File: dpml_ux_exp.c

package info (click to toggle)
intelrdfpmath 2.0u3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,088 kB
  • sloc: ansic: 310,558; makefile: 446; sh: 3
file content (877 lines) | stat: -rw-r--r-- 29,492 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
/******************************************************************************
  Copyright (c) 2007-2024, Intel Corp.
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of Intel Corporation nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/

#define BASE_NAME       exp
#include "dpml_ux.h"

#if !defined(MAKE_INCLUDE)
#   include STR(BUILD_FILE_NAME)
#endif

extern _X_FLOAT PACKED_CONSTANT_TABLE[ LAST_CONS_INDEX ];

/*
** UX_EXP_REDUCE performs argument reduction for the exponential family of
** functions.  Given and input argument, x, UX_EXP_REDUCE computes the reduced
** argument, z, and the scale factor, s, as:
**
**			lnb*x = s*ln2 + z,	|z| < ln2/2
**
** where b is equal to e or 10. If |x| > 2^16, UX_EXP_REDUCE returns a value of
** s and z that will force underflow or overflow in the pack routine.
*/

#if !defined(UX_EXP_REDUCE)
#   define UX_EXP_REDUCE	__INTERNAL_NAME(ux_exp_reduce__)
#endif

static WORD
UX_EXP_REDUCE(UX_FLOAT * orig_argument, UX_FLOAT * reduced_argument,
               UX_FRACTION_DIGIT_TYPE * constants )
    {
    U_WORD shift, reduce_constant_exp;
    UX_SIGN_TYPE sign;
    UX_EXPONENT_TYPE exponent, scale_exponent;
    UX_FRACTION_DIGIT_TYPE scale, msd, lsd;
    UX_FLOAT ux_scale, tmp;

    exponent = G_UX_EXPONENT(orig_argument);
    sign = G_UX_SIGN(orig_argument);

    reduce_constant_exp = constants[2];
    if ( (UX_UNSIGNED_EXPONENT_TYPE) (exponent + 1 - reduce_constant_exp) > 18)
        { /* Either no reduction is necessary, or exponent > 17 */

        scale = 0;
        UX_COPY(orig_argument, reduced_argument);
        if (exponent > 0)
            { /* exponent > 17, force underflow or overflow */
            P_UX_EXPONENT(reduced_argument, -128);
            scale = sign ? UX_UNDERFLOW_EXPONENT : UX_OVERFLOW_EXPONENT;
            }
        return scale;
        }
                
    /*
    ** Given an input argument of the form x = 2^n*f, we want to compute
    ** lnb*x = scale*ln2 + z, |z| <= ln2/2.  Or equivalently, scale =
    ** nint(x*lnb/ln2) and z = scale*ln2.  Suppose, the number of bits in a
    ** fraction digit is k, and we define K = 2^k.  Further suppose that F is
    ** the high k-1 bits of f and L is the high k bits of lnb/ln2.  Then
    **
    **		scale = nint(x*lnb/ln2)
    **		      = nint[ 2^n*f*(lnb/ln2) ]
    **		      ~ nint{ 2^n*[F/(K/2)]*[L/(K/4)] }
    **		      = nint{ 2^(n+3)*(F*L)/K^2 }
    **		      = nint{ 2^(n+3)*[ Hi(F*L)*K + Lo(F*L) ]/K^2 }
    **		      ~ nint{ 2^(n+3)*H(F*L)/K }
    **		      = nint{ H(F*L)/2^(k - n - 3) }
    **
    ** so that we can compute scale by computing the high k bits of F*L and
    ** "shifting" right k-n-3 bits.  Since we want to multiply by scale,
    ** we actually mask out the low order bits after rounding.  Note that
    ** since we took only the high k-1 bits of f, there is no possibility
    ** of a carry out on the round.
    */

    msd = G_UX_MSD(orig_argument) >> 1;
    UMULH( msd, constants[0], scale);
    shift = (BITS_PER_UX_FRACTION_DIGIT_TYPE - 3) - exponent;
    scale += SET_BIT(shift - 1);
    scale &= -SET_BIT(shift);

