1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
|
/******************************************************************************
Copyright (c) 2007-2024, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
#define BASE_NAME exp
#include "dpml_ux.h"
#if !defined(MAKE_INCLUDE)
# include STR(BUILD_FILE_NAME)
#endif
extern _X_FLOAT PACKED_CONSTANT_TABLE[ LAST_CONS_INDEX ];
/*
** UX_EXP_REDUCE performs argument reduction for the exponential family of
** functions. Given and input argument, x, UX_EXP_REDUCE computes the reduced
** argument, z, and the scale factor, s, as:
**
** lnb*x = s*ln2 + z, |z| < ln2/2
**
** where b is equal to e or 10. If |x| > 2^16, UX_EXP_REDUCE returns a value of
** s and z that will force underflow or overflow in the pack routine.
*/
#if !defined(UX_EXP_REDUCE)
# define UX_EXP_REDUCE __INTERNAL_NAME(ux_exp_reduce__)
#endif
static WORD
UX_EXP_REDUCE(UX_FLOAT * orig_argument, UX_FLOAT * reduced_argument,
UX_FRACTION_DIGIT_TYPE * constants )
{
U_WORD shift, reduce_constant_exp;
UX_SIGN_TYPE sign;
UX_EXPONENT_TYPE exponent, scale_exponent;
UX_FRACTION_DIGIT_TYPE scale, msd, lsd;
UX_FLOAT ux_scale, tmp;
exponent = G_UX_EXPONENT(orig_argument);
sign = G_UX_SIGN(orig_argument);
reduce_constant_exp = constants[2];
if ( (UX_UNSIGNED_EXPONENT_TYPE) (exponent + 1 - reduce_constant_exp) > 18)
{ /* Either no reduction is necessary, or exponent > 17 */
scale = 0;
UX_COPY(orig_argument, reduced_argument);
if (exponent > 0)
{ /* exponent > 17, force underflow or overflow */
P_UX_EXPONENT(reduced_argument, -128);
scale = sign ? UX_UNDERFLOW_EXPONENT : UX_OVERFLOW_EXPONENT;
}
return scale;
}
/*
** Given an input argument of the form x = 2^n*f, we want to compute
** lnb*x = scale*ln2 + z, |z| <= ln2/2. Or equivalently, scale =
** nint(x*lnb/ln2) and z = scale*ln2. Suppose, the number of bits in a
** fraction digit is k, and we define K = 2^k. Further suppose that F is
** the high k-1 bits of f and L is the high k bits of lnb/ln2. Then
**
** scale = nint(x*lnb/ln2)
** = nint[ 2^n*f*(lnb/ln2) ]
** ~ nint{ 2^n*[F/(K/2)]*[L/(K/4)] }
** = nint{ 2^(n+3)*(F*L)/K^2 }
** = nint{ 2^(n+3)*[ Hi(F*L)*K + Lo(F*L) ]/K^2 }
** ~ nint{ 2^(n+3)*H(F*L)/K }
** = nint{ H(F*L)/2^(k - n - 3) }
**
** so that we can compute scale by computing the high k bits of F*L and
** "shifting" right k-n-3 bits. Since we want to multiply by scale,
** we actually mask out the low order bits after rounding. Note that
** since we took only the high k-1 bits of f, there is no possibility
** of a carry out on the round.
*/
msd = G_UX_MSD(orig_argument) >> 1;
UMULH( msd, constants[0], scale);
shift = (BITS_PER_UX_FRACTION_DIGIT_TYPE - 3) - exponent;
scale += SET_BIT(shift - 1);
scale &= -SET_BIT(shift);
/*
** Now compute (x - scale*high_bits_of_ln2) - scale*low_bits_of_ln2
** Begin by make sure scale is normalized. It could have at most two
** leading zeros
*/
while ((UX_SIGNED_FRACTION_DIGIT_TYPE) scale > 0)
{
scale += scale;
shift++;
