1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
/******************************************************************************
Copyright (c) 2007-2024, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
#define BASE_NAME cbrt
#include "dpml_ux.h"
#if !defined(MAKE_INCLUDE)
# include STR(BUILD_FILE_NAME)
#endif
/*
** The algorithms used for the cbrt function are detailed in the X_FLOAT_NOTES
** file (notes 18.*).
**
** The basic approach is to factor the input x into f * 2^n, where
** 1 <= f < 2 and n = 3*m + i, where i = 0, 1, or 2. Then
**
** cbrt(x) = cbrt(2^n * f)
** = cbrt(2^(3*m+i) * f)
** = 2^m * cbrt(2^i) * cbrt(f).
**
** To get cbrt(f), we do a poly approx y = P(f) good to about 15 bits, then
** perform one Newton's iterations in double precision to get 45 bits and then
** one Newton's iteration in unpacked format good to about 135 bits. We fetch
** 2^(i/3) from a table in double precision and incorporate during the
** double precision Newton's iteration. The result of the unpacked Newton's
** iteration is scaled by m and has its sign bit adjusted to get the final
** result.
**
** The poly coefficients and a small table of the roots, 2^(i/3), is generated
** from dpml_cbrt.c and is shared between this file and the routines generated
** form dpml_cbrt.c
**
** Given z, an approximation to 1/cbrt(f)^2, the double precision Newton's
** iteration is of the form:
**
** y <-- z * f * (14 - 7 * z^3 * f^2 + 2 * z^6 * f^4 ) * 1/9
**
** and the unpacked iteration is:
**
** y y^3 + 2*x
** y <-- --- * ---------
** 2 y^3 + x/2
**
**
** Instead of unbiasing the exponent right away, we add and later subtract
** small corrective quantities (ADD_ADJUST, SUB_ADJUST) to get rid of the
** BIAS/3 exactly:
**
** (true_expon + BIAS + ADD_ADJUST)*(1/3) - SUB_ADJUST = true_expon/3
**
** true_expon + BIAS >= 0, so we can do unsigned arithmetic, which has
** better performance.
*/
#define SUB_ADJUST (F_PRECISION + F_EXP_BIAS + 2)/3
#define ADD_ADJUST (3*(SUB_ADJUST))
/*
** Instead of doing integer division, we can multiply by an integer that
** corresponds to 1/3 in "fixed point".
**
** If the number is small enough and in the right form, the compiler may
** optimize the multiply into shifts and adds.
*/
#define ONE_THIRD 0x1111
#define SHIFT_PROD 17
#define DIV_BY_3(num) (( (10 * num) * ONE_THIRD + num) >> SHIFT_PROD)
#if !defined(F_ENTRY_NAME)
# define F_ENTRY_NAME F_CBRT_NAME
#endif
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
DECLARE_X_FLOAT(packed_result)
WORD fp_class;
UX_UNSIGNED_EXPONENT_TYPE m, i, j;
UX_FRACTION_DIGIT_TYPE msd, tmp_digit;
UX_FLOAT unpacked_argument, unpacked_result, y_cubed, tmp[2];
D_UNION u;
double y, f, z, f2, z2, z4;
EXCEPTION_INFO_DECL
INIT_EXCEPTION_INFO;
fp_class = UNPACK(
PASS_ARG_X_FLOAT(packed_argument),
& unpacked_argument,
CBRT_CLASS_TO_ACTION_MAP,
PASS_RET_X_FLOAT(packed_result)
OPT_EXCEPTION_INFO );
if (0 >= fp_class)
RETURN_X_FLOAT(packed_result);
/*
** Get f as a double precision value z ~ 1/cbrt(f)^2 by a polynomial
** approximation
*/
msd = G_UX_MSD(&unpacked_argument);
u.D_HI_WORD = ((WORD)(D_EXP_BIAS-1) << D_EXP_POS) + (msd >> D_EXP_WIDTH);
# if (BITS_PER_UX_FRACTION_DIGIT_TYPE == 32)
tmp_digit = G_UX_2nd_MSD(&unpacked_argument);
u.F_LO_WORD = (msd << (BITS_PER_UX_FRACTION_DIGIT_TYPE - D_EXP_WIDTH))
| (lsd >> D_EXP_WIDTH);
# endif
f = u.f;
