1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
|
/******************************************************************************
Copyright (c) 2007-2024, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
#define BASE_NAME mod
#include "dpml_ux.h"
#if !defined(MAKE_INCLUDE)
# include STR(BUILD_FILE_NAME)
#endif
#define KMASK (((U_WORD) 1 << (BITS_PER_INT - 2)) - 1)
/*
** PRELIMINARIES
** -------------
**
** The mod and rem functions are defined as:
**
** mod(x,y) = x - y*trunc(x/y)
**
** rem(x,y) = x - y*rint(x/y)
**
** If we denote by R any of the rounding modes defined in x_float note 19.x,
** then we can consider mod and rem as specific cases of the more general
** function, Mod, defined by:
**
** Mod(x,y,R) = x - y*rnd_to_int(x/y, R) (1)
**
** Now, consider the following decomposition of the binary representation of
** |x|/|y|:
**
** x/y = qqqqqqqqql.rpppppppp....
** \_______/ \__________/
** q u
**
** = 2*q + l + r/2 + u/2
**
** As in note 19.x, if we know the sign of x/y (call it s), and we define k,
** the sticky bit, to be 0 if u = 0 and 1 otherwise, then for each of the
** possible rounding modes, R, there is a binary function, B(R,s,l,r,k), such
** that
**
** rnd_to_int(x/y, R) = (-1)^s*[2*q + l + B(R,s,l,r,k)]
** = (-1)^[sx + sy]*[2*q + l + B(R,s,l,r,k)]
**
** where sx and sy are the sign bits of x and y respectively. If we denote
** B(R,s,l,r,k) by B and 2*q + l by Q, it follows that
**
** Mod(x,y,R) = x - y*rnd_to_int(x/y, R)
** = x - y*(-1)^[sx + sy]*[Q + B]
** = (-1)^sx*|x| - (-1)^sy*|y|*(-1)^[sx + sy]*[Q + B]
** = (-1)^sx*|x| - (-1)^[sx + 2*sy]*|y|*[Q + B]
** = (-1)^sx*|x| - (-1)^sx*|y|*[Q + B]
** = (-1)^sx*{ |x| - |y|*[Q + B] }
** = (-1)^sx*{ |x| - |y|*Q - |y|*B] }
**
** Now Q = 2*q + l = trunc(x/y) so we have:
**
** Mod(x,y,R) = (-1)^sx*{ |x| - |y|*Q - |y|*B] }
** = (-1)^sx*{ |x| - |y|*trunc(|x|/|y|) - |y|*B] }
** = (-1)^sx*{ mod(|x|, |y|) - |y|*B] } (2)
**
** That is, we can compute the generalized Mod function by computing
** mod(|x|,|y|), adjusting by 0 or |y|, and then optionally negating the
** result. With the above result in mind, for the remainder of this
** discussion, we assume that x and y are positive.
**
** A slight variation on the above description is to compute mod(2*x, y). The
** binary expansion of 2x/y is
**
** 2x/y = qqqqqqqqqlr.pppppppp....
** \_______/ \__________/
** q u
**
** = 4*q + 2*l + r + u
**
** If we denote Q = trunc(2*x/y), then l and r are the two low bits of Q and
** k = 0 or 1 if mod(2x,y) = 0 or not. Now
**
** mod(2*x,y) = 2*x - y*trunc(2*x/y)
** = 2*x - y*(4*q + 2*l + r)
** = 2*x - y*(4*q + 2*l) - y*r
** = 2*[x - y*(2*q + l)] - y*r
** = 2*[x - y*trunc(x/y)] - y*r
** = 2*mod(x,y) - y*r
**
** Substituting the above result into (2) we get
**
** Mod(x,y,R) = mod(x, y) - y*B
** = [ mod(2*x) + y*r ]/2 - y*B
** = mod(2*x,y)/2 + y*(r/2 - B)
**
** Since B = 0 or 1 depending on the values of s, l, r and k, and r = 0 or 1,
** it follows that r/2 - B = -1, -1/2, 0 or 1/2 depending on s, l, r and k.
