1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
|
/******************************************************************************
Copyright (c) 2007-2024, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
#define BASE_NAME lgamma
#include "dpml_ux.h"
#if !defined(MAKE_INCLUDE)
# include STR(BUILD_FILE_NAME)
#endif
/*
** BASIC DESIGN
** ------------
**
** The implementation of lgamma is based on the following identities:
**
** lgamma(x) = log(Gamma(x)) (1)
** Gamma(x + 1) = x*Gamma(x) (2)
** lgamma(1+x) = -ln(1+x) + x*(1 - g) + P(x) (3)
** lgamma(x) ~ (x - .5)*ln(x) - x + .5*ln(2*pi) + x*phi(1/x) (4)
** lgamma(-x) = -{ ln[x*sin(pi*x)] + lgamma(x) - ln(pi) } (5)
**
** where g is Euler's constant, and
**
** P(x) = sum { n = 2, ... | (-x)^n*[zeta(n) - 1]/n }
** phi(z) = sum { n = 1, ... | B(2n)*z^(2n)/[2n*(2n-1)] }
**
** where zeta(n) is the Reimann zeta function and B(n) is the n-th Bernoulli
** number.
**
** The first step in the design is to determine where the asymptotic
** approximation, (4), is applicable. According to Hart et. al., the error in
** (4) is less than and of the same sign as the first neglected term in
** phi(1/x). Suppose we truncate phi(1/x) to n terms. Then the error is
** bounded by the (n+1)st term. Now the terms in phi(1/x) decrease to a
** certain point, and then begin to increase. So the trick is to truncate phi
** just before the last decreasing term. With this in mind, consider the ratio
** of consecutive terms, r(n):
**
** B(2n+2) 2n*(2n-1)*x^(2n)
** r(n) = --------------------- * -----------------
** (2n+2)*(2n+1)*x^(2n+2) B(2n)
**
** B(2n+2)*n(2n-1)
** = ---------------------- (6)
** B(2n)*(n+1)*(2n+1)*x^2
**
** Now the terms of phi will be decreasing in magnitude as long as |r(n)| < 1,
** which is equivalent to
**
** B(2n+2) n(2n-1)
** x^2 > ------- * ---------- (7)
** B(2n) (n+1)(2n+1)
**
** Taking the smallest value of x that satisfies (7) and looking at the (n+1)-st
** term of phi, we would like the magnitude of that term to be less than the
** permissible total error, which we take to be 1/2^124. So we need to solve
**
** B(2n+2) / B(2n+2) n(2n-1) \ -(n+1) 1
** ------------*| ------- * ----------- | < ----- (8)
** (2n+2)(2n+1) \ B(2n) (n+1)(2n+1) / 2^124
**
** We could at this point convert the B(2n) terms to expressions involving the
** zeta function and factorials, apply Sterlings approximation and take
** limits to simplify the problem. However, its easier and more accurate to
** solve (8) numerically, giving n = 41 and the minimum x as 12.971. In order
** to simplify the screening process we will take the minimum x as 16.
**
** So the basic algorithm is to apply equation (5) when x <= -16 and equation
** (4) when x >= 16. Otherwise we try to "reduce" the argument to the interval
** [ b, b+1 ) where b is any convenient positive value, and apply equation (3).