    /*
    ** Now compute (x - scale*high_bits_of_ln2) - scale*low_bits_of_ln2
    ** Begin by make sure scale is normalized.  It could have at most two
    ** leading zeros
    */

    while ((UX_SIGNED_FRACTION_DIGIT_TYPE) scale > 0)
        {
        scale += scale;
        shift++;
        }


    /*
    ** Get scale*high_bits_of_ln2 and subtract from x.  Theres a small
    ** complication that needs to be dealt with here:  When computing
    ** scale*high_bits_of_ln2, it may be unnormalized by one bit.  Which
    ** causes x to be right shifted one bit on the subtraction, there by
    ** losing the last bit of x.  Most of the time, this is unimportant.
    ** However, for very large arguments with a non-zero lsb, this results
    ** in very large error in the final answer, so we need to normalize
    ** scale*high_bits_of_ln2 before subtracting
    */

    scale_exponent = BITS_PER_UX_FRACTION_DIGIT_TYPE - shift;
    EXTENDED_DIGIT_MULTIPLY(scale, constants[1], msd, lsd);
    exponent = scale_exponent;
    if (((UX_SIGNED_FRACTION_DIGIT_TYPE) msd) > 0)
        {
        exponent--;
        msd = (msd + msd) + (lsd >> (BITS_PER_UX_FRACTION_DIGIT_TYPE - 1));
        lsd += lsd;
        }

    /* adjust the product exponent by the exponent of the constant */
    UX_SET_SIGN_EXP_MSD(&tmp, sign, exponent + reduce_constant_exp, msd);
    P_UX_FRACTION_DIGIT(&tmp, 1, lsd);
    ADDSUB(orig_argument, &tmp, SUB, &tmp);

    /* scale*low_bits_of_ln2 and subtract from x - scale*high_bits_of_ln2 */

    UX_SET_SIGN_EXP_MSD(&ux_scale, sign, scale_exponent, scale);
    MULTIPLY(&ux_scale, (UX_FLOAT *)&constants[3], reduced_argument);
    ADDSUB(&tmp, reduced_argument, SUB | NO_NORMALIZATION, reduced_argument);

    scale >>= shift;
    scale = (sign) ? -scale : scale;
    return scale;
    }

/*
** UX_EXP_COMMON is the unpacked interface to routine that will compute b^x for
** b = e or 10.  It calls UX_EXP_REDUCE to get the exponent and reduced
** argument and then evaluates the exp polynomial
*/

#if !defined(UX_EXP_COMMON)
#   define UX_EXP_COMMON	__INTERNAL_NAME(ux_exp_common__)
#endif

void
UX_EXP_COMMON( UX_FLOAT * unpacked_argument,  UX_FLOAT * unpacked_result,
        UX_FRACTION_DIGIT_TYPE * constant_table)
    {
    UX_EXPONENT_TYPE scale;
    UX_FLOAT reduced_argument;

    /* Get reduced argument */
    scale = UX_EXP_REDUCE(unpacked_argument, &reduced_argument, constant_table);

    /* Compute e^reduced_argument */

    EVALUATE_RATIONAL(
        &reduced_argument,
        (FIXED_128 *) &constant_table[EXP_COEF_INDEX],
        constant_table[EXP_DEGREE_INDEX],
	NUMERATOR_FLAGS(STANDARD),
        unpacked_result);

    /* Scale e^reduced_argument */

    UX_INCR_EXPONENT(unpacked_result, scale);
    }

/*
** UX_EXP is the unpacked interface to the exponential routine.  It calls
** UX_EXP_COMMONN routine to compute its result.
*/

#if !defined(UX_EXP)
#   define UX_EXP	__INTERNAL_NAME(ux_exp__)
#endif

void
UX_EXP( UX_FLOAT * unpacked_argument,  UX_FLOAT * unpacked_result)
    {
    UX_EXP_COMMON(unpacked_argument, unpacked_result,
                       EXP_CONSTANT_TABLE_ADDRESS);
    }


