112546093392565170669627840871099 )
forder = (float) order;
log2_n = S_LOG2_NAME( forder );
delta = SLOPE*log2_n + INTERCEPT;
fN = ftmp*( SLOPE*log2_n + INTERCEPT );
fN = (fN > delta) ? delta : fN;
fN = (forder + ((float) 1)) + delta;
/*
** Now compute the constants A and B, so that we can start the iteration
*/
# define R_LOG2 ((float) 1.4426950408889634073599246810018921374266)
A = S_LOG2_NAME(fx) + (float) (exponent - BITS_PER_UX_FRACTION_DIGIT_TYPE)
+ R_LOG2;
B = ((((float) F_PRECISION + 1) + R_LOG2) - .5*A)
- (forder + .5)*(A - log2_n);
/* Iterate three times to get a good approximation to N */
for (i = 3; i > 0; i--)
{
ftmp = S_LOG2_NAME( fN );
ftmp = (B + 5.*ftmp)/(ftmp - A);
fN = .5*(fN + ftmp);
}
/*
** Convert to integer and do one last check.
*/
N = (UX_FRACTION_DIGIT_TYPE) (fN + 9.99999940395355224609375e-1);
N = (N < (order + 1) ) ? (order + 1) : N;
/*
** We want to compute C(k-1,x) = (2k/x)*C(k,x) - C(k+1,x)
** for k = N,N-1, ... 0. The initialization phase requires
** the computation of 2*N and setting C(N,x) = 1 and
** C(N+1, x) = 0 and the running sum to C(N,x) or C(N+1,x)
** depending on the parity of n
*/
UX_SET_SIGN_EXP_MSD(&tmp[0], 0, UX_ZERO_EXPONENT, 0);
UX_SET_SIGN_EXP_MSD(&tmp[1], 0, 1, UX_MSB);
P_UX_SIGN(&sum, 0);
if (N & 1)
UX_SET_SIGN_EXP_MSD(&sum, 0, UX_ZERO_EXPONENT, 0);
else
UX_SET_SIGN_EXP_MSD(&sum, 0, 1, UX_MSB);
(void) U_WORD_TO_UX( 2*N, &twice_n);
incr = UX_MSB >> (G_UX_EXPONENT(&twice_n) - 2);
/* Now do the recursions */
while(1)
{
MULTIPLY(&tmp[3], &twice_n, C2);
MULTIPLY(C1, C2, C2);
NORMALIZE(C2);
NORMALIZE(C0);
ADDSUB(C2, C0, SUB, C2);
if (--N == 0)
break;
/* if N == n, C2 = K*J(n,x). Save it for later */
if (N == order)
UX_COPY(C2, unpacked_result);
/* Add to sum if N is even */
if ( 0 == (N & 1) )
ADDSUB(&sum, C2, ADD, &sum);
/* Adjust pointers */
save = C0;
C0 = C1;
C1 = C2;
C2 = save;
/* decrement twice_n by 2 */
f_hi = G_UX_MSD(&twice_n) - incr;
if (f_hi < UX_MSB)
{ /* borrow from MSB on the subtraction */
UX_DECR_EXPONENT(&twice_n, 1);
f_hi += f_hi;
incr += incr;
}
P_UX_MSD(&twice_n, f_hi);
}
/*
** at this point sum = K*sum{ k=1,2,... | J(2k,x) }, and C2 points
** to K*J(0,x). Compute K from the relation
**
** 1 = J(0,x) + 2*{ J(2,x) + J(4,x) + J(6,x) ... }
*/
UX_INCR_EXPONENT(&sum, 1);
ADDSUB(C2, &sum, ADD, &sum);
DIVIDE( unpacked_result, &sum, FULL_PRECISION, unpacked_result);
return;
return_exception:
UX_SET_SIGN_EXP_MSD(
unpacked_result,
UX_OVERFLOW_EXPONENT == exponent ? UX_SIGN_BIT : 0,
exponent,
UX_MSB);
}
/*
** 2.3 POLYNOMIAL RANGE FOR ORDER LESS THAN 2
** ------------------------------------------
**
** C(n,x) oscillates much like an attenuated sin or cos curve, and consequently
** has infinite number of zeros. The polynomial range is divided into
** intervals, each of which contains a zero of the function. We then expand
** C(n,x) in a "polynomial" around that zero.
**
** The primary issue in the polynomial range is determining the appropriate
** zero and corresponding set of polynomial coefficients for a given argument.
** Generally speaking, if e[i] and e[i+1] are i-th and i+1st extrema locations
** of C(n,x), and z[i] is the zero located between e[i] and e[i+1], then we
** approximate C(n,x) on [ e[i], e[i+1] ) in a polynomial around z[i].
**
** NOTE: The above 'algorithm' requires some special case code when
** the function has a zero at x = 0 and for the first interval of
** y0 and y1. See the comments in the MPHOC code below for details.
**
**
** 2.3.1 CONSTRUCTING THE ARRAYS
** -----------------------------
**
** The first step in constructing the arrays is to establish the number of
** entries in the arrays. As a side effect of this computation, we determine
** the range for the asymptotic evaluations. It should be noted here, that
** while the asymptotic expansion is useful for x as small as 8, if x is less
** that (approximately) 22, the terms of the asymptotic approximation do not
** decrease in magnitude, which is a problem for the unpacked rational
** evaluation routine. Consequently, we need to force the lower limit of the
** asymptotic range to be at least 22.
**
** For each of the four bessel functions, f = j0, j1, y0, and y1, denote intial
** local extrema by e(f,0) and recursively define e(f, i+1) to be the first
** extrema value of f after e(f,i). Further, we define z(f,i) to be the zero
** of f between e(f,i) and e(f,i+1). Lastly, define n(f) to be the smallest
** their local extrema by e(f,1), e(f,2) ... and define n(f) to be the
** integer such that e(f, n(f)) > 22.
**
** The precise locations of the extrema points are not critical to the
** algorithm, so we need not store them in full precision. In fact, all of
** the extrema points are less than 32, so we can store them in true fixed
** point format consisting of one integer word with the binary point after
** the 5-th most significant bit.
**
** The values of the zeros on the other hand must be stored to twice the normal
** precision. Toward this end, we represent the zeros using a 256 bit fraction.
** Since the input argument has 113 significant bits, if we compute the reduced
** argument to 128 bits, the zeros need only be accurate to 241 bits, which
** leaves 15 "extra" bits in the 256 bit fraction. Since the signs of the
** zeros are all positive, and the exponents are small, we can conserve overall
** storage by encoding the exponent of the zeros in the low order 5 bits of the
** fraction field and construct the unpacked form of the zero at run-time.
**
** The interval data is stored as:
*/
typedef struct {
UX_FRACTION_DIGIT_TYPE extrema;
WORD eval_data;
# if (BITS_PER_WORD < 64)
WORD eval_data_hi;
# endif
UX_FRACTION_DIGIT_TYPE zero[2*NUM_UX_FRACTION_DIGITS];
FIXED_128 coefficients[1];
} INTERVAL_DATA;
#define FIXED_BITS_PER_INTERVAL_DATA \
((2*NUM_UX_FRACTION_DIGITS + 1)*BITS_PER_UX_FRACTION_DIGIT_TYPE \
+ __NUM_WORDS * BITS_PER_WORD)
#define OFFSET_POS 32
#define OFFSET_WIDTH 10
#define OFFSET_MASK MAKE_MASK(OFFSET_WIDTH, 0)
#if (BITS_PER_WORD < 64)