** The argument reduction scheme is based on equation (2). In particular, for
** x < b - 1 and x > b the following reductions can be used:
**
** t <-- 1 t <-- 1
** z <-- x z <-- x
** while (z < b) while (z > b + 1)
** { {
** t <-- t*z z <-- z - 1
** z <-- z + 1 t <-- t*z
** } }
** lgamma(x) <-- -ln(t) + P(z) lgamma(x) <-- ln(t) + P(z)
**
**
** CHOSING b AND EVALUATING P(z)
** -----------------------------
**
** From an algorithmic point of view, the choice of the reduced argument range,
** [b, b+1) is arbitrary. However, from an implementation stand point, the
** choice of b has an impact on the "shape" of polynomial or rational
** expression used to evaluate the reduced argument. This is particularly true
** for the unpacked x-float routines, because the evaluation is done in fixed
** point.
**
** Because lgamma is rapidly increasing function, rational approximations are
** much more efficient that polynomial approximations. So we will confine are
** remarks to the rational case. All of the choices of b that were examined
** produced rational coefficients that initially increased and then decreased
** in both the numerator and denominator. The choice of b controlled the
** length of the increasing sequence and the size of the ratio between the
** first term and the largest term. For fixed point evaluations, it is most
** desirable for all of the terms to be decreasing, however, we were unable to
** find a value of b for which this was true. What follows below is a
** description of the "best we could do".
**
** Before proceeding, we point out that having the coefficients decrease in
** magnitude is a sufficient condition for having the polynomial evaluation
** routines function correctly, but is it not necessary. A necessary condition
** is that in the alternating Horner's scheme iteration:
**
** s(k-1) = c(k-1) - x*s(k) (9)
**
** s(k-1) not be less than zero.
**
** We note that gamma(n) = (n-1)! for any integer n, so that
**
** lgamma(1) = log(gamma(1)) = log(0!) = log(1) = 0
** lgamma(2) = log(gamma(2)) = log(1!) = log(1) = 0
**
** So that lgamma(x) has a zeros at x = 1 and x = 2. Consequently, on the
** interval [1, 2) we can approximate lgamma(x) by an expression of the form
** (x - 1)*(x - 2)*R(x), where R(x) is a rational expression. In order to
** minimize the sequence of increasing coefficients in R(x), we reduce the
** argument to the interval [-.5, .5) via the substitution, z = x - 3/2. Then
** the approximation takes on the form (z + .5)*(z - .5)*U(z). Using the Remes
** algorithm to generate coefficients for U, we see that the first three
** numerator and first two denominator coefficients are increasing. The
** initial sequence of binary exponents are:
**
** coefficient 0 1 2 3 4 5 6 7 ...
** ----------- --- --- --- --- --- --- --- ---
** numerator -1 1 2 2 1 0 -1 -5
** denominator 1 3 3 3 3 3 2 0
**
** Now, except when the reduced argument, z, is exactly +/- 1/2, |2*z| < 1, so
** that we can still use the ration evaluation routine for 2*z. In effect, we
** can scale down each of the coefficients by a appropriate power of two,
** giving binary exponents that look like:
**
** coefficient 0 1 2 3 4 5 6 7 ...