** This means we can define a function, B'(R,s,l,r,k) that takes on the values
** -2, -1, 0 or 1 and compute Mod(x,y,R) as mod(2*x)/2 + y*(B'/2)
**
** So we are led to the following basic approach to computing the generalized
** mod function:
**
** o Compute u = mod(2*|x|, |y|) keeping track of the low order
** digit, Q, of the quotient 2*|x|/|y|
** o Based on the sign bits of x and y, the low 2 bits of Q, and x',
** determine the increment value B'
** o Compute the generalized mod function as x' + y*B' with the sign
** appropriately adjusted.
**
**
** LONG DIVISION REVISITED
** -----------------------
**
** Given x = 2^n*f and y = 2^m*g where f and g are in the interval [1/2, 1),
** the basic approach to computing the quotient, 2*x/y, is to do it one
** "digit" at a time. That is, we essentially perform long division,
** computing one quotient digit at a time while simultaneously producing
** the remainder in the process. Continuing the analogy to long division,
** the basic process is as follows:
**
** (1) At each stage, we know the current remainder, x, and the
** divisor, y.
** (2) We make a guess at the next quotient digit, Q
** (3) Compute a new remainder, x', as x' = x - Q*y.
**
** Since the value of Q at in step (2) was a guess, the new remainder may be
** greater than y or less than zero depending on whether Q was too small or
** too large. In any case, we can obtain the correct Q and x' by
** incrementing or decrementing Q and adding or subtracting y from x'.
**
** An important conclusion to draw from the above discussion is that the
** correct computation of Q is very closely tied to the computation of the
** remainder. In particular, the two computations are not done
** independently from one another, but rather they overlap each other.
**
** In the discussion, that follows, we present a method for computing Q
** and x' that involve a 3 step process:
**
** Step 1: Obtain a mediocre estimate of Q, call it Q" based on only
** the high digit of x and y.
** Step 2: Obtain a fairly good estimate of Q, call it Q', based on
** the high two digits of x and Q". In the process, we compute
** the high two digits of the new remainder.
** Step 3: Compute the low order digits of the remaider, and adjust it
** and Q' accordingly to obtain the final remainder and the
** exact value of Q
*/
#define EXT_SHIFT(a,s,b,c) (((a) << (s)) | ((b) >> (c)))
#if BITS_PER_UX_FRACTION_TYPE == 32
# define EXTENDED_DIGIT_SHIFT_LEFT_UX_FRACTION(g, m) \
(m) = G_UX_FRACTION_DIGIT(g,0); \
P_UX_FRACTION_DIGIT(g, 0, G_UX_FRACTION_DIGIT(g, 1)); \
P_UX_FRACTION_DIGIT(g, 1, G_UX_FRACTION_DIGIT(g, 2)); \
P_UX_FRACTION_DIGIT(g, 2, G_UX_FRACTION_DIGIT(g, 3)); \
P_UX_FRACTION_DIGIT(g, 3, 0);
# define EXTENDED_BIT_SHIFT_LEFT_UX_FRACTION(g, m, s, c) \
{ \