/*
** F_EXP_NAME is the user level packed x-float exp routine
*/

#undef	F_ENTRY_NAME
#define F_ENTRY_NAME	F_EXP_NAME

X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
    {
    WORD   fp_class;
    UX_FLOAT unpacked_argument, unpacked_result;
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)

    INIT_EXCEPTION_INFO;
    fp_class  = UNPACK(
        PASS_ARG_X_FLOAT(packed_argument),
        & unpacked_argument,
        EXP_CLASS_TO_ACTION_MAP,
        PASS_RET_X_FLOAT(packed_result)
        OPT_EXCEPTION_INFO );

    if (0 > fp_class)
       RETURN_X_FLOAT(packed_result);

    UX_EXP( &unpacked_argument, &unpacked_result);

    PACK(
        &unpacked_result,
        PASS_RET_X_FLOAT(packed_result),
        EXP_UNDERFLOW,
        EXP_OVERFLOW
        OPT_EXCEPTION_INFO );

    RETURN_X_FLOAT(packed_result);

    }


/*
** F_EXPM1_NAME is the packed x-float expm1 function.  F_EXPM1_NAME exam the
** size of the reduced argument.  If it is small enough, a direct polynomial
** evaluation is perform.  Otherwise, UX_EXP computes expm1(x) = exp(x) - 1
*/

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME	F_EXPM1_NAME

X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
    {
    WORD fp_class;
    UX_EXPONENT_TYPE scale;
    UX_FLOAT unpacked_argument, unpacked_result, reduced_argument, one;
    UX_FRACTION_DIGIT_TYPE * constants;
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)

    INIT_EXCEPTION_INFO;
    fp_class = UNPACK(
        PASS_ARG_X_FLOAT(packed_argument),
        & unpacked_argument,
        EXPM1_CLASS_TO_ACTION_MAP,
        PASS_RET_X_FLOAT(packed_result)
        OPT_EXCEPTION_INFO);

    if (0 > fp_class)
       RETURN_X_FLOAT(packed_result);

    constants = EXP_CONSTANT_TABLE_ADDRESS;
    scale = UX_EXP_REDUCE( &unpacked_argument, &reduced_argument, constants);
    if (scale == 0)
        {
        /*
        ** abs(reduced_argument) < ln2/2. computing expm1(x) as
        ** exp(x) - 1, could result in a serve loss of significance,
        ** so use a direct polynomial evaluation instead.  We use the
	** low EXP_COEF_ARRAY_DEGREE - 1 terms of the exp polynomial.
	** This has the side effect that the exponent field of the 
	** result is 1 to small.
        */
        EVALUATE_RATIONAL(
            &reduced_argument,
            (FIXED_128 *) &constants[EXP_COEF_INDEX],
    	    constants[EXP_DEGREE_INDEX] - 1,
            NUMERATOR_FLAGS(POST_MULTIPLY),/* Post multiply by x */
            &unpacked_result);
        UX_INCR_EXPONENT(&unpacked_result, 1);
        }
    else 
        {
	/*
	** Compute expm1(x) = exp(x) - 1.  Since |scale| >= 1,
        ** exp(x) <= 1/sqrt(2) and exp(x) >= sqrt(2)
        */
        EVALUATE_RATIONAL(
            &reduced_argument,
            (FIXED_128 *) &constants[EXP_COEF_INDEX],
    	    constants[EXP_DEGREE_INDEX],
	    NUMERATOR_FLAGS(STANDARD),
            &unpacked_result);
        UX_INCR_EXPONENT(&unpacked_result, scale);

        ADDSUB(
           &unpacked_result,
           UX_ONE,
           SUB | NO_NORMALIZATION | MAGNITUDE_ONLY,
           &unpacked_result
           ); 
        }

    PACK(
        &unpacked_result,
        PASS_RET_X_FLOAT(packed_result),
        NOT_USED,
        EXPM1_OVERFLOW
        OPT_EXCEPTION_INFO);