** ----------- --- --- --- --- --- --- --- ---
** numerator -1 0 0 -1 -3 -5 -7 -12
** denominator 1 2 1 0 -1 -2 -4 -7
**
** So that except for the first two coefficients, all the other terms are
** decreasing. This means that we need to handle the case of |z| = 1/2
** separately. However, this is not a problem since when |z| = 1/2, we know
** that lgamma(z) = 0. We note that (9) is also satisfied.
**
** One last note: the Remes iterations for obtaining U(z) are rather unstable.
** rather than using REMES_FIND_RATIONAL_MODE, we use REMES_STATIC, with
** numerator/denominator degree = 13/14. This yields an approximation good
** to slightly more that 126 bits.
**
** With the above mind, the processing for |x| < 16 looks like:
**
** t <-- 1 t <-- 1
** w <-- x w <-- x
** while (w < 1) while (z > 2)
** { {
** t <-- t*w w <-- w - 1
** w <-- w + 1 t <-- t*w
** } }
** y <-- 2*w - 3 y <-- 2*w - 3
** z <-- (y-1)*(y+1) z <-- (y-1)*(y+1)
** lgamma(x) <-- -ln(t) + z*V(y) lgamma(x) <-- ln(t) + z*V(y)
**
** where V(w) = U(y/2 + 3/2)/4.
**
**
** NOTE: The following limits are useful for determining the
** coefficients of U;
**
** lgamma(x)
** lim --------- = - euler_gamma
** x->1 (x-1)
**
** lgamma(x)
** lim --------- = euler_gamma - 1
** x->2 (x-2)
**
**
** LARGE ARGUMENTS:
** ----------------
**
** For large argument, the evaluation of lgamma(x) is based on (4) and (5).
** If we substitute (4) into (5) we have
** lgamma(x) ~ (x - .5)*ln(x) - x + .5*ln(2*pi) + x*phi(1/x) (4)
**
** lgamma(-x) = -{ ln[x*sin(pi*x)] + lgamma(x) - ln(pi) }
** ~ -{ ln[x*sin(pi*x)] + (x - .5)*ln(x) - x + .5*ln(2*pi) +
** x*phi(1/x) - ln(pi) }
** = -{ ln(x) + ln[sin(pi*x)] + (x - .5)*ln(x) - x +
** .5*ln(2*pi) + x*phi(1/x) - ln(pi) }
** = - { .5*ln(2/pi) + (x + .5)*ln(x) - x + x*phi(1/x) }
** - ln[sin(pi*x)]
**
** If we define c = .5*ln(2/pi) and s = -1, then the above can be written
** as:
**
** lgamma(-x) ~ s*{ c + [x - s*.5]*ln(x) - x + x*phi(1/x)} - ln[sin(pi*x)]
**
** Similarly, for positive x, if we define c = .5*ln(2*pi) and s = 1, then (4)
** can be written as:
**
** lgamma(x) ~ s*{c + (x - s*.5)*ln(x) - x + x*phi(1/x)}
**
** So that negative and positive cases can share a significant portion of code.
**
*/
/*
** UX_LGAMMA is the common processing routine for computing the unpacked lgamma
** result from an unpacked input
*/
#if !defined(UX_LGAMMA)
# define UX_LGAMMA __INTERNAL_NAME(ux_lgamma__)
#endif
static void
UX_LGAMMA(UX_FLOAT * unpacked_argument, int * signgam,
UX_FLOAT * unpacked_result)
{
UX_SIGN_TYPE sign;
WORD I, floor_2x, exponent, cnt;
UX_FLOAT fraction_part, tmp[3], reduced_argument;
/*
** For large negative arguments, we need to compute |sin(pi*x)|. If
** we compute 2*x = I + f where |f| < 1/2, then |sin(pi*x)| =
** |sin[(pi/2)*f]| or |cos[(pi/2)*f| depending on the parity of I.
** For small x, knowing floor(x) (or floor(2x)) makes it easier to set
** signgam and perform the loop counts for the argument reduction.
**
** Let I = nint(2*x) and f = 2x - I. Then floor(2x) = I if f is positive
** and I - 1 otherwise.
*/