}
/*
** Get scale*high_bits_of_ln2 and subtract from x. Theres a small
** complication that needs to be dealt with here: When computing
** scale*high_bits_of_ln2, it may be unnormalized by one bit. Which
** causes x to be right shifted one bit on the subtraction, there by
** losing the last bit of x. Most of the time, this is unimportant.
** However, for very large arguments with a non-zero lsb, this results
** in very large error in the final answer, so we need to normalize
** scale*high_bits_of_ln2 before subtracting
*/
scale_exponent = BITS_PER_UX_FRACTION_DIGIT_TYPE - shift;
EXTENDED_DIGIT_MULTIPLY(scale, constants[1], msd, lsd);
exponent = scale_exponent;
if (((UX_SIGNED_FRACTION_DIGIT_TYPE) msd) > 0)
{
exponent--;
msd = (msd + msd) + (lsd >> (BITS_PER_UX_FRACTION_DIGIT_TYPE - 1));
lsd += lsd;
}
/* adjust the product exponent by the exponent of the constant */
UX_SET_SIGN_EXP_MSD(&tmp, sign, exponent + reduce_constant_exp, msd);
P_UX_FRACTION_DIGIT(&tmp, 1, lsd);
ADDSUB(orig_argument, &tmp, SUB, &tmp);
/* scale*low_bits_of_ln2 and subtract from x - scale*high_bits_of_ln2 */
UX_SET_SIGN_EXP_MSD(&ux_scale, sign, scale_exponent, scale);
MULTIPLY(&ux_scale, (UX_FLOAT *)&constants[3], reduced_argument);
ADDSUB(&tmp, reduced_argument, SUB | NO_NORMALIZATION, reduced_argument);
scale >>= shift;
scale = (sign) ? -scale : scale;
return scale;
}
/*
** UX_EXP_COMMON is the unpacked interface to routine that will compute b^x for
** b = e or 10. It calls UX_EXP_REDUCE to get the exponent and reduced
** argument and then evaluates the exp polynomial
*/
#if !defined(UX_EXP_COMMON)
# define UX_EXP_COMMON __INTERNAL_NAME(ux_exp_common__)
#endif
void
UX_EXP_COMMON( UX_FLOAT * unpacked_argument, UX_FLOAT * unpacked_result,
UX_FRACTION_DIGIT_TYPE * constant_table)
{
UX_EXPONENT_TYPE scale;
UX_FLOAT reduced_argument;
/* Get reduced argument */
scale = UX_EXP_REDUCE(unpacked_argument, &reduced_argument, constant_table);
/* Compute e^reduced_argument */
EVALUATE_RATIONAL(
&reduced_argument,
(FIXED_128 *) &constant_table[EXP_COEF_INDEX],
constant_table[EXP_DEGREE_INDEX],
NUMERATOR_FLAGS(STANDARD),
unpacked_result);
/* Scale e^reduced_argument */
UX_INCR_EXPONENT(unpacked_result, scale);
}
/*
** UX_EXP is the unpacked interface to the exponential routine. It calls
** UX_EXP_COMMONN routine to compute its result.
*/
#if !defined(UX_EXP)
# define UX_EXP __INTERNAL_NAME(ux_exp__)
#endif
void
UX_EXP( UX_FLOAT * unpacked_argument, UX_FLOAT * unpacked_result)
{
UX_EXP_COMMON(unpacked_argument, unpacked_result,
EXP_CONSTANT_TABLE_ADDRESS);
}
/*
** F_EXP_NAME is the user level packed x-float exp routine
*/
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_EXP_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
WORD fp_class;
UX_FLOAT unpacked_argument, unpacked_result;
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
fp_class = UNPACK(
PASS_ARG_X_FLOAT(packed_argument),
& unpacked_argument,
EXP_CLASS_TO_ACTION_MAP,
PASS_RET_X_FLOAT(packed_result)
OPT_EXCEPTION_INFO );
if (0 > fp_class)
RETURN_X_FLOAT(packed_result);
UX_EXP( &unpacked_argument, &unpacked_result);
PACK(
&unpacked_result,
PASS_RET_X_FLOAT(packed_result),
EXP_UNDERFLOW,
EXP_OVERFLOW
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
/*
** F_EXPM1_NAME is the packed x-float expm1 function. F_EXPM1_NAME exam the
** size of the reduced argument. If it is small enough, a direct polynomial
** evaluation is perform. Otherwise, UX_EXP computes expm1(x) = exp(x) - 1
*/
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_EXPM1_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
WORD fp_class;
UX_EXPONENT_TYPE scale;
UX_FLOAT unpacked_argument, unpacked_result, reduced_argument, one;
UX_FRACTION_DIGIT_TYPE * constants;
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
fp_class = UNPACK(
PASS_ARG_X_FLOAT(packed_argument),
& unpacked_argument,
EXPM1_CLASS_TO_ACTION_MAP,
PASS_RET_X_FLOAT(packed_result)
OPT_EXCEPTION_INFO);
if (0 > fp_class)
RETURN_X_FLOAT(packed_result);
constants = EXP_CONSTANT_TABLE_ADDRESS;
scale = UX_EXP_REDUCE( &unpacked_argument, &reduced_argument, constants);
if (scale == 0)