UX_FRACTION_DIGIT_TYPE _t0, _t1, _t2, _t3; \
\
_t0 = G_UX_FRACTION_DIGIT(g,0); \
(m) = _t0 >> (c); \
_t1 = G_UX_FRACTION_DIGIT(g,1); \
P_UX_FRACTION_DIGIT(g, 0, EXT_SHIFT(_t0, s, _t1, c)); \
_t2 = G_UX_FRACTION_DIGIT(g,2); \
P_UX_FRACTION_DIGIT(g, 1, EXT_SHIFT(_t1, s, _t2, c)); \
_t3 = G_UX_FRACTION_DIGIT(g,3); \
P_UX_FRACTION_DIGIT(g, 2, EXT_SHIFT(_t2, s, _t3, c)); \
P_UX_FRACTION_DIGIT(g, 1, _t3 << (s)); \
}
# define DIGIT_SHIFT_LEFT_UX_FRACTION(g,p) \
P_UX_FRACTION_DIGIT(p, 0, G_UX_FRACTION_DIGIT(g, 1)); \
P_UX_FRACTION_DIGIT(p, 1, G_UX_FRACTION_DIGIT(g, 2)); \
P_UX_FRACTION_DIGIT(p, 2, G_UX_FRACTION_DIGIT(g, 3)); \
P_UX_FRACTION_DIGIT(p, 3, 0);
#else
# define EXTENDED_DIGIT_SHIFT_LEFT_UX_FRACTION(g, m) \
(m) = G_UX_FRACTION_DIGIT(g,0); \
P_UX_FRACTION_DIGIT(g, 0, G_UX_FRACTION_DIGIT(g, 1)); \
P_UX_FRACTION_DIGIT(g, 1, 0);
# define EXTENDED_BIT_SHIFT_LEFT_UX_FRACTION(g, m, s, c) \
{ \
UX_FRACTION_DIGIT_TYPE _t0, _t1; \
\
_t0 = G_UX_FRACTION_DIGIT(g,0); \
(m) = _t0 >> (c); \
_t1 = G_UX_FRACTION_DIGIT(g,1); \
P_UX_FRACTION_DIGIT(g, 0, EXT_SHIFT(_t0, s, _t1, c)); \
P_UX_FRACTION_DIGIT(g, 1, _t1 << (s)); \
}
# define DIGIT_SHIFT_LEFT_UX_FRACTION(g,p) \
P_UX_FRACTION_DIGIT(p, 0, G_UX_FRACTION_DIGIT(g, 1)); \
P_UX_FRACTION_DIGIT(p, 1, 0);
#endif
#define MINUS_2_FLAG 0
#define MINUS_1_FLAG 1
#define ZERO_FLAG 2
#define ONE_FLAG 3
#define FLAGS_BIT_WIDTH 2
#define FLAGS_MASK MAKE_MASK(2,0)
#if !defined(UX_MOD)
# define UX_MOD __INTERNAL_NAME(ux_mod__)
#endif
static WORD
UX_MOD( UX_FLOAT * x, UX_FLOAT * y, WORD rounding_flags, UX_FLOAT * result )
{
U_WORD SKLR;
UX_EXPONENT_TYPE J, tmp, exponent_y;
UX_SIGN_TYPE sign_x, sign_xor;
UX_FLOAT ux_tmp, ux_g_lo, ux_q, product, *addend;
UX_FRACTION_DIGIT_TYPE F1, F2, G1, R, Q, T1, T2;
UX_FRACTION_DIGIT_TYPE old_quot;
WORD quotient;
D_TYPE r, r_hi, g_hi, g_lo, r_lo;
sign_x = G_UX_SIGN(x);
sign_xor = (sign_x ^ G_UX_SIGN(y));
P_UX_SIGN(x, 0);
P_UX_SIGN(y, 0);
/*
** At this point, we consider the general algorithm for long division.
** With x = 2^n*f, y = 2^m*g consider the following algorithm:
**
** (1) J = n - m + 1
** (2) if (J < 0) goto (11)
** (3) if f < g
** f' <-- f
** Q <-- 0
** else
** Q <-- 1
** f' <-- f - g
** (4) if (J <= 0) goto (11)
** (5) t <-- (J >= k) ? k : J
** (6) f" <-- 2^t*f'
** (7) Q <-- trunc(f"/g)
** (8) f' <-- f" - Q*g
** (9) J <-- j - t
** (10) goto 4
** (11)
**
** Algorithm 1
** -----------
**
** We state here without proof that at step (11), Q is the low order digit
** of the quotient 2*x/y and f' is mod(2*x, y).
**
** The next section of code implements the first four steps of algorithm 1.
*/
exponent_y = G_UX_EXPONENT(y);
J = G_UX_EXPONENT(x) - exponent_y + 1;
P_UX_EXPONENT(x, 0);
P_UX_EXPONENT(y, 0);
UX_COPY(x, result);
Q = 0;
if (J >= 0)
{
ADDSUB(x, y, SUB | NO_NORMALIZATION, &ux_tmp);
if ( G_UX_SIGN(&ux_tmp) == 0 )
{
Q = 1;
UX_COPY(&ux_tmp, result);
}
}
if (J <= 0)
goto final_step;