exponent = G_UX_EXPONENT( unpacked_argument );
P_UX_EXPONENT( unpacked_argument, exponent + 1);
I = UX_RND_TO_INT(unpacked_argument,
RN_BIT_VECTOR | FRACTION_RESULT, NOT_USED, &fraction_part);
P_UX_EXPONENT( unpacked_argument, exponent);
/* Get floor(2x) */
cnt = G_UX_SIGN(&fraction_part) >> (BITS_PER_UX_SIGN_TYPE - 1);
sign = G_UX_SIGN(unpacked_argument);
floor_2x = cnt + (sign ? - I : I);
//printf("DGAMMA 1\n");
/*
** If input was a negative integer, force "underflow" error. By convention
** signgam = 1 for these cases
*/
if (sign && !(I & 1) && (G_UX_MSD( &fraction_part ) == 0))
{
P_UX_EXPONENT( unpacked_result, UX_UNDERFLOW_EXPONENT);
P_UX_MSD(unpacked_result, UX_MSB);
*signgam = 1;
return;
}
/* Set signgam to -1 if x < 0 and int(x) is odd, +1 otherwise */
*signgam = 1 - ((sign >> (BITS_PER_UX_SIGN_TYPE - 2)) & (floor_2x & 2));
if (exponent < 5)
{ /* | x | < 16 */
/* Set initial product to 1 and get */
UX_SET_SIGN_EXP_MSD(tmp, 0, 1, UX_MSB);
cnt = floor_2x;
while (cnt < 2)
{
MULTIPLY(tmp, unpacked_argument, tmp);
ADDSUB(unpacked_argument, UX_ONE, ADD, unpacked_argument);
cnt += 2;
}
while (cnt >= 4)
{
ADDSUB(unpacked_argument, UX_ONE, SUB, unpacked_argument);
MULTIPLY(tmp, unpacked_argument, tmp);
cnt -= 2;
}
/*
** Compute u = 2*unpacked_argument-1, w = (u-1)*(u+1) in
** preparation for computing lgamma(u/2 + 3/2) = w*R(u)
*/
UX_INCR_EXPONENT(unpacked_argument, 1);
ADDSUB(unpacked_argument, UX_THREE, SUB, &reduced_argument);
ADDSUB(&reduced_argument, UX_ONE, ADD_SUB, &tmp[1]);
MULTIPLY(&tmp[1], &tmp[2], unpacked_result);
/*
** If the value of w (unpacked_result) is 0, then the original
** argument was an integer and lgamma(reduced_argument) is zero
** and we don't need to evaluate the rational expression
*/
if (G_UX_MSD(unpacked_result))
{
EVALUATE_RATIONAL(
&reduced_argument,
LGAMMA_P_COEF_ARRAY,
LGAMMA_P_COEF_ARRAY_DEGREE,
NUMERATOR_FLAGS( STANDARD ) | DENOMINATOR_FLAGS( STANDARD ),
&tmp[1]
);
/*printf("DGAMMA 2: rarg=%x %x %llx %llx, tmp1=%x %x %llx %llx\n",reduced_argument.sign,reduced_argument.exponent,reduced_argument.fraction[0],reduced_argument.fraction[1],
tmp[1].sign,tmp[1].exponent,tmp[1].fraction[0],tmp[1].fraction[1]);*/
MULTIPLY(unpacked_result, &tmp[1], unpacked_result);
/*printf("DGAMMA 2: ures=%x %x %llx %llx, tmp1=%x %x %llx %llx\n",unpacked_result->sign,unpacked_result->exponent,unpacked_result->fraction[0],unpacked_result->fraction[1],
tmp[1].sign,tmp[1].exponent,tmp[1].fraction[0],tmp[1].fraction[1]);*/
}
/*
** Now compute log(tmp) and add/sub it to/from the previous
** lgamma computation. Note that if floor_2x == cnt
** at this point, tmp = 1, so we don't need to do the computation.
*/
if (floor_2x != cnt)
{
P_UX_SIGN(tmp, 0);
NORMALIZE(tmp);
UX_LOG( tmp, UX_LN2, tmp);
//printf("DGAMMA 4\n");
