File: dpml_ux_erf.c

package info (click to toggle)
intelrdfpmath 2.0u3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,088 kB
  • sloc: ansic: 310,558; makefile: 446; sh: 3
file content (584 lines) | stat: -rw-r--r-- 20,384 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/******************************************************************************
  Copyright (c) 2007-2024, Intel Corp.
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of Intel Corporation nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/

#define	BASE_NAME	erf
#include "dpml_ux.h"

#if !defined(MAKE_INCLUDE)
#   include STR(BUILD_FILE_NAME)
#endif

/* 
** BASIC DESIGN
** ------------
** 
** The erf/erfc design is based on the following identities:
** 
** 	           2*x     __inf (-x^2)^k
** 	erf(x) = --------  >     --------			(1)
** 	         sqrt(pi) /__0   (k+1)*k!
** 
** 	erfc(x) = 1 - erf(x)					(2)
** 
** 	           exp(-x^2)   __inf     (2k)!
** 	erfc(x) ~  ----------  >     -------------		(3)
** 	           x*sqrt(pi) /__0   k!*(-4*x^2)^k
** 
** 	          exp(-x^2) /  1  1/2 2/2 3/2    \
** 	erfc(x) = --------- | --- --- --- --- ... |		(4)
**	          sqrt(pi)  \ x + x + x + x +    /
** 
** 
** The domain of the two functions is divided into 8 subintervals, symmetrically
** placed around 0.  For each subinterval, the general approach is to perform 
** some primary evaluation and then adjust its sign and add or subtract a
** constant.
** 
** On the first subinterval, from 0 to 1, the primary evaluation is a rational
** approximation to erf(x) of the form x*R(x^2), based on (1).  It should be
** noted here that the upper bound of this interval could be taken as large as
** 2 and still have the terms of R(x^2) be decreasing. However, as the upper
** limit increases past 1, loss of significance when computing 1 - erf(x)
** becomes a problem, so we take the upper limit of the first interval a 1
** because it simplifies the interval determination logic. 
** 
** The second subinterval spans 1 to A, where A is chosen so that if x >= A, the
** correctly rounded value of erf(x) is 1.  On this subinterval, the primary
** evaluation is an approximation to erfc(x), of the form exp(-x*x)*S(x), where
** S(x) is a rational approximation based on (4).
** 
** The third subinterval spans A to B, where B is chosen so that if x >= B, then
** erfc(x) underflows.  On this subinterval, the primary evaluation is an
** approximation to erfc(x) of the form exp(-x*x)*T(1/x^2)/x, where T(1/x^2)
** is a rational approximation based on (3).
** 
** The actual values of A and B are somewhat arbitrary.  For this design we take
** B = 128, since that choice helps simplify the determination of the intervals.
** A is chosen to be 8.75.  The reason for this choice of A is that:
** 
** 	o it meets the requirement that x >= A ==> erf(x) = 1,
** 	o A has very few significant bits, so its fraction can be represented
** 	  in one word
** 	o For this choice of A or larger, the terms in T(1/x^2) decrease
*/ 