# define __NUM_WORDS 2
# define G_OFFSET(ip) ((ip)->eval_data_hi & OFFSET_MASK)
#else
# define __NUM_WORDS 1
# define G_OFFSET(ip) ((((ip)->eval_data) >> OFFSET_POS) & OFFSET_MASK)
#endif
/*
** where
**
** extrema is the fixed point value of the upper limit
** of the evaluation interval.
** zero is the zero associated with this particular
** interval
** eval_data is miscellaneous information about the evaluation
** on this interval, including the degree of the
** polynomial
** eval_data_hi is a hack to deal with storing all of the evaluation
** data required in 32 bit chunks.
**
** Since the number of intervals and coefficients per interval vary, we
** create an auxiliary data structure that can be indexed by 'kind' and 'order'
** to determine the minimum asymptotic value and the start of the interval
** data:
*/
typedef struct {
UX_FRACTION_DIGIT_TYPE min_asymptotic_value;
WORD interval_data_offset;
WORD asymptotic_coef_offset;
} TABLE_DATA_MAP;
/*
** The following definitions are used to pack and extract data from the
** eval_data field of the INTERVAL_DATA structure. In order to insure that
** all of the information fits in 32 bit chunks, the format of the eval_data
** field is different depending on whether we are doing a packed or unpacked
** evaluation.
**
** For the unpacked, case, we want to have the eval_data field look like a
** super set of the flags passed to the unpacked rational evaluation routine.
** In this case the eval_data field looks like:
**
** 2 2 2 2 2 1 1 11 1
** 4 3 2 1 0 4 3 21 0 8 7 4 3 0
** +-------+-+-+-+-+-------+-+--+---+----+----+
** | |P|X|M|N| D |n| O| | | |
** +-------+-+-+-+-+-------+-+--+---+----+----+
**
** Bits Name Meaning
** --------- -----------------------------------
** P Packed or unpacked evaluation: 1 = packed
** X Expand the polynomial around the zero of the interval
** M Post multiply the result of the polynomial evaluation
** by the argument. I.e. compute z*P(z)
** N Indicates a Neumann evaluation
** D The degree of the polynomial
** n Negate the final result
** O Indicates how (if needed) to combine the odd and even
** terms of the polynomial. Choices are add/sub/none
**
** Bits 0 through 10 are the standard rational evaluation flags defined in
** dpml_ux.h.
*/
#define BESSEL_PACKED_POLY SET_BIT(24)
#define BESSEL_USE_ZERO SET_BIT(23)
#define BESSEL_POST_MULTIPLY SET_BIT(22)
#define BESSEL_NEUMANN_POLY SET_BIT(21)
#define BESSEL_NEGATE_POLY SET_BIT(13)
#define BESSEL_NO_DIVIDE SET_BIT(2*NUM_DEN_FIELD_WIDTH)
#define BESSEL_COMMON_FLAGS_MASK (SET_BIT(25) - SET_BIT(21))
#define BESSEL_EVEN_ODD_OP_POS 11
#define BESSEL_EVEN_ODD_OP_WIDTH 2
#define BESSEL_DEGREE_POS 14
#define BESSEL_DEGREE_WIDTH 7
#undef DEGREE
/*
** For the packed case, eval_data looks like;
**
** 2 22 2 2 1 1
** 4 32 1 0 4 3 7 6 0
** +-------+-+-+-+-+-------+-------+-------+
** | |P|X|M|N| D | W | B |
** +-------+-+-+-+-+-------+-------+-------+
**
** Where P, X, M, N nd D ar as above and B and W are used to endcode the
** relative expoenent bias and width for the packed coefficients
*/
#define BESSEL_EXP_BIAS_POS 0
#define BESSEL_EXP_BIAS_WIDTH 7
#define BESSEL_EXP_WIDTH_POS 7
#define BESSEL_EXP_WIDTH_WIDTH 7
#define EXTR_BITS(name,val) (((val) >> PASTE_3(BESSEL_,name,_POS)) & \
MAKE_MASK(PASTE_3(BESSEL_,name,_WIDTH),0))
/*
** The next 4 definitions are used to extract the exponent information from
** the zero values
*/
#define MIN_ASYMPTOTIC_EXPONENT 5
#define LAST (2*NUM_UX_FRACTION_DIGITS-1)
#define ZERO_EXPONENT_BITS 3
#define G_ZERO_EXPONENT(p) ((((INTERVAL_DATA *)(p))->zero[LAST]) & \
MAKE_MASK(ZERO_EXPONENT_BITS, 0))
static void
UX_BESSEL( UX_FLOAT * unpacked_argument, WORD order, WORD kind,
UX_FLOAT * unpacked_result)
{
INTERVAL_DATA * interval_data;
TABLE_DATA_MAP * table_data_map;
WORD eval_data, op;
UX_FRACTION_DIGIT_TYPE f_hi;
UX_EXPONENT_TYPE exponent;
UX_FLOAT tmp[3], *multiplier, *poly_argument;
if (2 <= order)
{
UX_LARGE_ORDER_BESSEL(unpacked_argument, order, kind, unpacked_result);
return;
}
f_hi = G_UX_MSD(unpacked_argument);
exponent = G_UX_EXPONENT(unpacked_argument);
/*
** Compare the input argument with the minimum asymptotic value for this
** bessel function
*/
table_data_map = BESSEL_TABLE_DATA_MAP + (kind + order);
if ((exponent > MIN_ASYMPTOTIC_EXPONENT) ||
((exponent == MIN_ASYMPTOTIC_EXPONENT) &&
(f_hi > table_data_map->min_asymptotic_value)))
{
UX_ASYMPTOTIC_BESSEL(unpacked_argument, order, kind, unpacked_result);
return;
}
/*
** Get the extrema, zeros and coefficients for this particular
** function.
*/
interval_data = (INTERVAL_DATA *) ((char *) TABLE_NAME +
table_data_map->interval_data_offset);
/*
** Now scan through the extrema values to determine the
** nearest zero. For the comparison, convert the high word
** and exponent of the argument to fixed point form
*/
if (exponent >= 0)
{
f_hi >>= (5 - exponent);
while (1)
{
if (f_hi <= interval_data->extrema)
break;
interval_data = (INTERVAL_DATA *) ((char *) interval_data +
G_OFFSET(interval_data));
}
}
/*
** Having located the appropriate zero, call it a, put it in
** unpacked form and carefully compute the reduced argument,
** x - a.
*/
eval_data = interval_data->eval_data;
if ((eval_data & BESSEL_USE_ZERO) == 0)
poly_argument = unpacked_argument;
else
{
COPY_TO_UX_FRACTION(interval_data->zero, &tmp[1]);
P_UX_SIGN(&tmp[1], 0);
exponent = G_ZERO_EXPONENT(interval_data);
P_UX_EXPONENT(&tmp[1], exponent);
ADDSUB(unpacked_argument, &tmp[1], SUB, &tmp[0]);
COPY_TO_UX_FRACTION(
&interval_data->zero[NUM_UX_FRACTION_DIGITS], &tmp[1]);
P_UX_EXPONENT(&tmp[1], exponent - UX_PRECISION);
ADDSUB(&tmp[0], &tmp[1], SUB, &tmp[0]);
poly_argument = &tmp[0];
}
/*
** Evaluate the polynomial.
*/
if ( eval_data & BESSEL_PACKED_POLY)
EVALUATE_PACKED_POLY(
poly_argument,
EXTR_BITS( DEGREE, eval_data),
interval_data->coefficients,
MAKE_MASK( EXTR_BITS( EXP_WIDTH, eval_data), 0),
EXTR_BITS( EXP_BIAS, eval_data),
unpacked_result);
else
{
EVALUATE_RATIONAL(
poly_argument,
interval_data->coefficients,
EXTR_BITS( DEGREE, eval_data),
eval_data,
unpacked_result);