/*
** COMPUTING Q"
** ------------
**
** In step 7, we compute an estimate for Q, call it Q" by multiplying the
** high digit of 1/g by the high digit of f". That is, we assume that we
** have a k-bit integer R, such that r = 2*R/M is a good approximation to
** 1/g. For reasons that will be discussed later, we want r < 1/g. In this
** section we describe how to compute R.
**
** We note that the method for computing of R is almost identical to the
** method used to obtain the initial reciprocal approximation in the divide
** algorithm (see note 6.x). The main difference being that in divide
** algorithm, r was to be as close to 1/g as possible, and for mod, we want
** r to underestimate 1/g.
**
** The value of R is computed using multi-precision floating point
** arithmetic and then is converted back to an integer data type. We
** assume the existence of a floating point type with 53 bits of precision.
*/
# if (D_PRECISION < 53)
# error "Must have D_PRECISION >= 53"
# endif
/*
** Let G1 be the high digit of g, K = 2^k and define g" = (G1 + 1)/K.
** Note that 1/g" < 1/g. The remainder of this section is concerned
** with the computation R = trunc[(K/2)/g"]. The computation of R depends
** on the relative size of a digit, k, compared to the floating point
** precision.
*/
G1 = G_UX_MSD(y);
# if (BITS_PER_UX_FRACTION_DIGIT_TYPE < D_PRECISION)
/*
** If k <= 53, then define gt = high k bits of g plus 1/K - i.e.
** gt = (G1 + 1)/K. Then let R = trunc[(K/2)/gt - 1/2^53]. (NOTE:
** the 1/2^53 term is to compensate for a possible round up on the
** division.)
*/
R = (UX_FRACTION_DIGIT_TYPE)
(D_TWO_POW_2Km1/((double) (G1 + 1)) - D_TWO_POW_Km53);
# else
/*
** If 53 < k < 78, then define the following double precision floating
** point values:
**
** gt = high 53 bits of g
** r = 1/gt
** r_hi = high 24 bits of r
** g_hi = high 26 bits of g
** g_lo = next (k - 26) bits of g incremented by 1/K
** r_lo = [ (1 - g_hi*r_hi) - g_lo*r_hi] * r
**
** and then compute
**
** R = floor[ K*(r_hi + r_lo) - 1/2^78 ] (1)
**
** The 1/2^78 term corrects for any possible "rounding-up" that might
** take place so that taking r = 2*R/K is guaranteed to be less than
** 1/g and R is in the interval [K/2, K-1]. In order to ease the
** conversion to integer, force r_hi to be less than 1/g. This will
** make r_lo positive.
*/
r = D_TWO_POW_53 / ((double) (G1 >> 11));
r_hi = ((double)((float) r)) - D_RECIP_TWO_POW_23;
g_hi = D_RECIP_TWO_POW_26 * ((double) ((WORD) (G1 >> 38)));
g_lo = D_RECIP_TWO_POW_64 *
((double) ((WORD) ((G1 & MAKE_MASK(38, 0)) + 1)));
r_lo = (D_GROUP( D_ONE - g_hi*r_hi) - g_lo*r_hi)*r;