#define HI_WORD_OF_8_PT_75		0x8c00000000000000ull

/* 
** 
** IMPLEMENTATION STRATEGY
** -----------------------
** 
** Based on the above definitions and equation (2) we can construct table 1
** which shows how erf(x) and erfc(x) are computed based on which interval
** they lie in.  In the table we refer to the primary evaluations in the first,
** second and third subintervals as ERF(x), MID(x) and ERFC(x) respectively.
** 
** 
** 	Sub-Interval	Index	  erf(x)	  erfc(x)
** 	------------	-----	-----------	------------
**	(-Inf,  -128]     7	-1              2
**	(-128, -8.75]     6	-1              2
**	[-8.75,   -1)     5	-1 + MID(|x|)   2 - MID(|x|)
**	(-1,       0)     4	 0 - ERF(|x|)   1 + ERF(|x|)
**	( 0,       1)     0	 0 + ERF(|x|)   1 - ERF(|x|)
**	[ 1,    8.75]     1	 1 - MID(|x|)	0 + MID(x)
** 	( 8.75,  128]     2	 1         	0 + ERFC(|x|)
** 	( 128,  +Inf]     3	 1         	underflow
** 
** 			    Table 1
** 			    -------
** 
** Ignoring for the time being, that underflows may need to be signaled, the
** evaluation scheme for each subinterval, for both functions, is of the form:
** 
** 			   c + t*F(x) 			(5)
** where
** 
** 		o t is +/-1
** 		o c is -1, 0, 1 or 2
** 		o F(x) is ERF(x), MID(x), ERFC(x), UNDERFLOW(x) or 0
** 
** Based on the above, we implement erf and erfc as calls into a common
** evaluation routine, C_UX_ERF, that determines the interval the argument
** lies in and then dispatches to the appropriate evaluation code.
** 
** 
** MAPPING INTERVALS TO EVALUATIONS
** --------------------------------
** 
** The mapping from interval to evaluation function can be done via a switch
** statement on the interval.  The cases for ERFC(x) and UNDERFLOW need to check
** for whether an erf(x) or erfc(x) evaluation is being performed.
** 
** The selection of the constants, c can be accomplished by encoding the 
** appropriate values of c for erfc(x) in a "bit string" that can be indexed
** by the interval number.  Actually, rather then encoding the constants
** themselves we encode the index into an unpacked constant table.  Letting
** the index for c = -1, 0, 1 and 2 be c + 1 (i.e the indices 0, 1, 2 and
** 3 correspond to the constants -1, 0, 1 and 2), we can create two integers,
** defined by:
** 
** 		 1   1   1
** 		 4   2   0   8   6   4   2   0: bit position
** 	      +---+---+---+---+---+---+---+---+
** 	erfc: | 3 | 3 | 3 | 2 | 1 | 1 | 1 | 2 |
** 	      +---+---+---+---+---+---+---+---+
** 	      +---+---+---+---+---+---+---+---+
** 	erf:  | 0 | 0 | 0 | 1 | 2 | 2 | 2 | 1 |
** 	      +---+---+---+---+---+---+---+---+
** 
** that map indices of the constants to the intervals. Note that given one of
** the above integers, we can determine if an erf or erfc evaluation is being
** performed by looking at the low bit.
*/ 

#define MAP_BIT_WIDTH			0x2
#define MAP_MASK			MAKE_MASK(MAP_BIT_WIDTH, 0)
#define MAP_IT(a,b,c,s)		 			\
		((a << (7*MAP_BIT_WIDTH)) |		\
		 (a << (6*MAP_BIT_WIDTH)) |		\
		 (a << (5*MAP_BIT_WIDTH)) |		\
		 (b << (4*MAP_BIT_WIDTH)) |		\
		 (c << (3*MAP_BIT_WIDTH)) |		\
		 (c << (2*MAP_BIT_WIDTH)) |		\
		 (c << (1*MAP_BIT_WIDTH)) |		\
		 (b << (0*MAP_BIT_WIDTH)) |		\
		 s)

#define ERFC_INTERVAL_TO_CONSTANT_MAP 	MAP_IT(3, 2, 1, UX_SIGN_BIT)
#define ERF_INTERVAL_TO_CONSTANT_MAP 	MAP_IT(0, 1, 2, 0)

#define IS_ERF_EVALUATION(i)	(i & 1)
#define IS_ERFC_EVALUATION(i)	((i & 1) == 0)

#define INTERVAL(i)	i

/*
** CALCULATING MID(x)
** -------------------
**
** The rational expression that needs to be evaluated for mid(x) is particularly
** ill behaved from the point of view of the general unpacked rational
** evaluation routine.  So ill behaved in fact, that the general routine can
** not be used for the evaluation.  The problem is that over the range
** [1, 8.75), the evaluation cannot be formulated in such a way that the
** terms decrease in magnitude and at the same time have the argument be less
** that 1 is absolute value.  Since this is the evaluation in the math library
** that has these characteristics, the special evaluation code for this case
** is included here.
**
** The solution to the problem is to use a special (less efficient) packed format for
** the evaluation.  See dpml_ux_ops.c for at description of the format.
*/