#if 0
/*
** The call to EVALUATE_RATIONAL will have scaled poly_argument, so
** unscale it for possible use in the POST_MULTIPLY code.
*/
UX_DECR_EXPONENT(poly_argument, G_SCALE(eval_data));
#endif
}
op = EXTR_BITS( EVEN_ODD_OP, eval_data);
if ( op )
ADDSUB(unpacked_result, unpacked_result + 1, op - 1, unpacked_result);
if ( eval_data & BESSEL_POST_MULTIPLY )
MULTIPLY( poly_argument, unpacked_result, unpacked_result);
if ( eval_data & BESSEL_NEGATE_POLY )
UX_TOGGLE_SIGN( unpacked_result, UX_SIGN_BIT);
/* For y bessel functions, add in jn(x)*ln(x) term */
if ( eval_data & BESSEL_NEUMANN_POLY )
{
/*
** For Y_BESSEL:
**
** y0(x) = (2/pi)*j0(x)*ln(x) - y0_hat(x) (11)
** y1(x) = (2/pi)*j1(x)*ln(x) - (1/pi)/x - y1_hat(x)
**
** where y0_hat(x) and y1_hat(x) are polynomials that
** have just been evaluated
**
** The previous call to the polynomial evaluation routines may
** have implicitly scaled the input argument, so we may need to
** unscale before proceeding
*/
if (poly_argument == unpacked_argument)
UX_DECR_EXPONENT(unpacked_argument, G_SCALE(eval_data));
if (1 == order)
{
DIVIDE( UX_TWO_OVER_PI, unpacked_argument, FULL_PRECISION,
&tmp[1]);
ADDSUB( unpacked_result, &tmp[1], ADD, unpacked_result);
}
UX_LOG(unpacked_argument, UX_TWO_LN2_OVER_PI, &tmp[0]);
UX_BESSEL(unpacked_argument, order, J_BESSEL, &tmp[1]);
MULTIPLY(&tmp[1], &tmp[0], &tmp[0]);
ADDSUB(&tmp[0], unpacked_result, SUB, unpacked_result);
}
return;
}
/*
** All of the bessel functions call a common routine C_BESSEL, to unpacked
** their argument and account for negative orders and arguments. Some of the
** bessel functions can overflow or underflow. In order to make the selection
** of the error codes more uniform, we use an array of error codes for the
** bessel functions. Each user level bessel function will pass C_BESSEL an
** integer, error_map, that consists of three fields corresponding to underflow,
** positive overflow and negative overflow. These fields will be indices into
** the bessel_error_code table.
*/
#if !defined (BESSEL_ERROR_CODE_TABLE)
# define BESSEL_ERROR_CODE_TABLE __TABLE_NAME(bessel_error_codes)
#endif
static WORD const
BESSEL_ERROR_CODE_TABLE[] = {
NULL,
BES_J1_UNDERFLOW,
BES_J1_NEG_UNDERFLOW,
BES_JN_UNDERFLOW,
BES_JN_NEG_UNDERFLOW,
BES_Y1_OVERFLOW,
BES_YN_POS_OVERFLOW,
BES_YN_NEG_OVERFLOW,
};
#define NO_ERROR 0
#define J1_UNDERFLOW 1
#define J1_NEG_UNDERFLOW 2
#define JN_UNDERFLOW 3
#define JN_NEG_UNDERFLOW 4
#define Y1_OVERFLOW 5
#define YN_POS_OVERFLOW 6
#define YN_NEG_OVERFLOW 7
#define _FIELD_WITDTH 8
#define P_UNDERFLOW_POS 0
#define N_UNDERFLOW_POS (P_UNDERFLOW_POS + _FIELD_WITDTH)
#define P_OVERFLOW_POS (N_UNDERFLOW_POS + _FIELD_WITDTH)
#define N_OVERFLOW_POS (P_OVERFLOW_POS + _FIELD_WITDTH)
#define ERROR_MAP(pu,nu,po,no) (((pu) << P_UNDERFLOW_POS) | \
((nu) << N_UNDERFLOW_POS) | \
((po) << P_OVERFLOW_POS) | \
((no) << N_OVERFLOW_POS) )
#define MAP_MASK MAKE_MASK(_FIELD_WITDTH,0)
#define ERROR_INDEX(s,m,n,p) (m >> (s ? n : p)) & MAP_MASK
#define ERROR(s,m,n,p) BESSEL_ERROR_CODE_TABLE[ ERROR_INDEX(s,m,n,p) ]
#define OVERFLOW_ERROR(s,m) ERROR(s, m, N_OVERFLOW_POS, P_OVERFLOW_POS)
#define UNDERFLOW_ERROR(s,m) ERROR(s, m, N_UNDERFLOW_POS, P_UNDERFLOW_POS)
#if !defined(C_BESSEL)
# define C_BESSEL __INTERNAL_NAME(C_bessel__)
#endif
static void
C_BESSEL(_X_FLOAT * packed_argument, WORD order, WORD bessel_kind,
U_WORD const * class_to_action_map, WORD const error_map,
_X_FLOAT * packed_result OPT_EXCEPTION_INFO_DECLARATION )
{
WORD fp_class;
UX_SIGN_TYPE sign, sign_toggle;
UX_FRACTION_DIGIT_TYPE hi;
UX_FLOAT unpacked_argument, unpacked_result[2];
fp_class = UNPACK(
packed_argument,
& unpacked_argument,
class_to_action_map,
packed_result
OPT_EXCEPTION_INFO_ARGUMENT );
/* Map negative arguments onto positive arguments */
sign = G_UX_SIGN(&unpacked_argument);
P_UX_SIGN(&unpacked_argument, 0);
/* Account for reflection formula: C(-n,x) = (-1)^n*C(x) */
sign_toggle = UX_SIGN_BIT;
if (order < 0)
{
order = -order;
sign ^= sign_toggle;
}
sign_toggle &= ((order & 1) ? sign : 0);
if (0 > fp_class)
{
if (1 < order)
{
/*
** If orders >= 2, the unpack routine returns C(|n|,|x|), so
** we have to adjust the sign of the packed result.
*/
hi = G_X_DIGIT( packed_result, 0);
if ( (hi & F_EXP_MASK) != F_EXP_MASK )
hi |= (((UX_FRACTION_DIGIT_TYPE) sign_toggle) <<
(BITS_PER_UX_FRACTION_DIGIT_TYPE - BITS_PER_UX_SIGN_TYPE));
P_X_DIGIT( packed_result, 0, hi );
}
return;
}
UX_BESSEL(&unpacked_argument, order, bessel_kind, unpacked_result);
UX_TOGGLE_SIGN( unpacked_result, sign_toggle );
sign_toggle = G_UX_SIGN(unpacked_result);
PACK(
unpacked_result,
packed_result,
UNDERFLOW_ERROR(sign_toggle, error_map),
OVERFLOW_ERROR(sign_toggle, error_map)
OPT_EXCEPTION_INFO_ARGUMENT );