{
/*
** abs(reduced_argument) < ln2/2. computing expm1(x) as
** exp(x) - 1, could result in a serve loss of significance,
** so use a direct polynomial evaluation instead. We use the
** low EXP_COEF_ARRAY_DEGREE - 1 terms of the exp polynomial.
** This has the side effect that the exponent field of the
** result is 1 to small.
*/
EVALUATE_RATIONAL(
&reduced_argument,
(FIXED_128 *) &constants[EXP_COEF_INDEX],
constants[EXP_DEGREE_INDEX] - 1,
NUMERATOR_FLAGS(POST_MULTIPLY),/* Post multiply by x */
&unpacked_result);
UX_INCR_EXPONENT(&unpacked_result, 1);
}
else
{
/*
** Compute expm1(x) = exp(x) - 1. Since |scale| >= 1,
** exp(x) <= 1/sqrt(2) and exp(x) >= sqrt(2)
*/
EVALUATE_RATIONAL(
&reduced_argument,
(FIXED_128 *) &constants[EXP_COEF_INDEX],
constants[EXP_DEGREE_INDEX],
NUMERATOR_FLAGS(STANDARD),
&unpacked_result);
UX_INCR_EXPONENT(&unpacked_result, scale);
ADDSUB(
&unpacked_result,
UX_ONE,
SUB | NO_NORMALIZATION | MAGNITUDE_ONLY,
&unpacked_result
);
}
PACK(
&unpacked_result,
PASS_RET_X_FLOAT(packed_result),
NOT_USED,
EXPM1_OVERFLOW
OPT_EXCEPTION_INFO);
RETURN_X_FLOAT(packed_result);
}
/*
** F_EXP10_NAME is the user level packed x-float exp10 routine
*/
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_EXP10_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
WORD fp_class;
UX_FLOAT unpacked_argument, unpacked_result;
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
fp_class = UNPACK(
PASS_ARG_X_FLOAT(packed_argument),
& unpacked_argument,
EXP_CLASS_TO_ACTION_MAP,
PASS_RET_X_FLOAT(packed_result)
OPT_EXCEPTION_INFO );
if (0 > fp_class)
RETURN_X_FLOAT(packed_result);
UX_EXP_COMMON( &unpacked_argument, &unpacked_result,
EXP10_CONSTANT_TABLE_ADDRESS);
PACK(
&unpacked_result,
PASS_RET_X_FLOAT(packed_result),
EXP_UNDERFLOW,
EXP_OVERFLOW
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
/*
** UX_HYPERBOLIC is the core processing for hyperbolic function of an unpacked
** argument. Depending on the evaluation flags to UX_HYPERBOLIC, it computes
** one of sinh, cosh, sinhcosh or tanh. In order to promote "efficiency" and
** clarity, then evaluation flags are divided into three separate fields
** containing (somewhat redundant) evaluation information. One field contains
** the function to be evaluated (SINH, COSH, SINHCOSH or TANH); one field
** contains the appropriate evaluation flags for EVALUATION_RATIONAL; and
** one field containing the opcode to be used by the ADDSUB routine
*/