/*
** C_UX_ERF is the common erf/erfc evaluation routine
*/

#if !defined(C_UX_ERF)
#    define C_UX_ERF	__INTERNAL_NAME(C_ux_erf__)
#endif

static void
C_UX_ERF(
  _X_FLOAT   * packed_argument,
  U_WORD       interval_to_constant_map,
  _X_FLOAT   * packed_result
  OPT_EXCEPTION_INFO_DECLARATION )
    {  
    WORD fp_class, index;
    WORD const * class_to_action_map;
    UX_SIGN_TYPE  sign;
    UX_EXPONENT_TYPE exponent;
    UX_FLOAT unpacked_argument, tmp[3], *eval_result;

    fp_class = UNPACK(
        packed_argument,
        &unpacked_argument,
        IS_ERF_EVALUATION(interval_to_constant_map) ?
            ERF_CLASS_TO_ACTION_MAP : ERFC_CLASS_TO_ACTION_MAP,
        packed_result
        OPT_EXCEPTION_INFO_ARGUMENT);

    if (0 > fp_class)
        return;

    /* Determine interval */

    exponent = G_UX_EXPONENT(&unpacked_argument);
    if (exponent < 4)
        index = (exponent <= 0) ? 0 : 1;
    else if (exponent > 4)
        index = (exponent < 8) ? 2 : 3;
    else 
        index = (G_UX_MSD(&unpacked_argument) < HI_WORD_OF_8_PT_75) ? 1 : 2;

    index += G_UX_SIGN(&unpacked_argument) ? 4 : 0;
    P_UX_SIGN(&unpacked_argument, 0);

    /*
    ** Branch to appropriate action code.
    */

    sign = UX_SIGN_BIT & interval_to_constant_map;
    eval_result = & tmp[0];
    switch (index)
        {
	case INTERVAL(4):
            sign ^= UX_SIGN_BIT;
            /* Fall through */

	case INTERVAL(0):
            EVALUATE_RATIONAL(
                &unpacked_argument,
                ERF_COEF_ARRAY,
                ERF_COEF_ARRAY_DEGREE,
                NUMERATOR_FLAGS(SQUARE_TERM | POST_MULTIPLY)
                  | DENOMINATOR_FLAGS(SQUARE_TERM),
                eval_result);
	    break;

	case INTERVAL(1):
            sign ^= UX_SIGN_BIT;
            /* Fall through */

	case INTERVAL(5):
             EVALUATE_PACKED_POLY( &unpacked_argument,
                 MID_NUM_COEF_ARRAY_DEGREE, MID_NUM_COEF_ARRAY,
                 MID_NUM_SCALE_MASK, MID_NUM_SCALE_BIAS, &tmp[1]);
             EVALUATE_PACKED_POLY( &unpacked_argument,
                 MID_DEN_COEF_ARRAY_DEGREE, MID_DEN_COEF_ARRAY,
                 MID_DEN_SCALE_MASK, MID_DEN_SCALE_BIAS, &tmp[2]);
             DIVIDE(&tmp[1], &tmp[2], FULL_PRECISION, eval_result);
             goto multiply_by_exp_m_x_sqr;
	     break;

	case INTERVAL(2):
             if (IS_ERF_EVALUATION(interval_to_constant_map))
                 goto default_label;

             /* Compute z*T(z^2) for z = 8/x */

             sign = 0;
             DIVIDE( NOT_USED, &unpacked_argument, FULL_PRECISION, &tmp[2]);
             EVALUATE_RATIONAL(
                &tmp[2],
                ERFC_COEF_ARRAY,
                ERFC_COEF_ARRAY_DEGREE,
                NUMERATOR_FLAGS(SQUARE_TERM | POST_MULTIPLY)
                  | DENOMINATOR_FLAGS(SQUARE_TERM) | P_SCALE(3),
                eval_result);
 
             /* Fall through */

        multiply_by_exp_m_x_sqr:

             /*
             ** In order to avoid excessive errors in the final result, we
             ** compute exp(-x^2) as
             **
             **		exp(-x^2) = exp(-(hi + lo))
             **		          = exp(-hi)*exp(-lo)
             **		          ~ exp(-hi)*(1 - lo)
             **		          = exp(-hi) - lo*exp(-hi)
             */

             EXTENDED_MULTIPLY(&unpacked_argument, &unpacked_argument, &tmp[1],
                 &tmp[2]);
             P_UX_SIGN( &tmp[1], UX_SIGN_BIT);
             UX_EXP( &tmp[1], &tmp[1]);
             MULTIPLY(&tmp[2], &tmp[1], &tmp[2]);
             ADDSUB(&tmp[1], &tmp[2], SUB | NO_NORMALIZATION, &tmp[1]);