}
/*
** The following six routines are the user level bessel functions j0, j1, jn,
** y0, y1 and yn. Each of the interfaces simply passes information onto the
** C_BESSEL routine.
*/
#define BESSEL_0_1_ENTRY(order, kind, class, map) \
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument) \
BESSEL_BODY(order, kind, class, map)
#define BESSEL_N_ENTRY(kind, class, map) \
X_IX_PROTO(F_ENTRY_NAME, packed_result, order, packed_argument) \
BESSEL_BODY(order, kind, class, map)
#define BESSEL_BODY(order, kind, class, map) \
{ \
EXCEPTION_INFO_DECL \
DECLARE_X_FLOAT(packed_result) \
\
INIT_EXCEPTION_INFO; \
C_BESSEL( \
PASS_ARG_X_FLOAT(packed_argument), \
order, kind, class, map, \
PASS_RET_X_FLOAT(packed_result) \
OPT_EXCEPTION_INFO); \
RETURN_X_FLOAT(packed_result); \
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_J0_NAME
BESSEL_0_1_ENTRY(0, J_BESSEL, J0_CLASS_TO_ACTION_MAP,
ERROR_MAP( NO_ERROR, NO_ERROR, NO_ERROR, NO_ERROR ))
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_J1_NAME
BESSEL_0_1_ENTRY(1, J_BESSEL, J1_CLASS_TO_ACTION_MAP,
ERROR_MAP( J1_UNDERFLOW, J1_NEG_UNDERFLOW, NO_ERROR, NO_ERROR ))
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_JN_NAME
BESSEL_N_ENTRY(J_BESSEL, JN_CLASS_TO_ACTION_MAP,
ERROR_MAP( JN_UNDERFLOW, JN_NEG_UNDERFLOW, NO_ERROR, NO_ERROR ))
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_Y0_NAME
BESSEL_0_1_ENTRY(0, Y_BESSEL, Y0_CLASS_TO_ACTION_MAP,
ERROR_MAP( NO_ERROR, NO_ERROR, NO_ERROR, NO_ERROR ))
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_Y1_NAME
BESSEL_0_1_ENTRY(1, Y_BESSEL, Y1_CLASS_TO_ACTION_MAP,
ERROR_MAP( NO_ERROR, NO_ERROR, NO_ERROR, Y1_OVERFLOW ))
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_YN_NAME
BESSEL_N_ENTRY(Y_BESSEL, YN_CLASS_TO_ACTION_MAP,
ERROR_MAP( NO_ERROR, NO_ERROR, YN_POS_OVERFLOW, YN_NEG_OVERFLOW ))
#if defined(MAKE_INCLUDE)
# define ASSERT_TOL(tol, p, str) \
if (tol < (p)) { \
printf("ERROR: insufficient degree for " str "\n"); \
exit; \
}
@divert -append divertText
precision = ceil(UX_PRECISION/8) + 4;
# undef TABLE_NAME
# undef SET_BIT
# define SET_BIT(n) (1 << n)
START_TABLE;
TABLE_COMMENT("j0 class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "J0_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(3) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_POS_NORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_NORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 2) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 2) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 2) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 2) );
TABLE_COMMENT("j1 class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "J1_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(2) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_POS_NORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_NORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
TABLE_COMMENT("jn class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "JN_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_POS_NORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_NORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_NEGATIVE, 0) );
TABLE_COMMENT("Data for the above mappings");
PRINT_U_TBL_ITEM( /* data 1 */ ZERO );
PRINT_U_TBL_ITEM( /* data 2 */ ONE );
TABLE_COMMENT("y0 class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "Y0_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(3) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_POS_NORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_NORM, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_ERROR, 3) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_ERROR, 3) );
TABLE_COMMENT("y1 class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "Y1_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(2) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 4) +
CLASS_TO_ACTION( F_C_POS_NORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_NORM, RETURN_ERROR, 4) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_ERROR, 4) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_ERROR, 5) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_ERROR, 5) );
TABLE_COMMENT("yn class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "YN_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 6) +
CLASS_TO_ACTION( F_C_POS_NORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_NORM, RETURN_ERROR, 6) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_ERROR, 6) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_ERROR, 7) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_ERROR, 7) );
TABLE_COMMENT("Data for the above mappings");
PRINT_U_TBL_ITEM( /* data 1 */ ZERO );
PRINT_U_TBL_ITEM( /* data 2 */ BES_Y0_OF_NEGATIVE );
PRINT_U_TBL_ITEM( /* data 3 */ BES_Y0_OF_ZERO );
PRINT_U_TBL_ITEM( /* data 4 */ BES_Y1_OF_NEGATIVE );
PRINT_U_TBL_ITEM( /* data 5 */ BES_Y1_OF_ZERO );
PRINT_U_TBL_ITEM( /* data 6 */ BES_YN_OF_NEGATIVE );
PRINT_U_TBL_ITEM( /* data 7 */ BES_YN_OF_ZERO );
J0_ENUM = 0;
J1_ENUM = 1;
Y0_ENUM = 2;
Y1_ENUM = 3;
/*
** The following MPHOC code is used to generate polynomials to evaluate
** the bessel functions on sub-intervals that are bounded by their
** consecutive extrema values. On each subinterval, we evaluate a
** polynomial of the form x^i*p(x^2) or z^i*q(z) where z = x - a and i
** is 0 or 1.
**
** The polynomial evaluation process for the bessel function presents
** a bit of a problem. We would like to use the unpacked polynomial
** evaluation routine because of its performance characteristics.
** However, the unpacked polynomial evaluation routine requires that
** the polynomials be "well formed": i.e. the terms decrease in size
** and either alternate in sign or have the same sign. Most of the
** bessel polynomials do not meet this definition of "well formed". The
** good news is that most of the bessel polynomials made into "well formed"
** polynomials by evaluating their even and odd terms separately. There
** are a few exceptions for the y0 and y1 function: The first couple of
** intervals near zero cannot be made "well formed" so we need to evaluate
** in packed form (see the discussion of packed form polynomial evaluation
** in dpml_ux_ops.c).
**
** In order to deal with the different types of evaluation strategies
** along with the polynomial coefficients, we store a number of flags
** defining the evaluation type and any additional information that
** might be required for computing the final result. The flags are
** stored in the word preceeding the coefficient and include items
** like:
**
** o The form of the polynomial - packed vs. unpacked.
** o pre/post processing information
** o The degree of the polynomial
** o The bias and exponent mask used for unpacking
*/
precision = ceil(UX_PRECISION/MP_RADIX_BITS) + 4;
/*
** In order to locate the extrema and zero values as well as generate
** the interval coefficient, many auxillary functions are required.
** In most cases, we need both jn and yn versions of these function
** for n = 0 and 1. In order to consolidate much of the code, we
** parameterize all of the function to deal with the 0 and 1 cases and
** refer to the jn and yn cases "indirectly" as follows:
**
** Suppose __jn_func and __yn_func are the two versions of the functions
** we are interested in. Then, when we need to refer to __jn_func, we
** include the line
**
** function __bessel_func(x) { return __jn_func(x); }
**
** in the mphoc and use __bessel_func to refer to __jn_func. Similarly
** we can include the line
**
** function __bessel_func(x) { return __yn_func(x); }
**
** in the mphoc and use __bessel_func to refer to __yn_func.
**
** The following "table" give forward definitions for the various
** __bessel_<func> that are used and indicates what they are used for.
** The forward definitions are required so that mphoc doesn't report
** syntax errors.
*/
function __bessel(x) { return x; } /* find zeros */
function __bessel_prime(x) { return x; } /* find extrema */
function __bessel_hat(x) { return x; } /* find coef about x = a */
/*
** init_bessel sets up global values that are dependent on the order of the
** bessel function under consideration (order is 0 or 1). These values
** are use by routines defining the functions that we are going to
** approximating with polynomials or rationals.
*/
recip_pi = 1/pi;
procedure init_bessel(n)
{
bessel_order = n;
qn_asymptotic_zero_value = bessel_order*bessel_order - 1/4;
}
/*
** polynomial evaluation of jn'(x). Used to find the extrema of j0 and j1.
** Actually, __jn_prime doesn't calculate jn'(x), rather it calculates
** jn'(x)/x^i, where i is chosen so that the leading term of the series
** is constant.
*/
function __jn_prime(x)
{
auto z;
z = -j1(x);
if (bessel_order == 1)
z = j0(x) + z/x;
return z;
}
/*
** __jn_hat(z) is used to find the Remes coefficients for jn expanded
** around one of its zeros, call it a. Specifically, jn_hat(z) =
** j(n,z + a)/z^i, where i = 0 or 1.
*/
function __jn_hat(z)
{
auto x, y;
if (z == 0)
y = __jn_hat_zero_result;
else
{
x = z + bessel_zero;
y = jn(x, bessel_order);
if (bessel_do_divide)
y /= z;
}
return y;
}
/*
** __yn_prime is used (primarily) to locate the extrema of y0 and y1 by
** finding the zeros of __yn_prime. Actually, __yn_prime doesn't calculate
** yn'(x), rather it calculates yn'(x)/x^i, where i is chosen so that the
** leading term of the series is constant.
*/
function __yn_prime(x)
{
auto z;
z = -y1(x);
if (bessel_order == 1)
z = y0(x) + z/x;
return z;
}
/*
** __yn_hat(z) is used to find the Remes coefficients for yn(x) expanded
** around one of its zeros, call it a. Specifically,
** yn_hat(z) = y(n,x+a)/z.
*/
function __yn_hat(z)
{
auto x, y;
if (z == 0)
y = __yn_hat_zero_result;
else
y = yn(z + bessel_zero, bessel_order)/z;
return y;