ADDSUB(unpacked_result, tmp, (floor_2x < cnt) ? SUB : ADD,
unpacked_result);
}
}
else
{
/* use |x| from here on */
P_UX_SIGN( unpacked_argument, 0);
/*
** x is big, so use asymptotic approximation:
**
** lgamma(x) ~ (x-s*.5)*log(x) - x + c + x*phi(1/x^2)
*/
UX_LOG(unpacked_argument, UX_LN2, unpacked_result);
ADDSUB(unpacked_argument, UX_HALF, sign ? ADD : SUB, tmp);
MULTIPLY(unpacked_result, tmp, unpacked_result);
ADDSUB(unpacked_result, unpacked_argument, SUB, unpacked_result);
ADDSUB(
unpacked_result,
sign ? UX_HALF_LN_TWO_OVER_PI : UX_HALF_LN_TWO_PI,
ADD, unpacked_result);
DIVIDE(0, unpacked_argument, FULL_PRECISION, tmp);
EVALUATE_RATIONAL(
tmp,
LGAMMA_PHI_COEF_ARRAY,
LGAMMA_PHI_COEF_ARRAY_DEGREE,
NUMERATOR_FLAGS(SQUARE_TERM | POST_MULTIPLY)
| DENOMINATOR_FLAGS(SQUARE_TERM) | P_SCALE(3),
// unpacked_argument
&tmp[1]
);
// ADDSUB(unpacked_result, unpacked_argument, ADD, unpacked_result);
ADDSUB(unpacked_result, &tmp[1], ADD, unpacked_result);
if (sign)
{
/*
** x is big and negative, so we need to negate the result
** and subtract ln[x*sin(pi*x)]
*/
UX_TOGGLE_SIGN(unpacked_result, sign);
MULTIPLY(&fraction_part, UX_PI_OVER_2, tmp);
UX_SINCOS(tmp, I << 1, SIN_FUNC, tmp);
NORMALIZE(tmp);
UX_LOG( tmp, UX_LN2, tmp);
ADDSUB(unpacked_result, tmp, SUB, unpacked_result);
}
}
}
/*
** C_UX_LGAMMA is the common processing routine for the 3 lgamma functions:
** lgamma, gamma and __lgamma. Each of the lgamma routines calls into the
** C_LGAMMA routine, which unpacks the arguments, computes the results, and
** processes exceptions.
*/
#if !defined(C_UX_LGAMMA)
# define C_UX_LGAMMA __INTERNAL_NAME(C_ux_lgamma__)
#endif
static void
C_UX_LGAMMA(_X_FLOAT * packed_argument, int * signgam,
_X_FLOAT * packed_result OPT_EXCEPTION_INFO_DECLARATION)
{
WORD fp_class;
UX_FLOAT unpacked_argument, unpacked_result;
fp_class = UNPACK(
packed_argument,
&unpacked_argument,
LGAMMA_CLASS_TO_ACTION_MAP,
packed_result
OPT_EXCEPTION_INFO_ARGUMENT );
if (fp_class < 0)
{
fp_class &= MAKE_MASK(F_C_CLASS_BIT_WIDTH,0);
*signgam = (fp_class == F_C_NEG_ZERO) ? -1 : 1;
return;
}
UX_LGAMMA( &unpacked_argument, signgam, &unpacked_result);
PACK(
&unpacked_result,
packed_result,
LGAMMA_NON_POS_INT,
LGAMMA_OVERFLOW
OPT_EXCEPTION_INFO_ARGUMENT );
}
/*
** Currently, there are 3 flavors of the lgamma function: lgamma, gamma and
** __lgamma. For the unpacked library, each of these routines calls into the
** C_UX_LGAMMA routine, which unpacks the arguments, computes the results,
** and processes exceptions.
*/
/*
** Allocate storage for signgaml (appropriately named)
*/
#if (F_NAME_SUFFIX == DPML_NULL_MACRO_TOKEN)
# define SIGNGAM_NAME signgam
#else
# define SIGNGAM_NAME __signgamq // new name
// The following IS_DEFINED_SIGNGAM_NAME_OLD macro to be removed in far future (see trackers 73679,73680)
# define IS_DEFINED_SIGNGAM_NAME_OLD
# if defined(IS_DEFINED_SIGNGAM_NAME_OLD)
# if (OP_SYSTEM == vms)
# define SIGNGAM_NAME_OLD PASTE_3(F_NAME_PREFIX,signgam, F_NAME_SUFFIX)
# else
# define SIGNGAM_NAME_OLD PASTE_2(signgam, F_NAME_SUFFIX)
# endif
# endif
#endif