#define __FLAGS(i,w,p) (((i) >> (p)) & MAKE_MASK(w,0))
#define EVAL_RATIONAL_POS 0
#define EVAL_RATIONAL_WIDTH (2*NUM_DEN_FIELD_WIDTH + 3)
#define EVAL_RATIONAL_FLAGS(i) __FLAGS(i,EVAL_RATIONAL_WIDTH,EVAL_RATIONAL_POS)
#define SINH_EVAL ( NUMERATOR_FLAGS( SQUARE_TERM | POST_MULTIPLY ) | SKIP)
#define COSH_EVAL ( SKIP | DENOMINATOR_FLAGS(SQUARE_TERM))
#define TANH_EVAL ( NUMERATOR_FLAGS( SQUARE_TERM | POST_MULTIPLY ) | \
DENOMINATOR_FLAGS(SQUARE_TERM) )
#define SINHCOSH_EVAL ( TANH_EVAL | NO_DIVIDE )
#define ADDSUB_POS (EVAL_RATIONAL_WIDTH + EVAL_RATIONAL_POS)
#define ADDSUB_WIDTH 2
#define ADDSUB_FLAGS(i) __FLAGS(i, ADDSUB_WIDTH, ADDSUB_POS)
#define FUNC_CODE_POS (ADDSUB_POS + ADDSUB_WIDTH)
#define SINH (1 << FUNC_CODE_POS)
#define COSH (2 << FUNC_CODE_POS)
#define SINHCOSH (4 << FUNC_CODE_POS)
#define TANH (8 << FUNC_CODE_POS)
#define EVAL_FLAGS(f,r,a) ( (f) | ((r) << EVAL_RATIONAL_POS) | \
((a) << ADDSUB_POS))
#define UX_HYPERBOLIC __INTERNAL_NAME(ux_hyperbolic__)
void
UX_HYPERBOLIC( UX_FLOAT * unpacked_argument, WORD evaluation_flags,
UX_FLOAT * unpacked_result)
{
UX_EXPONENT_TYPE scale;
UX_SIGN_TYPE sign;
UX_FLOAT reduced_argument, tmp[2];
/*
** save sign of input and its absolute value before performing
** argument reduction, x = I*ln2 + z, |z| < ln2/2. Note that
** if this is a cosh(x) evaluation, we treat the sign as positive.
*/
sign = G_UX_SIGN(unpacked_argument);
P_UX_SIGN(unpacked_argument, 0);
sign = ( evaluation_flags & COSH ) ? 0 : sign;
scale = UX_EXP_REDUCE( unpacked_argument, &reduced_argument,
EXP_CONSTANT_TABLE_ADDRESS);
/*
** if scale == 0, then abs(x) < ln2/2 ==> sinh(x) or tanh(x) may have
** a loss of significance if computed via the definition, so compute
** by polynomial instead. Otherwise, we compute exp(z) and
** exp(-z) as cosh(z) + sinh(z) and cosh(z) - sinh(z) respectively.
** So, if scale == 0, used the passed in evaluation flags, otherwise
** Force a SINHCOSH evaluation.
*/
EVALUATE_RATIONAL(
&reduced_argument,
SINHCOSH_COEF_ARRAY,
SINHCOSH_COEF_ARRAY_DEGREE,
(scale == 0) ? EVAL_RATIONAL_FLAGS(evaluation_flags) :
SINHCOSH_EVAL,
unpacked_result );
if (scale)