}
/*
** __yn_neumann_hat(z) is used to find the Remes coefficients for
** neumann_yn(x) expanded around one of its zeros, call it a.
** Specifically, __yn_neumann_hat(z) = neumann_yn(n,z+a)/(pi*z^i), where
** i = 0 or 1
*/
function __yn_neumann_hat(z)
{
auto x, y;
if (z == 0)
y = __yn_hat_zero_result;
else
{
y = neumann_yn(z + bessel_zero, bessel_order)*recip_pi;
if (bessel_do_divide)
y /= z;
}
return y;
}
procedure init_bessel_hat(a, do_divide)
{
auto t;
bessel_zero = a;
bessel_do_divide = do_divide;
if (a == 0)
{
__jn_hat_zero_result = 1 - .5*bessel_order;
__yn_hat_zero_result =
(2*(log(2) - euler_gamma) + bessel_order) *
(1 - .5*bessel_order) * recip_pi;
remes_arg_flags = REMES_SQUARE_ARG;
}
else
{
__jn_hat_zero_result = __jn_prime(a);
__yn_hat_zero_result = __yn_prime(a);
remes_arg_flags = REMES_LINEAR_ARG;
}
}
/*
** find_bessel_zero attempts to find a zero of jn or yn in the "interval"
** [a,b) using an approximate Newton's method to precision p.
**
** Since we are using the MPHOC find_root operator, a and b must bracket
** the root that is being searched for.
**
** __bessel(x) is a dummy function that is redefined later on to be
** one of __jn or __yn.
*/
function find_bessel_zero(a, b, p)
{
auto saved_precision, zero;
saved_precision = precision;
precision = p;
zero = find_root(0, a, b, 0, __bessel);
precision = saved_precision;
return zero;
}
/*
** find_next_bessel_extrema(z, p) attempts to find the next extrema after
** the extrema, z, to precision p. It does this by searching for a
** bracketing pair of values, (a,b) for a zero of the derivative of the
** function, and then uses the MPHOC find_root operator.
**
** __bessel_prime(x) is a dummy function that is redefined later on to be
** one of __jn_prime or __yn_prime.
*/
function find_next_bessel_extrema(z, p)
{
auto a, b, saved_precision;
/*
** Since the difference of consecutive zeros of the bessel functions
** asymptotically approach pi, take a and b to be z + pi/2 and
** z + 3*pi/2 respectively
*/
saved_precision = precision;
precision = p;
a = z + .5*pi;
b = a + pi;
if (__bessel_prime(a)*__bessel_prime(b) > 0)
{
printf("ERROR: non-bracketing pair in find_bessel_extrema\n");
exit;
}
z = find_root(0, a, b, 0, __bessel_prime);
precision = saved_precision;
return z;
}
/*
** The following two routines are used to generate the coefficients for
** the asymptotic region.
*/
pn_zero_value = 0; /* Forward references. Will be defined later */
qn_zero_value = 0;
__Pn_Qn_scale = bldexp(1, MIN_ASYMPTOTIC_EXPONENT - 1);
function __Pn(z)
{
if (z == 0)
return pn_zero_value;
return pn_zero_value*hankel_p(__Pn_Qn_scale/z, bessel_order);
}
function __Qn(z)
{
auto x;
if (z == 0)
return qn_zero_value;
x = __Pn_Qn_scale/z;
return x * pn_zero_value*hankel_q(x, bessel_order);
}
/*
** As noted above, the coefficients for the bessel functions are not
** particularly well behaved: Sometimes they do not decrease in size
** and sometimes, they neither alternate in sign nor all have the same
** sign. The function check_em checks to see that the coefficients are
** decreasing and have a "nice" sign pattern.
*/
# define FAILED 0
# define PASSED 1
function check_em( start, end, index )
{
auto i, tmp, last_sign, toggle, new_exp, old_exp;
i = start + 1;
old_exp = bexp(ux_rational_coefs[start]);
ux_rational_coefs[index] = old_exp;
last_sign = ux_rational_coefs[start] < 0 ? -1 : 1;
while (i <= end)
{
tmp = ux_rational_coefs[i];
new_exp = bexp(ux_rational_coefs[i]);
if (new_exp > old_exp)
{
/* The second term not less than the first term is OK */
if ( i <= (start + 1))
ux_rational_coefs[index] = new_exp;
else
{
TABLE_COMMENT("Exponents don't decrease");
return FAILED;
}
}
old_exp = new_exp;
if (last_sign*tmp > 0)
{
TABLE_COMMENT("Signs don't alternate");
return FAILED;
}
last_sign = -last_sign;
i++;
}
return PASSED;
}
/*
** As pointed out above, the ill formed coefficients of the bessel
** polynomials are can frequently be put into a format that is well
** structured. Specifically, many of the polynomials have their even and
** odd coefficients form an alternating series. That is we can write the
** polynomial as:
**
** p(x) = e(x^2) + x*o(x^2)
**
** where e(x) and o(x) have alternating signs and decreasing terms even
** though p(x) does not have decreasing terms. The function reform_coefs
** takes the the coefficients of p and attempts to rearranges them into
** a well formed set. Failing that, it converts the coefficients to
** packed form.
*/
# define FLAGS_OFFSET 0
# define NUM_DEGREE_OFFSET 1
# define DEN_DEGREE_OFFSET 2
# define NUM_SCALE_OFFSET 3
# define DEN_SCALE_OFFSET 4
# define NUM_DATA_LOCATIONS 5
procedure reform_coefs(a, z, b, degree)
{
auto j, t, s, k, num_degree, den_degree, status, flags, index, offset;
/*
** As part of the reforming process, we scale the coefficients so
** that we normalize the input argument to between 1/2 and 1.
*/
t = z - a;
s = b - z;
if (s > t)
t = s;
i = 0;
t = bexp(t);
if ( 0 == z )
{
/*
** The bessel expansions around zero are known to be alternating
** in sign, so just scale the coefficients.
**
** We know these polynomials use a square term and are even or
** odd depending on the order of the bessel function
*/
if ( 0 == bessel_order )
{
s = 0;
flags = 0;
}
else
{
s = t;
flags = POST_MULTIPLY;
}
flags = NUMERATOR_FLAGS( SQUARE_TERM + ALTERNATE_SIGN + flags );
num_degree = degree;
den_degree = 0;
k = 2*t;
for (j = 0; j <= num_degree; j++ )
{
ux_rational_coefs[ j ] = bldexp(ux_tmp_coefs[ j ], s);
s += k;
}
offset = (128*(num_degree + 1) + BITS_PER_WORD);
}
else
{
/*
** These coefficients need to be split up into even and odd
** terms.
**
** if we are dividing out a zero of the function, we need to
** post multiply. Also, if the first two terms of the original
** series have different signs, then we need to subtract the
** even and odd terms rather than add them.
*/
flags =
DENOMINATOR_FLAGS(POST_MULTIPLY + SQUARE_TERM + ALTERNATE_SIGN) +
NUMERATOR_FLAGS(SQUARE_TERM + ALTERNATE_SIGN) +
BESSEL_USE_ZERO + BESSEL_NO_DIVIDE;
s = 0;
if (bessel_do_divide)
{
flags += BESSEL_POST_MULTIPLY;
s = t;
}
flags += ((((ux_tmp_coefs[0]*ux_tmp_coefs[1] < 0) ?