             MULTIPLY(&tmp[1], eval_result, eval_result);
	     break;

	case INTERVAL(3):
             if (IS_ERFC_EVALUATION(interval_to_constant_map))
                 { /* Dummy up underflow result and "zero" index */
                 UX_SET_SIGN_EXP_MSD(&tmp[0], 0, UX_UNDERFLOW_EXPONENT, UX_MSB);
	         break;
                 }
             /* Fall through */

        default:
        default_label:
             eval_result = UX_ZERO;
	     break;
        }

    /* Adjust sign of the evaluation and add in constant */

    P_UX_SIGN(&tmp[0], sign);
    index = (interval_to_constant_map >> (MAP_BIT_WIDTH*index)) & MAP_MASK;
    WORD_TO_UX(index - 1, &tmp[1]);
    ADDSUB(eval_result, &tmp[1], ADD | NO_NORMALIZATION, &tmp[0]);

    PACK(
        &tmp[0],
        packed_result,
        ERFC_UNDERFLOW,
        NOT_USED
        OPT_EXCEPTION_INFO_ARGUMENT);
    }


/*
** The following two entry points implement erfl and erfcl by calling the
** C_UX_ERF routine with the appropriate parameters
*/

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME	F_ERF_NAME

X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
    {
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)

    INIT_EXCEPTION_INFO;
    C_UX_ERF(
        PASS_ARG_X_FLOAT(packed_argument),
        ERF_INTERVAL_TO_CONSTANT_MAP,
        PASS_RET_X_FLOAT(packed_result)
        OPT_EXCEPTION_INFO);

    RETURN_X_FLOAT(packed_result);

    }

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME	F_ERFC_NAME

X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
    {
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)

    INIT_EXCEPTION_INFO;
    C_UX_ERF(
        PASS_ARG_X_FLOAT(packed_argument),
        ERFC_INTERVAL_TO_CONSTANT_MAP,
        PASS_RET_X_FLOAT(packed_result)
        OPT_EXCEPTION_INFO);

    RETURN_X_FLOAT(packed_result);

    }



#if defined(MAKE_INCLUDE)

    @divert -append divertText

    precision = ceil(UX_PRECISION/8) + 4;

#   undef TABLE_NAME

    START_TABLE;

    TABLE_COMMENT("erf class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "ERF_CLASS_TO_ACTION_MAP\t");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_NEGATIVE,  1) +
              CLASS_TO_ACTION( F_C_POS_NORM,   RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_NEG_NORM,   RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     0) );

        PRINT_U_TBL_ITEM( /* data 1 */ ONE );


    TABLE_COMMENT("erfc class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "ERFC_CLASS_TO_ACTION_MAP");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
              CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_VALUE,     3) +
              CLASS_TO_ACTION( F_C_POS_NORM,   RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_NEG_NORM,   RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE,     2) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE,     2) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     2) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     2) );

        PRINT_U_TBL_ITEM( /* data 1 */ ZERO );
        PRINT_U_TBL_ITEM( /* data 2 */  ONE );
        PRINT_U_TBL_ITEM( /* data 3 */  TWO );

    TABLE_COMMENT("unpacked 0 constant");
    PRINT_UX_TBL_ADEF_ITEM( "UX_ZERO\t\t\t", 0);

    /*
    ** The remaining mphoc computes the coefficients for the various rational
    ** evaluations.  The erf/erfc approximations are rather difficult to
    ** compute and consequently the Remes algorithm requires a long time to
    ** converge.  In order to speed up the process for the normal case, we
    ** compute rational approximation of specific degrees, rather than using
    ** the REMES_FIND_RATIONAL option.
    */

#   if UX_PRECISION != 128
#        error "Rational coefficient degrees may be invalid for this precision"
#   endif
 
    /*
    ** Generate coefficients for erf(x) evaluation on [0,1)
    */

    zero_value = 2/sqrt(pi);
    function __erf(x)
        {
        if (x == 0)
            return zero_value;
        else
            return erf(x)/x;
        }

    save_precision = precision;
    precision = ceil(UX_PRECISION/8) + 8;
    max_arg = 1;

    num_degree = 10;
    den_degree = 10;
    TABLE_COMMENT("Fixed point coefficients for erf(x) evaluation");
    remes(REMES_STATIC + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
        0, max_arg, __erf, num_degree, den_degree, &ux_rational_coefs);

    precision = save_precision;

