1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
|
/******************************************************************************
Copyright (c) 2007-2024, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
#define BASE_NAME int
#include "dpml_ux.h"
#if !defined(MAKE_INCLUDE)
# include STR(BUILD_FILE_NAME)
#endif
/*
** The basic approach is based on the observation that directed rounding
** can be done by "incrementing" the fraction field based on the value of
** four bits. Consider the following diagram:
**
** +-+-----------+------------------------+-+-+--------------+
** |S| exp | |L|R| |
** +-+-----------+------------------------+-+-+--------------+
** ^ / | \
** | Least significant bit | Rounding bit
** sign bit Rounding Position
**
** Define K to be the "sticky" bit - i.e. the 'logical or' of all of the bits
** to the right of R. Then, for a given rounding mode, the values of S, L, R
** and K uniquely determine whether or not to increment L. Or to put it
** another way, S, L, R and K defines a binary value I to be added to L. The
** following table defines I as a function of rounding mode and S, L, R and K
**
** I
** -------------------------------------
** S K L R RZ RP RM RN RV
** ------- ---- ---- ---- ---- ----
** 0 0 0 0 0 0 0 0 0
** 0 0 0 1 0 1 0 0 1
** 0 0 1 0 0 0 0 0 0
** 0 0 1 1 0 1 0 1 1
** 0 1 0 0 0 1 0 0 0
** 0 1 0 1 0 1 0 1 1
** 0 1 1 0 0 1 0 0 0
** 0 1 1 1 0 1 0 1 1
** 1 0 0 0 0 0 0 0 0
** 1 0 0 1 0 0 1 0 1
** 1 0 1 0 0 0 0 0 0
** 1 0 1 1 0 0 1 1 1
** 1 1 0 0 0 0 1 0 0
** 1 1 0 1 0 0 1 1 1
** 1 1 1 0 0 0 1 0 0
** 1 1 1 1 0 0 1 1 1
**
** The above table gives rise to bit vectors, one per rounding mode, that
** determines I as a function of index = 8*S + 4*K + 2*L + R
**
** #define RZ_BIT_VECTOR 0x0000 (* 0000 0000 0000 0000 *)
** #define RP_BIT_VECTOR 0x00fa (* 0000 0000 1111 1010 *)
** #define RM_BIT_VECTOR 0xfa00 (* 1111 1010 0000 0000 *)
** #define RN_BIT_VECTOR 0xa8a8 (* 1010 1000 1010 1000 *)
** #define RV_BIT_VECTOR 0xaaaa (* 1010 1010 1010 1010 *)
**
** the UX_RND_TO_INT routine is the common logic for all of the "round-to-
** integer" routines. Most of the arguments are self explanatory. The
** low 16 bits of the 'flags' is one of the R<Z,P,M,N,V>_BIT_VECTOR's
** described above. Bits 16 and 17 of 'flags' determine which results to
** compute according to the flags:
**
** INTEGER_PART
** FRACTION_PART
**
** Additionally, UX_RND_TO_INT returns the low BITS_PER_WORD of the integer
** result.
*/
WORD
UX_RND_TO_INT( UX_FLOAT * unpacked_argument, WORD flags,
UX_FLOAT * unpacked_result, UX_FLOAT * unpacked_fraction )
{
WORD index, num_digits, shift, LR, SKLR;
UX_EXPONENT_TYPE exponent, int_exponent;
UX_FRACTION_DIGIT_TYPE *arg_ptr, *int_ptr, current_digit, new_digit,
incr, sticky, lsd, mask;
UX_FLOAT dummy;
/*
** Get fraction digits into integer variables and initialize state
*/
unpacked_result = unpacked_result ? unpacked_result : &dummy;
sticky = 0;
num_digits = NUM_UX_FRACTION_DIGITS;
exponent = G_UX_EXPONENT(unpacked_argument);
arg_ptr = &G_UX_LSD(unpacked_argument);
int_ptr = &G_UX_LSD(unpacked_result);
shift = 128 - exponent;
current_digit = 0;
do {
current_digit = *arg_ptr--;
if (shift < BITS_PER_UX_FRACTION_DIGIT_TYPE)
goto get_LR;
/*
** The current digit is completely to the right of the binary point
** so zero out the corresponding digit in the result and accumulate
** the current digit into the sticky bits
*/
*int_ptr-- = 0;
sticky = current_digit | (sticky != 0);
shift -= BITS_PER_UX_FRACTION_DIGIT_TYPE;
} while (--num_digits > 0);
sticky = (shift) ? (sticky != 0) : sticky;
current_digit = 0;
shift = 0;
get_LR:
if (shift < 0)
shift = 0;
incr = (UX_FRACTION_DIGIT_TYPE) 1 << shift;
mask = incr - 1;