SUB : ADD) + 1) << BESSEL_EVEN_ODD_OP_POS);
if ((ux_tmp_coefs[0] < 0))
flags += BESSEL_NEGATE_POLY;
num_degree = floor(degree/2);
k = num_degree + 1;
den_degree = degree - k;
ux_rational_coefs[degree + 1 ] = 0; /* make sure its initialized */
for (j = 0; j <= num_degree; /* NULL */ )
{
ux_rational_coefs[ j++ ] = bldexp(ux_tmp_coefs[ i++ ], s);
s += t;
ux_rational_coefs[ k++ ] = bldexp(ux_tmp_coefs[ i++ ], s);
s += t;
}
offset = 2*(128*(num_degree + 1) + BITS_PER_WORD);
}
flags += (num_degree << BESSEL_DEGREE_POS);
index = degree + 1;
status = check_em( 0, num_degree, index + NUM_SCALE_OFFSET );
if (den_degree > 0)
status = status & check_em( num_degree + 1, degree,
index + DEN_SCALE_OFFSET);
if (FAILED != status)
/* Add scale factor for unpacked evaluations */
flags += (((t > 0) ? ((1 << SCALE_WIDTH) - t) : t) << SCALE_POS);
else
{
/*
** Need to use packed evaluation here, so do the conversion.
**
** The call to find_exponent_width and bias sets the global
** values packed_exponent_width and packed_exponent_bias.
** Since find_exponent_width_and_bias and cvt_to_packed expected
** the coefficients to be in the array ux_rational_coefs, copy
** them there in the correct order
*/
for (i = 0; i <= degree; i++)
ux_rational_coefs[i] = ux_tmp_coefs[i];
find_exponent_width_and_bias(degree, 0);
cvt_to_packed(degree, 0, packed_exponent_width,
packed_exponent_bias);
if (packed_exponent_width >= (1 << BESSEL_EXP_WIDTH_WIDTH))
printf(
"\tERROR: packed_exponent_width = %i exceeds field width\n",
packed_exponent_width);
if (packed_exponent_bias >= (1 << BESSEL_EXP_BIAS_WIDTH))
printf(
"\tERROR: packed_exponent_bias = %i exceeds field width\n",
packed_exponent_bias);
offset = 128*(degree + 1);
flags = (flags & BESSEL_COMMON_FLAGS_MASK) + BESSEL_PACKED_POLY +
((degree << BESSEL_DEGREE_POS) +
(packed_exponent_bias << BESSEL_EXP_BIAS_POS) +
(packed_exponent_width << BESSEL_EXP_WIDTH_POS));
num_degree = degree;
den_degree = 0;
}
offset = (offset + FIXED_BITS_PER_INTERVAL_DATA) / BITS_PER_CHAR;
flags += (offset << OFFSET_POS);
ux_rational_coefs[index + FLAGS_OFFSET ] = flags;
ux_rational_coefs[index + NUM_DEGREE_OFFSET ] = num_degree;
ux_rational_coefs[index + DEN_DEGREE_OFFSET ] = den_degree;
/* Save degree in ux_tmp_coefs[0] in case we need it later */
ux_tmp_coefs[0] = degree;
}
/*
** The function foo is used to determine the points at which we can
** approximate y0 and y1 using the neumann_yn functions without losing
** signficance (see (11)). In particular, we require the the ratio of
** yn and yn(x) - (2/pi)*jn(x)*ln(x) be greater than 1/2.
*/
two_over_pi = 2*recip_pi;
function foo(x)
{
auto num, den;
num = yn(x, bessel_order);
den = num - two_over_pi*jn(x, bessel_order)*log(x);
return abs(num/den) - .5;
}
/*
** print_interval_data prints the Remes coefficients and the associated
** zeros in the order/format specified in the INTERVAL_DATA structure
** definitions.
**
** The Remes coefficients are implicitly passed to this routine via the
** global array ux_fraction_digits. The evaluation flags for the
** polynomial, the numerator/denominator degrees and the scale factor
** are stored in ux_fraction_digits[index, index+1, index+2, index+3]
** respectively
*/
function five_digits(x) { return nint(100000*x)/100000; }
function low_32_bits(i) { return i - bldexp(floor(bldexp(i,-32)), 32); }
function print_interval_data(a, z, b, k, index)
{
auto flags, num_degree, den_degree, poly_degree, saved_precision;
printf("\n\t/* Data for interval %i : [ %r, %r ) - zero = %r */\n", k,
five_digits(a), five_digits(b), five_digits(z));
/*
** print the most significant digit of the upper limit of the interval
** in fixed point and the evaluation flags
*/
extrema_value_high_word =
floor(bldexp(b, BITS_PER_UX_FRACTION_DIGIT_TYPE - 5));
PRINT_64_TBL_ITEM( extrema_value_high_word );
flags = ux_rational_coefs[index + FLAGS_OFFSET];
PRINT_64_TBL_ITEM( flags );
/*
** Now print out the zero in extended format. First, add in the
** exponent, and then print out digits from high to low
*/
saved_precision = precision;
precision = ceil(2*UX_PRECISION/MP_RADIX_BITS);
z = bround(z, 2*UX_PRECISION - ZERO_EXPONENT_BITS);
exponent = bexp(z);
z = bldexp(z, -exponent) + bldexp(exponent, - 2*UX_PRECISION);
for (i = 2; i > 0; i--)
{
printf( "\t/* %3i */", BYTES(MP_BIT_OFFSET));
z = print_ux_fraction_digits(z);
MP_BIT_OFFSET += UX_PRECISION;
}
precision = saved_precision;
num_degree = ux_rational_coefs[index + NUM_DEGREE_OFFSET];
den_degree = ux_rational_coefs[index + DEN_DEGREE_OFFSET];
if ( (low_32_bits(flags) & BESSEL_PACKED_POLY) != 0)
{
printf("\t/* degree = %i - packed coefficients */\n", num_degree);
print_packed(num_degree, 0);
}
else
{
poly_degree = num_degree + den_degree;
if (den_degree)
poly_degree++;
printf("\t/* degree = %i - unpacked coefficients */\n",poly_degree);
print_ux_poly_coefs(0, num_degree, 0, 0);
if (den_degree)
print_ux_poly_coefs(num_degree - den_degree, den_degree,
0, num_degree + 1);
}
return k+1;
}
/*
** get_coefficients computes the remes coefficients for "current" function
** on the interval [a,b] expanded around the point, z. When z is zero,
** a square term polynomial approximation is assumed.
**
** get_coefficients invokes reform_coefs to see if then can be made into
** a well formed set of coefficients. The following table lists the
** possible out comes of get_coefficients based on the result reform_coefs
** and the value of action
**
** reform
** result action Processing
** ------ -------- ------------------------------
** FAILED NO_PRINT returns k
** PRINT prints packed coefficients; return k+1;
** SIGNAL print error message and quit
** PASSED NO_PRINT returns k+1
** PRINT prints packed coefficients; return k+1;
** SIGNAL prints packed coefficients; return k+1;
*/
# define NO_PRINT 0
# define PRINT 1
# define SIGNAL 2
# if STANDARD != 0
# define AUXILIARY 0
# else
# define AUXILIARY 1
# endif
function get_coefficients(a, z, b, k, p, bessel_enum, type, do_divide,
tol, action)
{
auto low, high, save_precision, actual_tol, index, tmp, flags;
save_precision = precision;
precision = p;
/*
** We assume here that if z == 0 ==> a == 0
*/
if ((z == 0) && (a != 0) )
{
printf("\tERROR: Invalid arguments to get_coefficients\n");
exit;
}
low = a - z;
high = b - z;
init_bessel_hat(z, do_divide);
flags = REMES_RELATIVE_WEIGHT + remes_arg_flags;
if (DYNAMIC)
{
flags += REMES_FIND_POLYNOMIAL;
if ( STANDARD == type)
remes( flags, low, high, __bessel_hat, tol, &poly_degree,
&ux_tmp_coefs);
else /* need auxillary function */
remes( flags, low, high, __yn_neumann_hat, tol, &poly_degree,
&ux_tmp_coefs);
}
else
{
/* Extract fixed degree from "packed" list */
tmp = fixed_degrees[ bessel_enum ] * 64;
poly_degree = floor(tmp);
fixed_degrees[ bessel_enum ] = tmp - poly_degree;
if (0 == poly_degree)
return k;
flags += REMES_STATIC;
if ( STANDARD == type)
actual_tol = remes( flags, low, high, __bessel_hat,
poly_degree, 0, &ux_tmp_coefs);
else /* need auxillary function */
actual_tol = remes( flags, low, high, __yn_neumann_hat,
poly_degree, 0, &ux_tmp_coefs);
if (actual_tol < tol)
{
printf(
"ERROR: insufficient degree for subinterval polynomial\n"
" expected tol = %r, got %r\n", five_digits(tol),
five_digits(actual_tol));
/* exit; */
}
}
precision = save_precision;
reform_coefs(a, z, b, poly_degree, type);
/* Check for ill formed coefficients */
index = poly_degree + 1;
flags = ux_rational_coefs[index + FLAGS_OFFSET] +
((STANDARD == type) ? 0 : BESSEL_NEUMANN_POLY);
ux_rational_coefs[index + FLAGS_OFFSET] = flags;
if ((low_32_bits(flags) & BESSEL_PACKED_POLY) != 0)
{
if ( SIGNAL == action )
{
printf("\tERROR: expected well form coefficients\n");
exit;
}
else if ( NO_PRINT == action )
return k;
}
else if (action == NO_PRINT)
return k+1;
return print_interval_data(a, z, b, k, index);