z = RECIP_CBRT_POLY(f);
/* Get m and i */
j = G_UX_EXPONENT(&unpacked_argument) + (ADD_ADJUST - 1);
m = DIV_BY_3(j);
i = j - 3*m;
/*
** Now evaluate the Newton's iterations and incorporate the factor of
** 2^(i/3). The grouping chosen here is an attempt to maximize parallelism
** and is probably not a good choice on a sequential machine
*/
z2 = z*z;
z4 = z2*z2;
f2 = f*f;
y = POW_CBRT_2_TABLE[i]*((((FOURTEEN_NINTHS*f)*z)
- z4*((SEVEN_NINTHS*f)*f2))
+ (z4*(z2*z))*((TWO_NINTHS*f)*(f2*f2)));
/* Convert the double precision result to unpacked x_float */
u.f = y;
msd = u.D_HI_WORD;
P_UX_EXPONENT(&unpacked_result, (msd >> D_EXP_POS) + m
- (D_EXP_BIAS + SUB_ADJUST - 1));
P_UX_SIGN(&unpacked_result, G_UX_SIGN(&unpacked_argument));
msd = (msd << D_EXP_WIDTH) | UX_MSB;
# if (BITS_PER_UX_FRACTION_DIGIT_TYPE == 32)
tmp_digit = u.F_LO_WORD;
P_UX_2nd_MSD(&unpacked_result, tmp_digit << D_EXP_POS);
msd |= (tmp_digit >> (BITS_PER_WORD - D_EXP_POS));
P_UX_2nd_LSD(&unpacked_result, 0);
# endif
P_UX_MSD(&unpacked_result, msd);
P_UX_LSD(&unpacked_result, 0);
/* Do the Newton's iteration */
MULTIPLY(&unpacked_result, &unpacked_result, &y_cubed);
MULTIPLY(&unpacked_result, &y_cubed, &y_cubed);
UX_INCR_EXPONENT(&unpacked_argument, 1); /* 2*x */
ADDSUB(&y_cubed, &unpacked_argument, ADD, &tmp[0]);
UX_DECR_EXPONENT(&unpacked_argument, 2); /* x/2 */
ADDSUB(&y_cubed, &unpacked_argument, ADD, &tmp[1]);
DIVIDE(&tmp[0], &tmp[1], FULL_PRECISION, &tmp[0]);
MULTIPLY(&unpacked_result, &tmp[0], &unpacked_result);
UX_DECR_EXPONENT(&unpacked_result, 1);
PACK(
&unpacked_result,
PASS_RET_X_FLOAT(packed_result),
NOT_USED,
NOT_USED
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#if defined(MAKE_INCLUDE)
@divert -append divertText
function recip_cbrt(z)
{
auto t;
t = cbrt(z);
return 1/(t * t);
}
# undef TABLE_NAME
START_TABLE;
TABLE_COMMENT("Cbrt root class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "CBRT_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_POS_NORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_NORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
/* Generate coefficients and polynomial form for 1/cbrt(f)^2 */
PRINT_R_TBL_COM_ADEF("coefs to approx 1/cbrt(f)^2", "COEFS\t\t\t");
remes(REMES_FIND_POLYNOMIAL + REMES_ABSOLUTE_WEIGHT + REMES_LINEAR_ARG,
1.0, 2.0, recip_cbrt, 15, °ree, &poly_coefs);
for (i = 0; i <= degree ; i++)
{ PRINT_R_TBL_ITEM( poly_coefs[i] ); }
GENPOLY(COEFS[%%d], RECIP_CBRT_POLY(x), degree);
/* Now get powers of cbrt(2) */
PRINT_R_TBL_COM_ADEF("cube roots of 2^i, i = 0, 1, 2","POW_CBRT_2_TABLE\t");
c = cbrt(2);
for( i = 0; i <= 2; i++)
{ PRINT_R_TBL_ITEM(c^i); }
/* Last but not least, the Newton's iteration constants */
TABLE_COMMENT("14/9, 7/9 and 2/9 in double precision");
PRINT_R_TBL_VDEF_ITEM( "FOURTEEN_NINTHS\t\t", 14/9);
PRINT_R_TBL_VDEF_ITEM( "SEVEN_NINTHS\t\t", 7/9);
PRINT_R_TBL_VDEF_ITEM( "TWO_NINTHS\t\t", 2/9);
END_TABLE;
@end_divert
@eval my $tableText; \
my $outText = MphocEval( GetStream( "divertText" ) ); \
my $defineText = Egrep( "#define", $outText, \$tableText ); \
my $polyText = Egrep( STR(GENPOLY_EXECUTABLE), $tableText, \
\$tableText ); \
$polyText = GenPoly( $polyText ); \
$outText = "$tableText\n\n$defineText\n\n$polyText"; \
my $headerText = GetHeaderText( STR(BUILD_FILE_NAME), \
"Definitions and constants cbrt", \
__FILE__ ); \
print "$headerText\n$outText";
#endif
|