{
/*
** We want to compute sinh(x)/cosh(x) = (exp(x) -/+ exp(-x))/2.
** Begin by computing exp(z) and exp(-z) and then scale them
** to get exp(x)/2 and exp(-x)/2.
*/
ADDSUB(
&unpacked_result[1], /* cosh(z) */
&unpacked_result[0], /* sinh(z) */
ADD_SUB | NO_NORMALIZATION,
&tmp[0] /* exp(z):exp(-z)*/
);
UX_INCR_EXPONENT(&tmp[0], (scale - 1));
UX_DECR_EXPONENT(&tmp[1], (scale + 1));
/*
** Now add/sub exp(x)/2 and exp(-x)/2 to get sinh/cosh, if this
** is a tanh evaluation, do the divide
*/
ADDSUB(
&tmp[0], /* exp(x)/2 */
&tmp[1], /* exp(-x)/2 */
ADDSUB_FLAGS(evaluation_flags) | MAGNITUDE_ONLY | NO_NORMALIZATION,
&unpacked_result[0] /* sinh(x)/cosh(x) */
);
if (evaluation_flags & TANH)
DIVIDE(&unpacked_result[0], &unpacked_result[1], FULL_PRECISION,
&unpacked_result[0]);
}
P_UX_SIGN(unpacked_result, sign);
}
/*
** C_UX_HYPERBOLIC is the common processing routine for the hyperbolic
** routines: sinh, cosh, sinhcosh and tanh. It unpacks the input argument,
** calls UX_HYPERBOLIC to computes sinh, cosh, sinhcosh or tanh, and packs the
** results.
*/
#define C_UX_HYPERBOLIC __INTERNAL_NAME(C_ux_hyperbolic__)
static void
C_UX_HYPERBOLIC( _X_FLOAT * packed_result, _X_FLOAT * packed_argument,
U_WORD const * class_to_action_map, WORD evaluation_flags,
WORD overflow_code OPT_EXCEPTION_INFO_DECLARATION )
{
WORD fp_class;
UX_FLOAT unpacked_argument, unpacked_result[2];
fp_class = UNPACK(
packed_argument,
&unpacked_argument,
class_to_action_map,
&packed_result[0]
OPT_EXCEPTION_INFO_ARGUMENT );
if (0 > fp_class)
{ /* If this is a SINHCOSH evaluation, write second result */
if (evaluation_flags & SINHCOSH)
{
(void) UNPACK(
packed_argument,
&unpacked_argument,
COSH_CLASS_TO_ACTION_MAP,
&packed_result[1]
OPT_EXCEPTION_INFO_ARGUMENT );
}
return;
}
UX_HYPERBOLIC(
&unpacked_argument,
evaluation_flags,
&unpacked_result[0]);
PACK(
&unpacked_result[0],
packed_result,
NOT_USED,
overflow_code
OPT_EXCEPTION_INFO_ARGUMENT );
if (evaluation_flags & SINHCOSH)
/* This was a sinhcosh evaluation */
PACK(
&unpacked_result[1],
&packed_result[1],
NOT_USED,
COSH_OVERFLOW
OPT_EXCEPTION_INFO_ARGUMENT );
}
/*
** F_SINH_NAME, F_COSH_NAME, F_SINHCOSH_NAME and F_TANH_NAME are the packed
** x-float sinh, cosh, sinhcosh and tanh routines. Each of these routines
** simply invokes the common routine C_UX_HYPERBOLIC to unpack its arguments,
** compute the result and pack it.
*/
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_SINH_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
C_UX_HYPERBOLIC(
PASS_RET_X_FLOAT(packed_result),
PASS_ARG_X_FLOAT(packed_argument),
SINH_CLASS_TO_ACTION_MAP,
EVAL_FLAGS( SINH, SINH_EVAL, SUB ),
PACKED_ARG_IS_NEG(packed_argument) ? SINH_NEG_OVERFLOW : SINH_OVERFLOW
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_COSH_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
C_UX_HYPERBOLIC(
PASS_RET_X_FLOAT(packed_result),
PASS_ARG_X_FLOAT(packed_argument),
COSH_CLASS_TO_ACTION_MAP,
EVAL_FLAGS( COSH, COSH_EVAL, ADD),
COSH_OVERFLOW
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_SINHCOSH_NAME
RR_X_PROTO(F_ENTRY_NAME, packed_result0, packed_result1, packed_argument)
{
EXCEPTION_INFO_DECL
_X_FLOAT packed_result[2];
INIT_EXCEPTION_INFO;
C_UX_HYPERBOLIC(
packed_result, /*PASS_RET_X_FLOAT(packed_result)*/
PASS_ARG_X_FLOAT(packed_argument),
SINH_CLASS_TO_ACTION_MAP,
EVAL_FLAGS( SINHCOSH, SINHCOSH_EVAL, SUB_ADD),
PACKED_ARG_IS_NEG(packed_argument) ? SINH_NEG_OVERFLOW : SINH_OVERFLOW
OPT_EXCEPTION_INFO );
*packed_result0 = packed_result[0];
*packed_result1 = packed_result[1];
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_TANH_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
C_UX_HYPERBOLIC(
PASS_RET_X_FLOAT(packed_result),