}
/*
** The function, get_neumann_coefficients generates the coefficients of
** the neumann function on the interval [a,b] expanded around z, where z
** is a zero of the neumann function in the interval [a,b] if it exists
** or .5*(a+b) if it doesn't.
*/
function get_neumann_coefficients(a, b, k, remes_prec, zero_prec,
bessel_enum, tol)
{
auto do_divide, neumann_zero, saved_precision;
if ((a == 0) && (bessel_order == 1))
{
do_divide = TRUE;
neumann_zero = 0;
}
else
{
init_bessel_hat(0, 0 != bessel_order);
do_divide = ( __yn_neumann_hat(a)*__yn_neumann_hat(b) < 0 );
saved_precision = precision;
precision = zero_prec;
neumann_zero = do_divide ?
find_root(0, a, b, 0, __yn_neumann_hat) : .5*(a + b);
precision = saved_precision;
}
return get_coefficients(a, neumann_zero, b, k, remes_prec, bessel_enum,
AUXILIARY, do_divide, tol, PRINT);
}
/*
** the function find_yn_bound is a "helper" function that is used to
** locate the boundaries of an interval were using the neumann
** approximations will not result in a sever cancellation error.
*/
function find_yn_bound(z, z_inc)
{
auto w;
w = z;
while (1)
{
w = z + z_inc;
if (foo(z)*foo(w) < 0)
break;
z = w;
}
return find_root(0, z, w, 0, foo);
}
/*
** find_interval_data(bessel_enum, a, x) finds all of the zeros
** and extrema values of jn or yn in the interval (0, x) as well as
** the first extrema greater than or equal to x. For each zero, the Remes
** coefficients are computed for the bessel function on [e,f], where e and
** f are the extrema values that bracket the zero. (There's one exception
** to scheme described below.)
**
** The value a is used to determine the location of the "first" extrema.
** if a != 0, we find remes coefficients on the interval (0,a) and then
** proceed as defined above on the interval (a,x) rather than (0,x). The
** value of 'a' need not actually be the location of the first extrema.
** If it is not, then a + pi/2 and a + 3*pi/2 should bracket the location
** of the first extrema.
**
** The zeros, extrema values and coefficients are written to the coefficient
** table.
*/
function find_interval_data(bessel_enum, a, x)
{
auto b, c, save_precision, zero_precision, extrema_precision, tol,
remes_precision, order, k, last_extrema, t, poly_degree, flags,
index;
/*
** In order to insure 'tol' bits in the zeros of jn, we need to
** compute bessel to at least 2*'tol' bits.
*/
if (bessel_enum < Y0_ENUM)
tol = F_PRECISION + 3;
else
tol = F_PRECISION + 1;
save_precision = precision;
extrema_precision = ceil(BITS_PER_WORD/MP_RADIX_BITS) + 4;
zero_precision = ceil(2*tol/MP_RADIX_BITS) + 4;
remes_precision = ceil(tol/MP_RADIX_BITS) + 6;
order = bessel_enum % 2;
k = 0;
init_bessel(order);
last_extrema = a;
table_offset[bessel_enum] = MP_BIT_OFFSET;
if (bessel_enum < Y0_ENUM)
{
printf(
"\n\t/* Interval polynomial coefficients for j%i */\n", order);
if (a != 0)
/* Get coefficients on (0,a) */
k = get_coefficients(0, 0, a, k, remes_precision, bessel_enum,
STANDARD, 1 == order, tol, SIGNAL);
}
else
{
printf(
"\n\t/* Interval polynomial coefficients for y%i */\n", order);
/*
** Near 0, we need to compute yn via the neumann functions (see eq.
** (11)). However, if the interval on which we use the neumann
** function includes a zero of yn, then we will have accuracy
** problems. So the first thing we do, is find the smallest zero
** of yn, call it z, and compute b, so that if t is in [0,b] then
**
** | yn(t) |
** | -------------------------- | > 1/2
** | yn(t) - (2/pi)*jn(x)*ln(x) |
**
** That way, we know there can be no massive loss of significance
** when using the neumann functions
*/
z = find_bessel_zero(a, a+1, zero_precision);
b = find_yn_bound(z, -.1);
k = get_neumann_coefficients(0, b, k, remes_precision,
zero_precision, bessel_enum, tol);
/*
** We know that expansion around the first zero of y0 or y1 between
** its first extrema values is ill conditioned and extremely large
** (hundreds of terms), so we take a *TINY* interval around the zero
** so that polynomial is not too long (i.e. the performance of the
** packed polynomial evaluation is not to bad) and the accuracy will
** be OK.
*/
c = find_yn_bound(z, .1);
k = get_coefficients(b, z, c, k, remes_precision, bessel_enum,
STANDARD, TRUE, tol, PRINT);
/*
** We finish up the "first interval" by approximating yn via the
** neumann approximation on [c, e] where e is the first extrema
** location of yn
*/
last_extrema = find_next_bessel_extrema(z - pi/4,extrema_precision);
k = get_neumann_coefficients(c, last_extrema, k, remes_precision,
zero_precision, bessel_enum, tol);
a = last_extrema;
}
/*
** Now loop through the remaining intervals
*/
flags = 0;
while (a <= x)
{
a = find_next_bessel_extrema(last_extrema, extrema_precision);
z = find_bessel_zero(last_extrema, a, zero_precision);
k = get_coefficients(last_extrema, z, a, k, remes_precision,
bessel_enum, STANDARD, TRUE, tol, PRINT);
last_extrema = a;
}
if (!DYNAMIC)
{ /* Check for the correct number of intervals */
if (num_intervals[ bessel_enum ] != k)
{
printf(
"ERROR: Incorrect number of intervals for non DYNAMIC mode\n");
exit;
}
}
return last_extrema;
}
/*
** The function, get_neumann_coefficients is a helper function that
** generates the coefficients of the neumann functions expanded around
** z, where z is a zero of the neumann function in the interval [a,b]
** if it exists or .5*(a+b) if it doesn't
*/
function get_neumann_coefficients(a, b, k, remes_prec, zero_prec,
bessel_enum, tol)
{
auto do_divide, neumann_zero, saved_precision;
if ((a == 0) && (bessel_order == 1))
{
do_divide = TRUE;
neumann_zero = 0;
}
else
{
init_bessel_hat(0, 0 != bessel_order);
do_divide = ( __yn_neumann_hat(a)*__yn_neumann_hat(b) < 0 );
saved_precision = precision;
precision = zero_prec;
neumann_zero = do_divide ?