int SIGNGAM_NAME;
#ifdef IS_DEFINED_SIGNGAM_NAME_OLD
int SIGNGAM_NAME_OLD;
#endif
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_LGAMMA_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
C_UX_LGAMMA(
PASS_ARG_X_FLOAT(packed_argument),
&SIGNGAM_NAME,
PASS_RET_X_FLOAT(packed_result)
OPT_EXCEPTION_INFO);
#ifdef IS_DEFINED_SIGNGAM_NAME_OLD
SIGNGAM_NAME_OLD=SIGNGAM_NAME;
#endif
RETURN_X_FLOAT(packed_result);
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_GAMMA_NAME
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
C_UX_LGAMMA(
PASS_ARG_X_FLOAT(packed_argument),
&SIGNGAM_NAME,
PASS_RET_X_FLOAT(packed_result)
OPT_EXCEPTION_INFO);
#ifdef IS_DEFINED_SIGNGAM_NAME_OLD
SIGNGAM_NAME_OLD=SIGNGAM_NAME;
#endif
RETURN_X_FLOAT(packed_result);
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_RT_LGAMMA_NAME
X_XIptr_PROTO(F_ENTRY_NAME, packed_result, packed_argument, signgam_ptr)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
C_UX_LGAMMA(
PASS_ARG_X_FLOAT(packed_argument),
(int *) signgam_ptr,
PASS_RET_X_FLOAT(packed_result)
OPT_EXCEPTION_INFO);
RETURN_X_FLOAT(packed_result);
}
/*
** C_UX_LGAMMA is the common processing routine for the 3 lgamma functions:
** lgamma, gamma and __lgamma. Each of the lgamma routines calls into the
** C_LGAMMA routine, which unpacks the arguments, computes the results, and
** processes exceptions.
*/
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_TGAMMA_NAME
#define LOG2_BITS_PER_DIGIT __LOG2(BITS_PER_UX_FRACTION_DIGIT_TYPE)
#define DIGIT_MOD_MASK MAKE_MASK(LOG2_BITS_PER_DIGIT,0)
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
{
WORD fp_class, exponent, i;
UX_FRACTION_DIGIT_TYPE msd, mask;
UX_FLOAT unpacked_argument, unpacked_result, tmp;
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
fp_class = UNPACK(
PASS_ARG_X_FLOAT(packed_argument),
&unpacked_argument,
LGAMMA_CLASS_TO_ACTION_MAP,
PASS_RET_X_FLOAT(packed_result)
OPT_EXCEPTION_INFO );
if (fp_class < 0)
{
SIGNGAM_NAME = (fp_class == F_C_NEG_ZERO) ? -1 : 1;
RETURN_X_FLOAT(packed_result);
}
exponent = G_UX_EXPONENT( &unpacked_argument );
if ( G_UX_SIGN( &unpacked_argument ) == 0)
{
// Input is positive. Check for sure overflow
if ( exponent > 11 )
{
UX_SET_SIGN_EXP_MSD(&unpacked_result, 0, UX_OVERFLOW_EXPONENT,
UX_MSB);
goto pack_it;
}
}
else if ( exponent > 0 )
{
// If input is a negative integer, return NaN and signal an error via
// an underflow condition
i = exponent >> LOG2_BITS_PER_DIGIT;
mask = (((UX_FRACTION_DIGIT_TYPE) -1) >> (exponent & DIGIT_MOD_MASK));
msd = G_UX_FRACTION_DIGIT( &unpacked_argument, i);
msd &= mask;
while ( ++i < NUM_UX_FRACTION_DIGITS )
msd |= G_UX_FRACTION_DIGIT( &unpacked_argument, i);
if ( msd == 0 )
{ // This is a negative integer, force underflow condition
UX_SET_SIGN_EXP_MSD(&unpacked_result, 0, UX_UNDERFLOW_EXPONENT,
UX_MSB);
goto pack_it;
}
}
// At this point the argument is not too large or a negative integer.