PASS_ARG_X_FLOAT(packed_argument),
TANH_CLASS_TO_ACTION_MAP,
EVAL_FLAGS( TANH, TANH_EVAL, SUB_ADD),
NOT_USED
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#if defined(MAKE_INCLUDE)
@divert -append divertText
precision = ceil(UX_PRECISION/8) + 4;
# undef TABLE_NAME
START_TABLE;
TABLE_COMMENT("exp class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "EXP_CLASS_TO_ACTION_MAP\t");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(5) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_ERROR, 3) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 1) );
TABLE_COMMENT("expm1 class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "EXPM1_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(4) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_NEGATIVE, 1) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
TABLE_COMMENT("sinh class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "SINH_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(3) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
TABLE_COMMENT("cosh class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "COSH_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(2) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_NEGATIVE, 0) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 1) );
TABLE_COMMENT("tanh class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "TANH_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_NEGATIVE, 1) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
TABLE_COMMENT("Data for the class to action mappings");
PRINT_U_TBL_ITEM( /* data 1 */ ONE );
PRINT_U_TBL_ITEM( /* data 2 */ EXP_OF_NEG_INF );
PRINT_U_TBL_ITEM( /* data 3 */ EXP_OF_INF );
/*
** Create the "table" of exp constants. The table includes the constants
** for the argument reduction, the degree of the polynomial and the
** polynomial coefficients.
*/
TABLE_COMMENT("Constant structure for exp based evaluations");
PRINT_UX_FRACTION_DIGIT_TBL_ADEF("EXP_CONSTANT_TABLE_ADDRESS");
save_precision = precision;
precision = ceil(2*UX_PRECISION/8);
ln2 = log(2);
precision = save_precision;
TABLE_COMMENT("High digits of 1/ln2, ln2 and binary exponent of ln2");
exp_cons_base_offset = MP_BIT_OFFSET;
ln2_hi = bround(ln2, BITS_PER_UX_FRACTION_DIGIT_TYPE);
tmp = bround(bldexp(1/ln2, BITS_PER_UX_FRACTION_DIGIT_TYPE - 2),
BITS_PER_UX_FRACTION_DIGIT_TYPE);
PRINT_UX_FRACTION_DIGIT_TBL_ITEM(tmp);
PRINT_UX_FRACTION_DIGIT_TBL_ITEM(
bldexp(ln2, BITS_PER_UX_FRACTION_DIGIT_TYPE) );
PRINT_UX_FRACTION_DIGIT_TBL_ITEM(0);
TABLE_COMMENT("ln2_lo = ln2 - ln2_hi in unpacked form");
PRINT_UX_TBL_ITEM( ln2 - ln2_hi);
/*
** Compute polynomial coefficient for exp and expm1. Get coefficients
** for expm1 and prepend a 1 to the front of the list
*/
function __expm1(x)
{
if (x == 0)
return 1.;
else
return expm1(x)/x;
}
save_precision = precision;
precision = ceil(UX_PRECISION/8) + 8;
max_arg = ln2/2;
remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT, -max_arg,
max_arg, __expm1, UX_PRECISION, °ree, &ux_rational_coefs);
precision = save_precision;
for (i = degree + 1; i > 0; /* NULL */ )
ux_rational_coefs[i] = ux_rational_coefs[--i];
ux_rational_coefs[0] = 1;
#define __INDEX(z,b) ((z - b)/BITS_PER_UX_FRACTION_DIGIT_TYPE)
TABLE_COMMENT("Polynomial degree");
printf("#define EXP_DEGREE_INDEX\t\t%i\n",
__INDEX(MP_BIT_OFFSET, exp_cons_base_offset));
PRINT_UX_FRACTION_DIGIT_TBL_ITEM(degree+1);
TABLE_COMMENT("Fixed point coefficients for exp/expm1 evaluation");
printf("#define EXP_COEF_INDEX\t\t\t%i\n",
__INDEX(MP_BIT_OFFSET, exp_cons_base_offset));
print_ux_rational_coefs(degree + 1, 0, 0);
TABLE_COMMENT("1 in unpacked format");
PRINT_UX_TBL_ADEF_ITEM( "UX_ONE\t\t\t", 1);