find_root(0, a, b, 0, __yn_neumann_hat) : .5*(a + b);
precision = saved_precision;
}
return get_coefficients(a, neumann_zero, b, k, remes_prec, bessel_enum,
AUXILIARY, do_divide, tol, PRINT);
}
function find_yn_bound(z, z_inc)
{
auto w;
w = z;
while (1)
{
w = z + z_inc;
if (foo(z)*foo(w) < 0)
break;
z = w;
}
return find_root(0, z, w, 0, foo);
}
/*
** get_asymptotic_coefficients computes the Remes rational approximations
** to Pn and Qn for n = 0 and 1. It also writes its results to the
** the coefficient table.
*/
procedure get_asymptotic_coefficients(j_min, y_min, n)
{
auto max_z, saved_precision, remes_precision, num_degree, den_degree,
degree, remes_base_flags;
saved_precision = precision;
remes_precision = ceil(F_PRECISION/MP_RADIX_BITS) + 6;
precision = remes_precision;
max_z = bldexp(1, MIN_ASYMPTOTIC_EXPONENT - 1)/min(j_min, y_min);
if ( max_z >= 1 )
{
printf("ERROR: scale factor (%i) too big for min asymptotic x\n",
MIN_ASYMPTOTIC_EXPONENT - 1);
exit;
}
pn_zero_value = 1/sqrt(bldexp(pi, MIN_ASYMPTOTIC_EXPONENT - 2));
bessel_order = n;
qn_zero_value = .5*(n - .25)*pn_zero_value;
remes_base_flags = REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG;
if (DYNAMIC)
remes( remes_base_flags + REMES_FIND_RATIONAL, 0, max_z, __Pn,
F_PRECISION + 6, &num_degree, &den_degree, &ux_rational_coefs);
else
{
num_degree = 9;
den_degree = 9 - n;
tol = remes( remes_base_flags + REMES_STATIC, 0, max_z, __Pn,
num_degree, den_degree, &ux_rational_coefs);
ASSERT_TOL(tol, F_PRECISION + 6, "Pn" )
}
printf("#define\tP%i_COEFFICIENTS\t\t((FIXED_128 *) ((char *) "
STR(MP_TABLE_NAME) " + %i))\n", n, BYTES(MP_BIT_OFFSET));
degree = print_ux_rational_coefs( num_degree, den_degree, 0);
printf("#define\tP%i_DEGREE\t\t%i\n", n, degree);
if (DYNAMIC)
remes( remes_base_flags + REMES_FIND_RATIONAL, 0, max_z, __Qn,
F_PRECISION + 6, &num_degree, &den_degree, &ux_rational_coefs);
else
{
num_degree = 9;
den_degree = 10 - n;
tol = remes( remes_base_flags + REMES_STATIC, 0, max_z, __Qn,
num_degree, den_degree, &ux_rational_coefs);
ASSERT_TOL(tol, F_PRECISION + 6, "Qn" )
}
printf("#define\tQ%i_COEFFICIENTS\t\t((FIXED_128 *) ((char *) "
STR(MP_TABLE_NAME) " + %i))\n", n, BYTES(MP_BIT_OFFSET));
degree = print_ux_rational_coefs( num_degree, den_degree,
-(MIN_ASYMPTOTIC_EXPONENT - 1));
printf("#define\tQ%i_DEGREE\t\t%i\n", n, degree);
precision = saved_precision;
}
/*
** If we aren't using "FIND" mode, specify the number of intervals and
** the associated degrees of the polynomials.
*/
if (!DYNAMIC)
{
num_intervals[J0_ENUM] = 7;
num_intervals[J1_ENUM] = 8;
num_intervals[Y0_ENUM] = 10;
num_intervals[Y1_ENUM] = 9;
# define PACK6(a,b,c,d,e,f) \
(a + (b + (c + (d + (e + f/64)/64)/64)/64)/64)/64
# define PACK7(a,b,c,d,e,f,g) (a + PACK6(b,c,d,e,f,g))/64
# define PACK8(a,b,c,d,e,f,g,h) (a + PACK7(b,c,d,e,f,g,h))/64
# define PACK9(a,b,c,d,e,f,g,h,i) (a + PACK8(b,c,d,e,f,g,h,i))/64
# define PACK10(a,b,c,d,e,f,g,h,i,j) (a + PACK9(b,c,d,e,f,g,h,i,j))/64
save_precision = precision;
precision = ceil(16*6/8) + 1;
fixed_degrees[ J0_ENUM ] = PACK7(30, 28, 28, 28, 28, 28, 28);
fixed_degrees[ J1_ENUM ] = PACK8(14, 29, 28, 28, 28, 28, 28, 28);
fixed_degrees[ Y0_ENUM ] = PACK10(20, 19, 23, 49, 34, 29, 28, 28, 28,
28);
fixed_degrees[ Y1_ENUM ] = PACK9(14, 29, 23, 41, 32, 28, 28, 28, 28);
precision = save_precision;
}
else
__tmp = 0;
/*
** Set up __bessel() to get locations of the extrema and zeros of j0 and j1.
*/
function __bessel(x) { return jn(x, bessel_order); }
function __bessel_hat(x) { return __jn_hat(x); }
function __bessel_prime(x) { return __jn_prime(x); }
/*
** Since the necessary value of "t" used in the each of the calls to
** find_interval_data is known prior to build time and the accuracy of the
** algorithm as a hole is not affected by it precision, we pre-compute
** t to save time.
**
** For j0 and j1, t is the actual location of the first extrema.
*/
t = 0;
min_asymptotic_value[J0_ENUM] = find_interval_data(J0_ENUM, t, 22);
t = 1.8411837813406593026436295136444433224361;
min_asymptotic_value[J1_ENUM] = find_interval_data(J1_ENUM, t, 22);
/*
** Now set up __bessel() to get extrema locations of y0 and y1
*/
function __bessel(x) { return yn(x, bessel_order); }
function __bessel_hat(x) { return __yn_hat(x); }
function __bessel_prime(x) { return __yn_prime(x); }
/*
** For y0 and y1 the value of t is chosen as the lower bound of an interval
** in which to find the first zero of y0 or y1. We don't pre-compute
** this value, since it need to be known to a specific accuracy.
*/
t = .65;
min_asymptotic_value[Y0_ENUM] = find_interval_data(Y0_ENUM, t, 22);
t = 1.25;
min_asymptotic_value[Y1_ENUM] = find_interval_data(Y1_ENUM, t, 22);
TABLE_COMMENT("P0 and Q0 rational coefficients");
asymptotic_coef_offset[J0_ENUM] = MP_BIT_OFFSET;
asymptotic_coef_offset[Y0_ENUM] = MP_BIT_OFFSET;
get_asymptotic_coefficients( min_asymptotic_value[J0_ENUM],
min_asymptotic_value[Y0_ENUM], 0 );
TABLE_COMMENT("P1 and Q1 rational coefficients");
asymptotic_coef_offset[J1_ENUM] = MP_BIT_OFFSET;
asymptotic_coef_offset[Y1_ENUM] = MP_BIT_OFFSET;
get_asymptotic_coefficients( min_asymptotic_value[J1_ENUM],
min_asymptotic_value[Y1_ENUM], 1 );
printf("#define BESSEL_TABLE_DATA_MAP\t"
"(TABLE_DATA_MAP *)((char *) TABLE_NAME + %i)\n", BYTES(MP_BIT_OFFSET));
for (i = 0; i < 4; i++)
{
tmp = min_asymptotic_value[i];
tmp = bldexp(tmp, BITS_PER_UX_FRACTION_DIGIT_TYPE - 5);
PRINT_64_TBL_ITEM( tmp );
PRINT_64_TBL_ITEM( BYTES(table_offset[i] ));
PRINT_64_TBL_ITEM( BYTES(asymptotic_coef_offset[i] ));
}
/*
** Generate miscellaneous constants
*/
TABLE_COMMENT("1/pi, 2/pi, 2*ln2/pi");
tmp = 2/pi; PRINT_UX_TBL_ADEF_ITEM( "UX_TWO_OVER_PI", tmp);
tmp *= log(2); PRINT_UX_TBL_ADEF_ITEM( "UX_TWO_LN2_OVER_PI", tmp);
END_TABLE;
@end_divert
@eval my $tableText; \
my $outText = MphocEval( GetStream( "divertText" ) ); \
my $defineText = Egrep( "#define", $outText, \$tableText ); \
$outText = "$tableText\n\n$defineText"; \
my $headerText = GetHeaderText( STR(BUILD_FILE_NAME), \
"Definitions and constants for bessel " . \
"routines", __FILE__ ); \
print "$headerText\n\n$outText\n";
#endif
|