/*
** At this point, we introduce a bit or a wort, but it makes processing in
** other routines easier. We compute the least significant digit of the
** abs(int(x)) as the return value. This mean we have to fetch one extra
** digit.
*/
new_digit = 2*current_digit;
if (mask == 0)
{ /* The L and R bits straddle a digit. Get them back together */
LR = (new_digit & 2) | ((UX_SIGNED_FRACTION_DIGIT_TYPE) sticky < 0);
sticky += sticky;
lsd = current_digit;
}
else
{ /* L and R are contiguous */
LR = (current_digit >> (shift - 1)) & 0x3;
sticky |= (new_digit & mask);
lsd = (num_digits > 1) ? *arg_ptr : 0;
lsd = (lsd << (BITS_PER_UX_FRACTION_DIGIT_TYPE - shift)) |
(current_digit >> shift);
}
SKLR =
((G_UX_SIGN(unpacked_argument) >> (BITS_PER_UX_SIGN_TYPE - 3)) & 0x8)
+ (((sticky != 0) << 2) + LR);
/* Get increment value, add it in and propagate the carry */
SKLR = (flags >> SKLR) & 1;
incr = SKLR ? incr : 0;
current_digit &= ~mask;
lsd += SKLR;
while (num_digits-- > 0)
{
new_digit = current_digit + incr;
incr = (new_digit < incr);
*int_ptr-- = new_digit;
current_digit = *arg_ptr--;
}
if (incr)
/*
** A carry out from the last add ==> result = 2^(exponent + 1) or
** 1, depending on whether or not exponent >= 0.
*/
{
exponent++;
exponent = (exponent < 1) ? 1 : exponent;
int_ptr[1] = UX_MSB;
}
P_UX_SIGN(unpacked_result, G_UX_SIGN(unpacked_argument));
P_UX_EXPONENT(unpacked_result, exponent);
if ( flags & FRACTION_RESULT )
/* subtract int_func(x) from x */
ADDSUB(unpacked_argument, unpacked_result, SUB, unpacked_fraction);
return lsd;
}
/*
** Each of the round-to-int functions calls a common routine C_UX_RND_TO_INT,
** to unpack its arguments; handle special input, and pack the results.
*/
#if !defined(C_UX_RND_TO_INT)
# define C_UX_RND_TO_INT __INTERNAL_NAME(C_rnd_to_int__)
#endif
static void
C_UX_RND_TO_INT( _X_FLOAT * packed_argument, U_WORD const * class_to_action_map, WORD flags,
_X_FLOAT * packed_result, _X_FLOAT * packed_fraction
OPT_EXCEPTION_INFO_DECLARATION )
{
WORD fp_class;
UX_FLOAT unpacked_argument, unpacked_result, unpacked_fraction;
fp_class = UNPACK(
packed_argument,
& unpacked_argument,
class_to_action_map,
packed_result
OPT_EXCEPTION_INFO_ARGUMENT );
if (0 > fp_class)
{ /* Set error value for fraction also */
if (flags & FRACTION_RESULT)
(void) UNPACK(
packed_argument,
& unpacked_argument,
class_to_action_map + WORDS_PER_CLASS_TO_ACTION_MAP,
packed_fraction
OPT_EXCEPTION_INFO_ARGUMENT );
return;
}
(void) UX_RND_TO_INT( &unpacked_argument, flags, &unpacked_result,
&unpacked_fraction );
if (flags & INTEGER_RESULT)
PACK(
& unpacked_result,
packed_result,
NOT_USED,
NOT_USED
OPT_EXCEPTION_INFO_ARGUMENT );
/* We assume the following call will normalize unpacked_result */
if (flags & FRACTION_RESULT)
PACK(
& unpacked_fraction,
packed_fraction,
NOT_USED,
NOT_USED
OPT_EXCEPTION_INFO_ARGUMENT );
}
/*
** The following code provides the user level interfaces to the trunc, modf,
** nint, ceil, float and nint routines
*/
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_FLOOR_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
C_UX_RND_TO_INT(
PASS_ARG_X_FLOAT(packed_argument),
FLOOR_CLASS_TO_ACTION_MAP,
RM_BIT_VECTOR | INTEGER_RESULT,
PASS_RET_X_FLOAT(packed_result),
NOT_USED
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_CEIL_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
C_UX_RND_TO_INT(
PASS_ARG_X_FLOAT(packed_argument),
CEIL_CLASS_TO_ACTION_MAP,