    RETURN_X_FLOAT(packed_result);

    }

/*
** F_EXP10_NAME is the user level packed x-float exp10 routine
*/

#undef	F_ENTRY_NAME
#define F_ENTRY_NAME	F_EXP10_NAME

X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
    {
    WORD   fp_class;
    UX_FLOAT unpacked_argument, unpacked_result;
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)

    INIT_EXCEPTION_INFO;
    fp_class  = UNPACK(
        PASS_ARG_X_FLOAT(packed_argument),
        & unpacked_argument,
        EXP_CLASS_TO_ACTION_MAP,
        PASS_RET_X_FLOAT(packed_result)
        OPT_EXCEPTION_INFO );

    if (0 > fp_class)
       RETURN_X_FLOAT(packed_result);

    UX_EXP_COMMON( &unpacked_argument, &unpacked_result,
                     EXP10_CONSTANT_TABLE_ADDRESS);

    PACK(
        &unpacked_result,
        PASS_RET_X_FLOAT(packed_result),
        EXP_UNDERFLOW,
        EXP_OVERFLOW
        OPT_EXCEPTION_INFO );

    RETURN_X_FLOAT(packed_result);

    }

/*
** UX_HYPERBOLIC is the core processing for hyperbolic function of an unpacked
** argument.  Depending on the evaluation flags to UX_HYPERBOLIC, it computes
** one of sinh, cosh, sinhcosh or tanh.  In order to promote "efficiency" and
** clarity, then evaluation flags are divided into three separate fields
** containing (somewhat redundant) evaluation information.  One field contains
** the function to be evaluated (SINH, COSH, SINHCOSH or TANH); one field
** contains the appropriate evaluation flags for EVALUATION_RATIONAL; and
** one field containing the opcode to be used by the ADDSUB routine
*/

#define	__FLAGS(i,w,p)		(((i) >> (p)) & MAKE_MASK(w,0))

#define EVAL_RATIONAL_POS	0
#define EVAL_RATIONAL_WIDTH	(2*NUM_DEN_FIELD_WIDTH + 3)
#define EVAL_RATIONAL_FLAGS(i)	__FLAGS(i,EVAL_RATIONAL_WIDTH,EVAL_RATIONAL_POS)

#define SINH_EVAL	( NUMERATOR_FLAGS( SQUARE_TERM | POST_MULTIPLY ) | SKIP)
#define COSH_EVAL	( SKIP | DENOMINATOR_FLAGS(SQUARE_TERM))
#define TANH_EVAL	( NUMERATOR_FLAGS( SQUARE_TERM | POST_MULTIPLY ) | \
			  DENOMINATOR_FLAGS(SQUARE_TERM) )
#define SINHCOSH_EVAL	( TANH_EVAL | NO_DIVIDE )

#define ADDSUB_POS	(EVAL_RATIONAL_WIDTH + EVAL_RATIONAL_POS)
#define ADDSUB_WIDTH	2
#define ADDSUB_FLAGS(i)	__FLAGS(i, ADDSUB_WIDTH, ADDSUB_POS)

#define FUNC_CODE_POS	(ADDSUB_POS + ADDSUB_WIDTH)
#define	SINH		(1 << FUNC_CODE_POS)
#define	COSH		(2 << FUNC_CODE_POS)
#define	SINHCOSH	(4 << FUNC_CODE_POS)
#define	TANH		(8 << FUNC_CODE_POS)

#define EVAL_FLAGS(f,r,a)	( (f) | ((r) << EVAL_RATIONAL_POS) | \
				  ((a) << ADDSUB_POS))

#define UX_HYPERBOLIC	__INTERNAL_NAME(ux_hyperbolic__)

void
UX_HYPERBOLIC( UX_FLOAT * unpacked_argument, WORD evaluation_flags,
  UX_FLOAT * unpacked_result)
    {
    UX_EXPONENT_TYPE scale;
    UX_SIGN_TYPE sign;
    UX_FLOAT reduced_argument, tmp[2];