/*
** Create the "table" of exp10 constants. The layout is the same as for
** the exp constants.
*/
TABLE_COMMENT("Constant structure for exp10 based evaluations");
PRINT_UX_FRACTION_DIGIT_TBL_ADEF("EXP10_CONSTANT_TABLE_ADDRESS");
save_precision = precision;
precision = ceil(2*UX_PRECISION/8);
ln2_ov_ln10 = log(2)/log(10);
precision = save_precision;
TABLE_COMMENT(
"High digits of ln10/ln2, ln2/ln10 and binary exponent of ln2/ln10");
exp_cons_base_offset = MP_BIT_OFFSET;
ln2_ov_ln10_hi = bround(ln2_ov_ln10, BITS_PER_UX_FRACTION_DIGIT_TYPE);
tmp = bround(bldexp(1/ln2_ov_ln10, BITS_PER_UX_FRACTION_DIGIT_TYPE - 2),
BITS_PER_UX_FRACTION_DIGIT_TYPE);
PRINT_UX_FRACTION_DIGIT_TBL_ITEM(tmp);
PRINT_UX_FRACTION_DIGIT_TBL_ITEM(
bldexp(ln2_ov_ln10, BITS_PER_UX_FRACTION_DIGIT_TYPE + 1) );
PRINT_UX_FRACTION_DIGIT_TBL_ITEM(-1);
TABLE_COMMENT("ln2_ov_ln10_lo = ln2 - ln2_ov_ln10__hi in unpacked form");
PRINT_UX_TBL_ITEM( ln2_ov_ln10 - ln2_ov_ln10_hi);
/*
** Compute polynomial coefficient for exp10.
*/
function __exp10(x)
{
return exp(x*log(10));
}
save_precision = precision;
precision = ceil(UX_PRECISION/8) + 8;
max_arg = ln2_ov_ln10/2;
remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT, -max_arg,
max_arg, __exp10, UX_PRECISION, °ree, &ux_rational_coefs);
precision = save_precision;
TABLE_COMMENT("Polynomial degree");
PRINT_UX_FRACTION_DIGIT_TBL_ITEM(degree);
TABLE_COMMENT("Fixed point coefficients for exp10 evaluation");
print_ux_rational_coefs(degree, 0, 0);
/*
** Now get sinh and cosh coefficients in the same array
*/
function __cosh(x) { return cosh(x); }
function __sinh(x)
{
if (x == 0)
return 1.;
else
return sinh(x)/x;
}
save_precision = precision;
precision = ceil(UX_PRECISION/8) + 8;
max_arg = ln2/2;
remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
0, max_arg, __sinh, UX_PRECISION, °ree, &ux_rational_coefs);
remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
0, max_arg, __cosh, UX_PRECISION, &tmp_degree, &tmp_coefs);
for (i = 0; i <= tmp_degree; i++)
ux_rational_coefs[i + degree + 1] = tmp_coefs[i];
TABLE_COMMENT("Fixed point coefficients for sinh/cosh evaluation");
PRINT_FIXED_128_TBL_ADEF("SINHCOSH_COEF_ARRAY\t");
degree = print_ux_rational_coefs(degree, tmp_degree, 0);
PRINT_WORD_DEF("SINHCOSH_COEF_ARRAY_DEGREE", degree);
END_TABLE;
@end_divert
@eval my $tableText; \
my $outText = MphocEval( GetStream( "divertText" ) ); \
my $defineText = Egrep( "#define", $outText, \$tableText ); \
$outText = "$tableText\n\n$defineText"; \
my $headerText = GetHeaderText( STR(BUILD_FILE_NAME), \
"Definitions and constants exponential" . \
" and hyperbolic routines", __FILE__ ); \
print "$headerText\n\n$outText\n";
#endif
|