/*
** Some care is required in computing (1) in order to insure no
** additional rounding takes place. We begin by defining
**
** R1 = floor(2^23*r_hi)
** R2 = floor(2^78*r_lo)
**
** Since r_hi has at most 24 significant bits and r_hi > 1,
** R1 = 2^23*r_hi. Also, since |r_lo| < 1/2^24, no integer overflow
** will occur when computing R2. It follows that
**
** r_hi + r_lo = R1/2^23 + (R2 + e)/2^78
**
** where 0 <= e < 1 is the error in truncating 2^78*r_lo. This implies
** that
**
** R = floor[ K*(r_hi + r_lo) - 1/2^75 ]
** = floor[ K*(R1/2^23 + (R2 + e))/2^78 - 1/2^75]
** = floor[ K*(2^25*R1 + R2 + e - 8)/2^78 ]
** = floor[ K*(2^25*R1 + R2 + e - 8)/2^78 ]
** = 2^*(k-53)*R1 + floor[K*(R2 + e - 8)/2^78 ]
** = [R1 << (k-53)] + [(R2 - 8) >> (78-k)]
**
** Note that the shift of (R2-8) should be a signed shift.
*/
R = (UX_SIGNED_FRACTION_DIGIT_TYPE) (D_TWO_POW_23*r_hi);
T1 = (UX_SIGNED_FRACTION_DIGIT_TYPE) (D_TWO_POW_78*r_lo);
R = (R << (BITS_PER_UX_FRACTION_DIGIT_TYPE - S_PRECISION)) +
((T1 - 8) >> (79 - BITS_PER_UX_FRACTION_DIGIT_TYPE));
# endif
/*
** Eventually, we will want to compute Q*g exactly. We will do that
** by Q*g in high and low pieces, with g_hi being the first digit of
** g and g_lo being the remaining digits. At this point we create
** g_lo by shifting the digits of g "up" one and bringing in a zero.
**
** While we're at it, we create an unpacked x-float quantity, q, so we
** can convert the integer Q, to an unpacked format.
*/
DIGIT_SHIFT_LEFT_UX_FRACTION(y, &ux_g_lo);
P_UX_SIGN(&ux_g_lo, 0);
P_UX_EXPONENT(&ux_g_lo, 0);
UX_SET_SIGN_EXP_MSD(&ux_q, 0, 0, 0);
do {
J -= BITS_PER_UX_FRACTION_DIGIT_TYPE;
if (J >= 0)
{
EXTENDED_DIGIT_SHIFT_LEFT_UX_FRACTION(result, F1);
old_quot = 0;
}
else
{
WORD shift, cshift;
shift = BITS_PER_UX_FRACTION_DIGIT_TYPE + J;
cshift = -J;
old_quot = (Q << shift);
EXTENDED_BIT_SHIFT_LEFT_UX_FRACTION(result, F1, shift, cshift);
J = 0;