    /*
    ** save sign of input and its absolute value before performing
    ** argument reduction, x = I*ln2 + z, |z| < ln2/2.  Note that
    ** if this is a cosh(x) evaluation, we treat the sign as positive.
    */

    sign = G_UX_SIGN(unpacked_argument);
    P_UX_SIGN(unpacked_argument, 0);
    sign = ( evaluation_flags & COSH ) ? 0 : sign;
    scale = UX_EXP_REDUCE( unpacked_argument, &reduced_argument,
                           EXP_CONSTANT_TABLE_ADDRESS);

    /*
    ** if scale == 0, then abs(x) < ln2/2 ==> sinh(x) or tanh(x) may have
    ** a loss of significance if computed via the definition, so compute
    ** by polynomial instead.  Otherwise, we compute exp(z) and 
    ** exp(-z) as cosh(z) + sinh(z) and cosh(z) - sinh(z) respectively.
    ** So, if scale == 0, used the passed in evaluation flags, otherwise
    ** Force a SINHCOSH evaluation.
    */

    EVALUATE_RATIONAL(
        &reduced_argument,
        SINHCOSH_COEF_ARRAY,
        SINHCOSH_COEF_ARRAY_DEGREE,
        (scale == 0) ? EVAL_RATIONAL_FLAGS(evaluation_flags) :
                       SINHCOSH_EVAL,
        unpacked_result );

    if (scale)
        {
        /*
        ** We want to compute sinh(x)/cosh(x) = (exp(x) -/+ exp(-x))/2.
        ** Begin by computing exp(z) and exp(-z) and then scale them
        ** to get exp(x)/2 and exp(-x)/2.
        */
        ADDSUB(
            &unpacked_result[1],	/* cosh(z)	*/
            &unpacked_result[0],	/* sinh(z)	*/
            ADD_SUB | NO_NORMALIZATION,
            &tmp[0]			/* exp(z):exp(-z)*/
            );

        UX_INCR_EXPONENT(&tmp[0], (scale - 1));
        UX_DECR_EXPONENT(&tmp[1], (scale + 1));

        /*
        ** Now add/sub exp(x)/2 and exp(-x)/2 to get sinh/cosh, if this
        ** is a tanh evaluation, do the divide
        */

        ADDSUB(
            &tmp[0],			/* exp(x)/2	*/
            &tmp[1],			/* exp(-x)/2	*/
            ADDSUB_FLAGS(evaluation_flags) | MAGNITUDE_ONLY | NO_NORMALIZATION,
            &unpacked_result[0]		/* sinh(x)/cosh(x)	*/
            );

        if (evaluation_flags & TANH)
            DIVIDE(&unpacked_result[0], &unpacked_result[1], FULL_PRECISION,
              &unpacked_result[0]);
        }

    P_UX_SIGN(unpacked_result, sign);
    }

/*
** C_UX_HYPERBOLIC is the common processing routine for the hyperbolic
** routines: sinh, cosh, sinhcosh and tanh.  It unpacks the input argument,
** calls UX_HYPERBOLIC to computes sinh, cosh, sinhcosh or tanh, and packs the
** results.
*/

#define	C_UX_HYPERBOLIC	__INTERNAL_NAME(C_ux_hyperbolic__)

static void
C_UX_HYPERBOLIC( _X_FLOAT * packed_result, _X_FLOAT * packed_argument,
  U_WORD const * class_to_action_map, WORD evaluation_flags,
  WORD overflow_code OPT_EXCEPTION_INFO_DECLARATION )
    {
    WORD    fp_class;
    UX_FLOAT unpacked_argument, unpacked_result[2];

    fp_class = UNPACK(
        packed_argument,
        &unpacked_argument,
        class_to_action_map,
        &packed_result[0]
        OPT_EXCEPTION_INFO_ARGUMENT );

    if (0 > fp_class)
        { /* If this is a SINHCOSH evaluation, write second result */
        if (evaluation_flags & SINHCOSH)
            {
            (void) UNPACK(
                packed_argument,
                &unpacked_argument,
                COSH_CLASS_TO_ACTION_MAP,
                &packed_result[1]
                OPT_EXCEPTION_INFO_ARGUMENT );
            }
        return;
        }