// Compute t = lgamma(x) and check for overflow when computing exp(t)
UX_LGAMMA( &unpacked_argument, &SIGNGAM_NAME, &tmp);
if ( G_UX_EXPONENT( &tmp ) >= 14 )
// Force overflow condition
UX_SET_SIGN_EXP_MSD(&unpacked_result, 0, UX_OVERFLOW_EXPONENT, UX_MSB);
else
UX_EXP( &tmp, &unpacked_result );
pack_it:
PACK(
&unpacked_result,
PASS_RET_X_FLOAT(packed_result),
LGAMMA_NON_POS_INT,
LGAMMA_OVERFLOW
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#if defined(MAKE_INCLUDE)
@divert -append divertText
precision = ceil(UX_PRECISION/8) + 4;
# undef TABLE_NAME
START_TABLE;
TABLE_COMMENT("lgamma class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "LGAMMA_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_ERROR, 1) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_ERROR, 3) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_ERROR, 3) );
PRINT_U_TBL_ITEM( /* data 1 */ LGAMMA_POS_INF );
PRINT_U_TBL_ITEM( /* data 2 */ LGAMMA_NEG_INF );
PRINT_U_TBL_ITEM( /* data 2 */ LGAMMA_OF_ZERO );
TABLE_COMMENT(
"Unpacked values of 1, 1/2, 3, ln2, pi/2, ln(2*pi)/2 and ln(pi/2)/2");
PRINT_UX_TBL_ADEF_ITEM( "UX_ONE\t\t\t", 1.0);
PRINT_UX_TBL_ADEF_ITEM( "UX_HALF\t\t\t", .5);
PRINT_UX_TBL_ADEF_ITEM( "UX_THREE\t\t\t", 3.0);
PRINT_UX_TBL_ADEF_ITEM( "UX_LN2\t\t\t", log(2));
PRINT_UX_TBL_ADEF_ITEM( "UX_PI_OVER_2\t\t", pi/2);
PRINT_UX_TBL_ADEF_ITEM( "UX_HALF_LN_TWO_PI\t", .5*log(2*pi));
PRINT_UX_TBL_ADEF_ITEM( "UX_HALF_LN_TWO_OVER_PI\t", .5*log(2/pi));
/*
** Get coefficients for lgamma on [1, 2). Recall that the "reduced
** argument", y, is in the interval [-1, 1) and we use the approximation
** for .25*lgamma(y/2)/[(y-1)*(y+1)]
*/
function lgamma_1_2(y)
{
auto z, x, t;
t = (y + 1);
z = t*(y - 1);
if (z == 0)
t = .25 * ((t == 0) ? euler_gamma : 1 - euler_gamma);
else
t = lgamma(.5*(y + 3))/z;
return t;
}
/*
** The Remes algorithm is quite slow for lgamma on [1,2) so we loosen
** convergence criteria and fix (rather than find) the degree of the
** numerator and denominator.
*/
save_precision = precision;
precision = ceil(UX_PRECISION/8) + 8;
num_degree = 13;
den_degree = 14;
REMES_OPTION_LEVELING_TOL(.1);
TABLE_COMMENT("Fixed point coefficients for lgamma on [1,2)");
remes(REMES_STATIC + REMES_RELATIVE_WEIGHT + REMES_LINEAR_ARG,
-1, 1, lgamma_1_2, num_degree, den_degree, &ux_rational_coefs);
precision = save_precision;
PRINT_FIXED_128_TBL_ADEF("LGAMMA_P_COEF_ARRAY\t");
degree = print_ux_rational_coefs(num_degree, den_degree, 0);
PRINT_WORD_DEF("LGAMMA_P_COEF_ARRAY_DEGREE", degree);