}
/*
** COMPUTING THE REAL Q AND NEW F'
** ------------------------------
**
** The two key issues associated with algorithm 1 from a computational
** point of view is getting Q = trunc(2^t*f'/g) and updating f' to
** 2^t*f' - Q*g. In this section we address these two issues.
**
** Denoting the high k bits of f' by F1, the next k bits by F2, the
** first 2k bits by F1:F2, and denoting the high k bits of g by G1,
** consider the following algorithm:
**
**
** if (F1 == G1) // line 1
** { // line 2
** Q' <-- K - 1 // line 3
** T1:T2 <-- F2 + G1 // line 4
** } // line 5
** else // line 6
** { // line 7
** Q' <-- 2*umulh(F1*R) // line 8
** T1:T2 <-- F1:F2 - Q'*G1 // line 9
** while ((T1 != 0) || (T2 >= G1)) // line 10
** { // line 11
** T1:T2 <-- T1:T2 - 0:G1 // line 12
** Q' <-- Q' + 1 // line 13
** } // line 14
** } // line 15
**
** Algorithm 2
** -----------
**
** We note that since 2*R/K underestimates 1/g and F1/K underestimates
** f', the Q' in line 8 underestimates Q. Lines 9 through 15 continue
** to increment Q' by one until the following condition is satisfied:
**
** 0 <= (K*F1 + F2) - Q'*G1 <= G1 - 1 (5)
**
** or equivalently
**
** Q' = trunc[(K*F1 + F2)/G1]
**
** We note without proof that Q' <= K-1 and Q <= Q' <= Q + 2. I.e.
** Q' overestimates Q by at most 2.
*/
F2 = G_UX_FRACTION_DIGIT(result, 0);
if (F1 == G1)
{
Q = -1;
T2 = F2 + G1;
T1 = (T2 < G1);
}
else
{
UMULH(F1, R, Q);
Q += Q;
EXTENDED_DIGIT_MULTIPLY(Q, G1, T1, T2);
T2 = F2 - T2;
T1 = F1 - T1 - (T2 > F2);
while ((T1 != 0) || (T2 >= G1))
{
T1 -= (T2 < G1);
T2 -= G1;
Q++;
}
}
/*
** UPDATING F'
** -----------
**
** With Q' defined as above, define:
**
** fh' the high two digits of f'
** fl' the remaining digits of f'
** gh the high digit of g
** gl the remaining digits of g
**
** we proceed with the updating of f':
**
** f' <-- K*f' - Q'g
** <-- K*(fh' + fl') - Q'(gh + gl)
** <-- K*[(K*F1 + F2)/K^2 + fl'] - Q'(G1/K + gl)
** <-- (K*F1 + F2)/K + K*fl' - Q'*G1/K - Q'*gl
** <-- [(K*F1 + F2) - Q'*G1]/K + K*fl' - Q'*gl
**
** Now the quantity in square brackets has already been computed by
** algorithm 2. In particular, [(K*F1 + F2) - Q'*G1] = K*T1 + T2,
** and T1 is guaranteed to be 0 or 1. Consequently we can write
**
** f' <-- [(K*F1 + F2) - Q'*G1]/K + K*fl' - Q'*gl
** <-- (K*T1+T2)/K + K*fl' - Q'*gl
**
** Since Q' overestimates Q by at most 2, we know that we may need to
** adjust f' by adding in g at most twice.
*/
P_UX_MSD(result, T2);
P_UX_MSD(&ux_q, Q);
MULTIPLY(&ux_q, &ux_g_lo, &product);
ADDSUB(result, &product, SUB | NO_NORMALIZATION, result);
while (G_UX_SIGN(result))
{
if (!T1)
{
addend = y;
Q--;
}
else
{
T1--;
addend = UX_HALF;
ADDSUB(result, addend, ADD | NO_NORMALIZATION, result);
}
ADDSUB(result, addend, ADD | NO_NORMALIZATION, result);
}
Q |= old_quot;
} while (J > 0);
/*
** Now we need to deal with the rounding modes. Get the SKLR, the sign,
** stick, lsb and rounding bit of the quotient and index into the rounding
** flags to determine how (if) x should be modified
*/
NORMALIZE(result);
final_step:
SKLR = ((sign_xor >> (BITS_PER_UX_SIGN_TYPE - 4)) & 8)
| (((UX_OR_LOW_FRACTION_DIGITS(result) | G_UX_MSD(result)) == 0) ? 0 : 4)
| (Q & 3);
rounding_flags = (rounding_flags >> (SKLR*FLAGS_BIT_WIDTH)) & FLAGS_MASK;
Q >>= 1;
UX_DECR_EXPONENT(result, 1);
if (rounding_flags != ZERO_FLAG )
{
UX_DECR_EXPONENT(y, rounding_flags & 1);
ADDSUB(result, y, (rounding_flags & 2) ? ADD : SUB, result);
if (!(rounding_flags & 2))
Q += 1;
}
/*
** remquo returns a pointer to the lo (BITS_PER_INT - 2) bits
** of the signed quotient
*/
Q &= KMASK;
quotient = ((sign_xor) ? -Q : Q );
/* add final sign */
UX_TOGGLE_SIGN(result, sign_x);
UX_INCR_EXPONENT(result, exponent_y + J);
return quotient;
}
/*
** C_UX_MOD is the common processing for both mod and rem. It unpacks its
** input arguments and invokes UX_MOD to get the appropriate result.
*/
#if !defined(C_UX_MOD)
# define C_UX_MOD __INTERNAL_NAME(C_ux_mod__)
#endif
static WORD
C_UX_MOD(_X_FLOAT * packed_x, _X_FLOAT * packed_y, U_WORD bit_vector,
WORD underflow_error, const U_WORD * class_to_action_map,
_X_FLOAT * packed_result OPT_EXCEPTION_INFO_DECLARATION)
{
WORD fp_class, index;
WORD quot;
UX_FLOAT unpacked_x, unpacked_y, unpacked_result;
quot = 0;
fp_class = UNPACK2(
packed_x,
packed_y,
& unpacked_x,
& unpacked_y,
class_to_action_map,
packed_result
OPT_EXCEPTION_INFO_ARGUMENT
);
if (0 > fp_class)
return quot;
quot = UX_MOD(
&unpacked_x,
&unpacked_y,
bit_vector,
&unpacked_result);
PACK(
&unpacked_result,
packed_result,
underflow_error,
NOT_USED
OPT_EXCEPTION_INFO_ARGUMENT
);
return quot;