    UX_HYPERBOLIC(
        &unpacked_argument,
        evaluation_flags, 
        &unpacked_result[0]);

    PACK(
        &unpacked_result[0],
        packed_result,
        NOT_USED,
        overflow_code
        OPT_EXCEPTION_INFO_ARGUMENT );

    if (evaluation_flags & SINHCOSH)
        /* This was a sinhcosh evaluation */
        PACK(
            &unpacked_result[1],
            &packed_result[1],
            NOT_USED,
            COSH_OVERFLOW
            OPT_EXCEPTION_INFO_ARGUMENT );
    }

/*
** F_SINH_NAME, F_COSH_NAME, F_SINHCOSH_NAME and F_TANH_NAME are the packed
** x-float sinh, cosh, sinhcosh and tanh routines.  Each of these routines
** simply invokes the common routine C_UX_HYPERBOLIC to unpack its arguments,
** compute the result and pack it.
*/

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME	F_SINH_NAME

X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
    {
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)

    INIT_EXCEPTION_INFO;
    C_UX_HYPERBOLIC(
      PASS_RET_X_FLOAT(packed_result),
      PASS_ARG_X_FLOAT(packed_argument),
      SINH_CLASS_TO_ACTION_MAP,
      EVAL_FLAGS( SINH, SINH_EVAL, SUB ),
      PACKED_ARG_IS_NEG(packed_argument) ? SINH_NEG_OVERFLOW : SINH_OVERFLOW
      OPT_EXCEPTION_INFO );

    RETURN_X_FLOAT(packed_result);

    }

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME	F_COSH_NAME

X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
    {
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)

    INIT_EXCEPTION_INFO;
    C_UX_HYPERBOLIC(
      PASS_RET_X_FLOAT(packed_result),
      PASS_ARG_X_FLOAT(packed_argument),
      COSH_CLASS_TO_ACTION_MAP,
      EVAL_FLAGS( COSH, COSH_EVAL, ADD),
      COSH_OVERFLOW
      OPT_EXCEPTION_INFO );

    RETURN_X_FLOAT(packed_result);

    }

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME	F_SINHCOSH_NAME

RR_X_PROTO(F_ENTRY_NAME, packed_result0, packed_result1, packed_argument)
    {
    EXCEPTION_INFO_DECL
    _X_FLOAT packed_result[2];

    INIT_EXCEPTION_INFO;
    C_UX_HYPERBOLIC(
        packed_result, /*PASS_RET_X_FLOAT(packed_result)*/
        PASS_ARG_X_FLOAT(packed_argument),
        SINH_CLASS_TO_ACTION_MAP,
        EVAL_FLAGS( SINHCOSH, SINHCOSH_EVAL, SUB_ADD), 
        PACKED_ARG_IS_NEG(packed_argument) ? SINH_NEG_OVERFLOW : SINH_OVERFLOW
        OPT_EXCEPTION_INFO );

    *packed_result0 = packed_result[0];
    *packed_result1 = packed_result[1];

    }

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME	F_TANH_NAME

X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
    {
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)

    C_UX_HYPERBOLIC(
        PASS_RET_X_FLOAT(packed_result),
        PASS_ARG_X_FLOAT(packed_argument),
        TANH_CLASS_TO_ACTION_MAP,
        EVAL_FLAGS( TANH, TANH_EVAL, SUB_ADD), 
        NOT_USED
        OPT_EXCEPTION_INFO );
    RETURN_X_FLOAT(packed_result);
    }


#if defined(MAKE_INCLUDE)

    @divert -append divertText

    precision = ceil(UX_PRECISION/8) + 4;

#   undef  TABLE_NAME

    START_TABLE;

    TABLE_COMMENT("exp class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "EXP_CLASS_TO_ACTION_MAP\t");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(5) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ERROR,     3) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ERROR,     2) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     1) );