RP_BIT_VECTOR | INTEGER_RESULT,
PASS_RET_X_FLOAT(packed_result),
NOT_USED
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_TRUNC_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
C_UX_RND_TO_INT(
PASS_ARG_X_FLOAT(packed_argument),
TRUNC_CLASS_TO_ACTION_MAP,
RZ_BIT_VECTOR | INTEGER_RESULT,
PASS_RET_X_FLOAT(packed_result),
NOT_USED
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_NINT_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
C_UX_RND_TO_INT(
PASS_ARG_X_FLOAT(packed_argument),
TRUNC_CLASS_TO_ACTION_MAP,
RV_BIT_VECTOR | INTEGER_RESULT,
PASS_RET_X_FLOAT(packed_result),
NOT_USED
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_RINT_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
C_UX_RND_TO_INT(
PASS_ARG_X_FLOAT(packed_argument),
TRUNC_CLASS_TO_ACTION_MAP,
RN_BIT_VECTOR | INTEGER_RESULT,
PASS_RET_X_FLOAT(packed_result),
NOT_USED
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_MODF_NAME
X_XXptr_PROTO(F_ENTRY_NAME, packed_result, packed_argument, packed_n)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
C_UX_RND_TO_INT(
PASS_ARG_X_FLOAT(packed_argument),
TRUNC_CLASS_TO_ACTION_MAP,
RZ_BIT_VECTOR | INTEGER_RESULT | FRACTION_RESULT,
packed_n,
PASS_RET_X_FLOAT(packed_result)
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#if defined(F_NEAREST_NAME)
# undef F_ENTRY_NAME
# define F_ENTRY_NAME F_NEAREST_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
C_UX_RND_TO_INT(
PASS_ARG_X_FLOAT(packed_argument),
TRUNC_CLASS_TO_ACTION_MAP,
RV_BIT_VECTOR | INTEGER_RESULT,
PASS_RET_X_FLOAT(packed_result),
NOT_USED
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#endif
#if defined(MAKE_INCLUDE)
@divert -append divertText
# undef TABLE_NAME
START_TABLE;
TABLE_COMMENT("floor class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "FLOOR_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(4) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_NEGATIVE, 2) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
TABLE_COMMENT("ceil class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "CEIL_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(3) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 2) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_NEGATIVE, 1) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
/*
** the trunc class to action mapping is used by trunc, nint, rint and
** modf. In order to accommodate returns for both results in modf, there
** are actually two mappings, the first one is for the integer result, and
** the second one is for the fraction result.
*/
TABLE_COMMENT("trunc, nint, rint and modf class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "TRUNC_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(2) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
TABLE_COMMENT("this class-to-action-mapping used by modf only");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
TABLE_COMMENT("data for the above class to action mappings");
PRINT_U_TBL_ITEM( /* data 1 */ ZERO );
PRINT_U_TBL_ITEM( /* data 2 */ ONE );
END_TABLE;
@end_divert
@eval my $tableText; \
my $outText = MphocEval( GetStream( "divertText" ) ); \
my $defineText = Egrep( "#define", $outText, \$tableText ); \
$outText = "$tableText\n\n$defineText"; \
my $headerText = GetHeaderText( STR(BUILD_FILE_NAME), \
"Definitions and constants 'round to int'" . \
" routines", __FILE__ ); \
print "$headerText\n\n$outText\n";
#endif
|