}
/*
** The following three routines are the user level entry points for mod,
** rem, and remquo.
**
** The following macros convert the rounding flags defined in dpml_ux.h
** (referred to at B above) to the flags used by UX_MOD (referred to at B' above)
*/
#define R_minus_2B(B,i) \
((2 + ((i & 1) - (((2*B) >> i) & 2))) << (i * FLAGS_BIT_WIDTH))
#define CVT_B_TO_B_PRIME(B) ( R_minus_2B(B, 0) | R_minus_2B(B, 1) | \
R_minus_2B(B, 2) | R_minus_2B(B, 3) | \
R_minus_2B(B, 4) | R_minus_2B(B, 5) | \
R_minus_2B(B, 6) | R_minus_2B(B, 7) | \
R_minus_2B(B, 8) | R_minus_2B(B, 9) | \
R_minus_2B(B,10) | R_minus_2B(B,11) | \
R_minus_2B(B,12) | R_minus_2B(B,13) | \
R_minus_2B(B,14) | R_minus_2B(B,15) )
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_MOD_NAME
X_XX_PROTO(F_ENTRY_NAME, packed_result, packed_x, packed_y)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
C_UX_MOD(
PASS_ARG_X_FLOAT(packed_x),
PASS_ARG_X_FLOAT(packed_y),
CVT_B_TO_B_PRIME(RZ_BIT_VECTOR),
MOD_UNDERFLOW,
MOD_CLASS_TO_ACTION_MAP,
PASS_RET_X_FLOAT(packed_result)
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_REM_NAME
X_XX_PROTO(F_ENTRY_NAME, packed_result, packed_x, packed_y)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
C_UX_MOD(
PASS_ARG_X_FLOAT(packed_x),
PASS_ARG_X_FLOAT(packed_y),
CVT_B_TO_B_PRIME(RN_BIT_VECTOR),
REM_UNDERFLOW,
REM_CLASS_TO_ACTION_MAP,
PASS_RET_X_FLOAT(packed_result)
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_REMAINDER_NAME
X_XX_PROTO(F_ENTRY_NAME, packed_result, packed_x, packed_y)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
INIT_EXCEPTION_INFO;
C_UX_MOD(
PASS_ARG_X_FLOAT(packed_x),
PASS_ARG_X_FLOAT(packed_y),
CVT_B_TO_B_PRIME(RN_BIT_VECTOR),
REM_UNDERFLOW,
REM_CLASS_TO_ACTION_MAP,
PASS_RET_X_FLOAT(packed_result)
OPT_EXCEPTION_INFO );
RETURN_X_FLOAT(packed_result);
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_REMQUO_NAME
X_XXIptr_PROTO(F_ENTRY_NAME, packed_result, packed_x, packed_y, quotient)
{
EXCEPTION_INFO_DECL
DECLARE_X_FLOAT(packed_result)
WORD quot;
INIT_EXCEPTION_INFO;
quot = C_UX_MOD(
PASS_ARG_X_FLOAT(packed_x),
PASS_ARG_X_FLOAT(packed_y),
CVT_B_TO_B_PRIME(RN_BIT_VECTOR),
REMQUO_UNDERFLOW,
REMQUO_CLASS_TO_ACTION_MAP,
PASS_RET_X_FLOAT(packed_result)
OPT_EXCEPTION_INFO );
*quotient = (int) quot;
RETURN_X_FLOAT(packed_result);
}
#if defined(MAKE_INCLUDE)
@divert -append divertText
precision = ceil(UX_PRECISION/8) + 4;
START_TABLE;
/*
** Unfortunately, because the error codes for mod and rem are different,
** we need to duplicate the class to action mapping tables with different
** error codes. Consequently, we use a subroutine to print them out
*/
procedure print_class_to_action_table( infinity_error, zero_error )
{
/* Index 0: mapping for x */
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(6) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) );
/* Index 1: class-to-index mapping */
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(5) +
CLASS_TO_INDEX( F_C_POS_INF, 2) +
CLASS_TO_INDEX( F_C_NEG_INF, 2) +
CLASS_TO_INDEX( F_C_POS_NORM, 3) +
CLASS_TO_INDEX( F_C_NEG_NORM, 3) +
CLASS_TO_INDEX( F_C_POS_DENORM, 4) +
CLASS_TO_INDEX( F_C_NEG_DENORM, 4) +
CLASS_TO_INDEX( F_C_POS_ZERO, 5) +
CLASS_TO_INDEX( F_C_NEG_ZERO , 5) );
/* Index 2: mapping for y given x was +/- Infinity */