    TABLE_COMMENT("expm1 class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "EXPM1_CLASS_TO_ACTION_MAP");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(4) +
              CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_NEGATIVE,  1) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     0) );

    TABLE_COMMENT("sinh class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "SINH_CLASS_TO_ACTION_MAP");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(3) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     0) );

    TABLE_COMMENT("cosh class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "COSH_CLASS_TO_ACTION_MAP");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(2) +
              CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_NEGATIVE,  0) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     1) );


    TABLE_COMMENT("tanh class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "TANH_CLASS_TO_ACTION_MAP");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
              CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_NEGATIVE,  1) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     0) );

    TABLE_COMMENT("Data for the class to action mappings");
    PRINT_U_TBL_ITEM( /* data 1 */ ONE  );
    PRINT_U_TBL_ITEM( /* data 2 */ EXP_OF_NEG_INF );
    PRINT_U_TBL_ITEM( /* data 3 */ EXP_OF_INF );

    /*
    ** Create the "table" of exp constants. The table includes the constants
    ** for the argument reduction, the degree of the polynomial and the 
    ** polynomial coefficients.
    */

    TABLE_COMMENT("Constant structure for exp based evaluations");
    PRINT_UX_FRACTION_DIGIT_TBL_ADEF("EXP_CONSTANT_TABLE_ADDRESS");

    save_precision = precision;
    precision = ceil(2*UX_PRECISION/8);

    ln2 = log(2);

    precision = save_precision;

    TABLE_COMMENT("High digits of 1/ln2, ln2 and binary exponent of ln2");
    exp_cons_base_offset = MP_BIT_OFFSET;
    ln2_hi = bround(ln2, BITS_PER_UX_FRACTION_DIGIT_TYPE);
    tmp = bround(bldexp(1/ln2, BITS_PER_UX_FRACTION_DIGIT_TYPE - 2),
               BITS_PER_UX_FRACTION_DIGIT_TYPE);
    PRINT_UX_FRACTION_DIGIT_TBL_ITEM(tmp);
    PRINT_UX_FRACTION_DIGIT_TBL_ITEM(
                        bldexp(ln2, BITS_PER_UX_FRACTION_DIGIT_TYPE) );
    PRINT_UX_FRACTION_DIGIT_TBL_ITEM(0);

    TABLE_COMMENT("ln2_lo = ln2 - ln2_hi in unpacked form");
    PRINT_UX_TBL_ITEM( ln2 - ln2_hi);

    /*
    ** Compute polynomial coefficient for exp and expm1.  Get coefficients
    ** for expm1 and prepend a 1 to the front of the list
    */

    function __expm1(x)
        {
        if (x == 0)
            return 1.;
        else
            return expm1(x)/x;
        }

    save_precision = precision;
    precision = ceil(UX_PRECISION/8) + 8;

    max_arg = ln2/2;

    remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT, -max_arg,
       max_arg, __expm1, UX_PRECISION, &degree, &ux_rational_coefs);

    precision = save_precision;

    for (i = degree + 1; i > 0; /* NULL */ )
        ux_rational_coefs[i] = ux_rational_coefs[--i];
    ux_rational_coefs[0] = 1;

    #define __INDEX(z,b)	((z - b)/BITS_PER_UX_FRACTION_DIGIT_TYPE)
    TABLE_COMMENT("Polynomial degree");
    printf("#define EXP_DEGREE_INDEX\t\t%i\n",
           __INDEX(MP_BIT_OFFSET, exp_cons_base_offset));
    PRINT_UX_FRACTION_DIGIT_TBL_ITEM(degree+1);
    TABLE_COMMENT("Fixed point coefficients for exp/expm1 evaluation");
    printf("#define EXP_COEF_INDEX\t\t\t%i\n",
           __INDEX(MP_BIT_OFFSET, exp_cons_base_offset));
    print_ux_rational_coefs(degree + 1, 0, 0);

    TABLE_COMMENT("1 in unpacked format");
    PRINT_UX_TBL_ADEF_ITEM( "UX_ONE\t\t\t", 1);