/*
** Now get the coefficients for the asymptotic range. This is actually
** quite complicated because of the structure of the function we are
** trying to evaluate. Specifically, we have to evaluate the asymptotic
** expansion for lgamma(x) in a precision higher than what we need.
** This means that there is a minimum x associated with the evaluations
** precision for which the asymptotic expansion is valid and below which
** the closed form loses significance. Consequently, the MP function
** that is evaluated for the Remes algorithm is broken up into two
** subdomains.
**
** The MP function get_bernoulli, computes the values of the Bernoulli
** numbers for use in the asymptotic expansion of lgamma according to
** the expansion:
**
** sum{ C(n+1, j)*B(j) | j = 0, ... n } = 0.
**
** It makes use of the fact that B(1) = -1/2 and that B(2k+1) = 0 for
** k >= 1.
*/
function get_bernoulli(m_lo, m_hi)
{
auto n, C, top, bottom, t;
for (n = m_lo; n <= m_hi; n += 2)
{
C = 1;
top = n+1;
bottom = 1;
t = 0;
for (j = 0; j < n; j += 2)
{
t += (C*B[j]);
C = C*top*(top - 1)/(bottom*(bottom + 1));
top -= 2;
bottom += 2;
}
B[n] = .5 - t/(n+1);
}
return m_hi;
}
/*
** The function find_n_and_min_x determine the minimum value that will
** converge to the given tol in the lgamma asymptotic expansion. The
** algorithm is based on the discussion around equations (6) through (8)
*/
function find_n_and_min_x(tol)
{
auto n, b_2n, b_2n_plus_2, common, x_sqr, tmp;
n = 4;
b_2n = B[0];
while (1)
{
if (n > max_bernoulli)
max_bernoulli =
get_bernoulli(max_bernoulli + 2, max_bernoulli + 128);
b_2n_plus_2 = B[n];
common = b_2n_plus_2/(n*(n - 1));
x_sqr = -common*(n-2)*(n-3)/b_2n;
tmp = abs(common*x_sqr^(-n/2));
if (tmp < tol)
break;
n += 2;
b_2n = b_2n_plus_2;
}
max_terms = n - 2;
return sqrt(x_sqr);
}
/*
** lgamma_phi computes the asymptotic approximation to lgamma(8*x)
*/
half_log_two_pi = .5*log(2*pi);
function lgamma_phi(z)
{
auto w, x, term, m, total, tmp;
total = B[2]/2;
if (z == 0)
return total;
z *= .125;
if (z > asymptotic_z)
{
x = 1/z;
return (lgamma(x) - (x - .5)*log(x) + x - half_log_two_pi)*x;
}
w = z*z;
m = 4;
term = 1;
old_term = total;
while (m <= max_terms)
{
term *= w;
new_term = term*B[m]/(m*(m-1));
total += new_term;
if ((bexp(total) - bexp(new_term)) > bit_precision)
return total;
m += 2;
}
return total;
}
/*
** initial the array of Bernoulli numbers and determine the break point
** in the domain for lgamma_phi
*/
save_precision = precision;
precision = (F_PRECISION/MP_RADIX_BITS) + 8;
bit_precision = MP_RADIX_BITS*precision;
max_bernoulli = 2;
B[0] = 1;
B[1] = -.5;
B[2] = 1/6;
x = find_n_and_min_x(2^-bit_precision);
asymptotic_z = 1/x;
/*
** Now compute the coefficients
*/
TABLE_COMMENT("Fixed point coefficients for lgamma(8*x) on [0, 1/16)");
remes( REMES_FIND_RATIONAL + REMES_SQUARE_ARG + REMES_RELATIVE_WEIGHT,
0, 8*(1/16), lgamma_phi, UX_PRECISION, &num_degree, &den_degree,
&ux_rational_coefs);
precision = save_precision;
PRINT_FIXED_128_TBL_ADEF("LGAMMA_PHI_COEF_ARRAY\t");
degree = print_ux_rational_coefs(num_degree, den_degree, -3);
PRINT_WORD_DEF("LGAMMA_PHI_COEF_ARRAY_DEGREE", degree);
END_TABLE;
@end_divert
@eval my $tableText; \
my $outText = MphocEval( GetStream( "divertText" ) ); \
my $defineText = Egrep( "#define", $outText, \$tableText ); \
$outText = "$tableText\n\n$defineText"; \
my $headerText = GetHeaderText( STR(BUILD_FILE_NAME), \
"Definitions and constants lgamma", \
__FILE__ ); \
print "$headerText\n\n$outText\n";
#endif
|