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(4) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 1) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_POS_NORM, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_NEG_NORM, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_ERROR, 3) +
CLASS_TO_ACTION( F_C_NEG_ZERO, RETURN_ERROR, 3) );
/* Index 3: mapping for y given x was +/- Norm */
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(3) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 1) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_NORM, RETURN_UNPACKED, 1) +
CLASS_TO_ACTION( F_C_NEG_NORM, RETURN_UNPACKED, 1) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED, 1) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_UNPACKED, 1) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_ERROR, 3) +
CLASS_TO_ACTION( F_C_NEG_ZERO, RETURN_ERROR, 3) );
/* Index 4: mapping for y given x was +/- Denorm */
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(2) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 1) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_NORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_NORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED, 1) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_UNPACKED, 1) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_ERROR, 3) +
CLASS_TO_ACTION( F_C_NEG_ZERO, RETURN_ERROR, 3) );
/* Index 5: mapping for y given x was +/- zero */
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 1) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_NORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_NORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_ERROR, 3) +
CLASS_TO_ACTION( F_C_NEG_ZERO, RETURN_ERROR, 3) );
PRINT_U_TBL_ITEM( /* data 1 */ NULL );
PRINT_U_TBL_ITEM( /* data 2 */ infinity_error );
PRINT_U_TBL_ITEM( /* data 3 */ zero_error );
}
TABLE_COMMENT("mod class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "MOD_CLASS_TO_ACTION_MAP");
print_class_to_action_table( MOD_OF_INF, MOD_BY_ZERO );
TABLE_COMMENT("rem class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "REM_CLASS_TO_ACTION_MAP");
print_class_to_action_table( REM_OF_INF, REM_BY_ZERO );
TABLE_COMMENT("remquo class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "REMQUO_CLASS_TO_ACTION_MAP");
print_class_to_action_table( REMQUO_OF_INF, REMQUO_BY_ZERO );
TABLE_COMMENT("Unpacked constants 1/2");
PRINT_UX_TBL_ADEF_ITEM( "UX_HALF\t\t", 1/2);
k = BITS_PER_UX_FRACTION_DIGIT_TYPE;
TABLE_COMMENT(
"2^n, for n = -64, -26, -23, 0, 23, 53, 78, k-53, 2k-1, in double");
PRINT_R_TBL_VDEF_ITEM( "D_RECIP_TWO_POW_64", bldexp(1, -64));
PRINT_R_TBL_VDEF_ITEM( "D_RECIP_TWO_POW_26", bldexp(1, -26));
PRINT_R_TBL_VDEF_ITEM( "D_RECIP_TWO_POW_23", bldexp(1, -23));
PRINT_R_TBL_VDEF_ITEM( "D_ONE\t\t", 1);
PRINT_R_TBL_VDEF_ITEM( "D_TWO_POW_23\t", bldexp(1, 23));
PRINT_R_TBL_VDEF_ITEM( "D_TWO_POW_53\t", bldexp(1, 53));
PRINT_R_TBL_VDEF_ITEM( "D_TWO_POW_78\t", bldexp(1, 78));
PRINT_R_TBL_VDEF_ITEM( "D_TWO_POW_Km53\t", bldexp(1, k - 53));
PRINT_R_TBL_VDEF_ITEM( "D_TWO_POW_2Km1\t", bldexp(1, 2*k - 1));
END_TABLE;
@end_divert
@eval my $tableText; \
my $outText = MphocEval( GetStream( "divertText" ) ); \
my $defineText = Egrep( "#define", $outText, \$tableText ); \
$outText = "$tableText\n\n$defineText"; \
my $headerText = GetHeaderText( STR(BUILD_FILE_NAME), \
"Definitions and constants remainder " . \
"related routines", __FILE__ ); \
print "$headerText\n\n$outText\n";
#endif
|