    /*
    ** Create the "table" of exp10 constants. The layout is the same as for
    ** the exp constants.
    */


    TABLE_COMMENT("Constant structure for exp10 based evaluations");
    PRINT_UX_FRACTION_DIGIT_TBL_ADEF("EXP10_CONSTANT_TABLE_ADDRESS");

    save_precision = precision;
    precision = ceil(2*UX_PRECISION/8);

    ln2_ov_ln10 = log(2)/log(10);

    precision = save_precision;

    TABLE_COMMENT(
        "High digits of ln10/ln2, ln2/ln10 and binary exponent of ln2/ln10");
    exp_cons_base_offset = MP_BIT_OFFSET;
    ln2_ov_ln10_hi = bround(ln2_ov_ln10, BITS_PER_UX_FRACTION_DIGIT_TYPE);
    tmp = bround(bldexp(1/ln2_ov_ln10, BITS_PER_UX_FRACTION_DIGIT_TYPE - 2),
               BITS_PER_UX_FRACTION_DIGIT_TYPE);
    PRINT_UX_FRACTION_DIGIT_TBL_ITEM(tmp);
    PRINT_UX_FRACTION_DIGIT_TBL_ITEM(
                bldexp(ln2_ov_ln10, BITS_PER_UX_FRACTION_DIGIT_TYPE + 1) );
    PRINT_UX_FRACTION_DIGIT_TBL_ITEM(-1);

    TABLE_COMMENT("ln2_ov_ln10_lo = ln2 - ln2_ov_ln10__hi in unpacked form");
    PRINT_UX_TBL_ITEM( ln2_ov_ln10 - ln2_ov_ln10_hi);

    /*
    ** Compute polynomial coefficient for exp10.
    */

    function __exp10(x)
        {
        return exp(x*log(10));
        }

    save_precision = precision;
    precision = ceil(UX_PRECISION/8) + 8;

    max_arg = ln2_ov_ln10/2;

    remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT, -max_arg,
       max_arg, __exp10, UX_PRECISION, &degree, &ux_rational_coefs);

    precision = save_precision;

    TABLE_COMMENT("Polynomial degree");
    PRINT_UX_FRACTION_DIGIT_TBL_ITEM(degree);
    TABLE_COMMENT("Fixed point coefficients for exp10 evaluation");
    print_ux_rational_coefs(degree, 0, 0);

    /*
    ** Now get sinh and cosh coefficients in the same array
    */

    function __cosh(x) { return cosh(x); }

    function __sinh(x)
        {
        if (x == 0)
            return 1.;
        else
            return sinh(x)/x;
        }

    save_precision = precision;
    precision = ceil(UX_PRECISION/8) + 8;

    max_arg = ln2/2;

    remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
        0, max_arg, __sinh, UX_PRECISION, &degree, &ux_rational_coefs);

    remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
        0, max_arg, __cosh, UX_PRECISION, &tmp_degree, &tmp_coefs);

    for (i = 0; i <= tmp_degree; i++)
        ux_rational_coefs[i + degree + 1] = tmp_coefs[i];

    TABLE_COMMENT("Fixed point coefficients for sinh/cosh evaluation");
    PRINT_FIXED_128_TBL_ADEF("SINHCOSH_COEF_ARRAY\t");
    degree = print_ux_rational_coefs(degree, tmp_degree, 0);
    PRINT_WORD_DEF("SINHCOSH_COEF_ARRAY_DEGREE", degree);


    END_TABLE;

    @end_divert
    @eval my $tableText;                                                \
          my $outText    = MphocEval( GetStream( "divertText" ) );      \
          my $defineText = Egrep( "#define", $outText, \$tableText );   \
             $outText    = "$tableText\n\n$defineText";                 \
          my $headerText = GetHeaderText( STR(BUILD_FILE_NAME),         \
                           "Definitions and constants exponential" .    \
                              " and hyperbolic routines", __FILE__ );   \
             print "$headerText\n\n$outText\n";


#endif