    PRINT_FIXED_128_TBL_ADEF("ERF_COEF_ARRAY\t\t");
    degree = print_ux_rational_coefs(num_degree, den_degree, 0);
    PRINT_WORD_DEF("ERF_COEF_ARRAY_DEGREE\t", degree);


    /*
    ** Generate coefficients for erfc(x) evaluation on [8.75, 128)
    */

    zero_value = 1/sqrt(pi);

    function __erfc(z)
        {
        auto x;

        if (z == 0)
            return zero_value;

        x = 8/z;
        return exp(x*x)*x*erfc(x);
        }


    save_precision = precision;
    precision = ceil(UX_PRECISION/8) + 8;
    min_arg = 0;
    max_arg = 8/8.75;

    num_degree = 10;
    den_degree = 10;
    TABLE_COMMENT("Fixed point coefficients for erfc(x) evaluation");
    remes(REMES_STATIC + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
        min_arg, max_arg, __erfc, num_degree, den_degree, &ux_rational_coefs);

    precision = save_precision;

    PRINT_FIXED_128_TBL_ADEF("ERFC_COEF_ARRAY\t\t");
    degree = print_ux_rational_coefs(num_degree, den_degree, -3);
    PRINT_WORD_DEF("ERFC_COEF_ARRAY_DEGREE\t", degree);

    /*
    ** Generate coefficients for mid(x) evaluation on [1,8.75).
    */

    function __mid(x) { return exp(x*x)*erfc(x); }

    save_precision = precision;
    precision = ceil(UX_PRECISION/8) + 8;
    min_arg = 1;
    max_arg = 8.75;

    num_degree = 16;
    den_degree = 17;
    remes(REMES_STATIC + REMES_RELATIVE_WEIGHT + REMES_LINEAR_ARG +
        REMES_INIT_LEFT_CHEBY, min_arg, max_arg, __mid, num_degree, den_degree,
        &ux_rational_coefs);

    precision = save_precision;


    /*
    ** Now convert numerator and denominator to "packed" form and print them out
    */

    procedure cvt_and_print_packed(degree, base_index)
        {
        find_exponent_width_and_bias(degree, base_index);
        cvt_to_packed(degree, base_index, packed_exponent_width,
          packed_exponent_bias);
        print_packed(degree, base_index);
        }

    TABLE_COMMENT("Packed coefficients for mid numerator evaluation");
    PRINT_FIXED_128_TBL_ADEF("MID_NUM_COEF_ARRAY\t");
    PRINT_WORD_DEF("MID_NUM_COEF_ARRAY_DEGREE", num_degree);
    cvt_and_print_packed(num_degree, 0);
    PRINT_WORD_DEF("MID_NUM_SCALE_BIAS\t", packed_exponent_bias);
    PRINT_WORD_DEF("MID_NUM_SCALE_MASK\t", (1 << packed_exponent_width) - 1);

    TABLE_COMMENT("Packed coefficients for mid denominator evaluation");
    PRINT_FIXED_128_TBL_ADEF("MID_DEN_COEF_ARRAY\t");
    PRINT_WORD_DEF("MID_DEN_COEF_ARRAY_DEGREE", den_degree);
    cvt_and_print_packed(den_degree, num_degree + 1);
    PRINT_WORD_DEF("MID_DEN_SCALE_BIAS\t", packed_exponent_bias);
    PRINT_WORD_DEF("MID_DEN_SCALE_MASK\t", (1 << packed_exponent_width) - 1);

    END_TABLE;

    @end_divert
    @eval my $tableText;						\
          my $outText    = MphocEval( GetStream( "divertText" ) );	\
          my $defineText = Egrep( "#define", $outText, \$tableText );	\
             $outText    = "$tableText\n\n$defineText";			\
          my $headerText = GetHeaderText( STR(BUILD_FILE_NAME),         \
                           "Definitions and constants erf and erfc",	\
                              __FILE__ );				\
             print "$headerText\n\n$outText\n";

#endif