File: dpml_ux_mod.c

package info (click to toggle)
intelrdfpmath 2.0u3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,088 kB
  • sloc: ansic: 310,558; makefile: 446; sh: 3
file content (924 lines) | stat: -rw-r--r-- 31,928 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
/******************************************************************************
  Copyright (c) 2007-2024, Intel Corp.
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of Intel Corporation nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/

#define	BASE_NAME	mod
#include "dpml_ux.h"

#if !defined(MAKE_INCLUDE)
#   include STR(BUILD_FILE_NAME)
#endif


#define KMASK     (((U_WORD) 1 << (BITS_PER_INT - 2)) - 1)


/* 
** PRELIMINARIES
** -------------
** 
** The mod and rem functions are defined as:
** 
** 		mod(x,y) = x - y*trunc(x/y)
** 
** 		rem(x,y) = x - y*rint(x/y)
** 
** If we denote by R any of the rounding modes defined in x_float note 19.x,
** then we can consider mod and rem as specific cases of the more general
** function, Mod, defined by: 
** 
** 		Mod(x,y,R) = x - y*rnd_to_int(x/y, R)			(1)
** 
** Now, consider the following decomposition of the binary representation of
** |x|/|y|:
** 
** 		x/y = qqqqqqqqql.rpppppppp....
** 		      \_______/   \__________/
** 		          q             u
** 
** 		    = 2*q + l + r/2 + u/2
** 
** As in note 19.x, if we know the sign of x/y (call it s), and we define k,
** the sticky bit, to be 0 if u = 0 and 1 otherwise, then for each of the
** possible rounding modes, R, there is a binary function, B(R,s,l,r,k), such
** that
** 
** 	rnd_to_int(x/y, R) = (-1)^s*[2*q + l + B(R,s,l,r,k)]
** 	                   = (-1)^[sx + sy]*[2*q + l + B(R,s,l,r,k)]
** 
** where sx and sy are the sign bits of x and y respectively.  If we denote
** B(R,s,l,r,k) by B and 2*q + l by Q, it follows that
** 
** 	Mod(x,y,R) = x - y*rnd_to_int(x/y, R)
** 	           = x - y*(-1)^[sx + sy]*[Q + B]
** 	           = (-1)^sx*|x| - (-1)^sy*|y|*(-1)^[sx + sy]*[Q + B]
** 	           = (-1)^sx*|x| - (-1)^[sx + 2*sy]*|y|*[Q + B]
** 	           = (-1)^sx*|x| - (-1)^sx*|y|*[Q + B]
** 	           = (-1)^sx*{ |x| - |y|*[Q + B] }
** 	           = (-1)^sx*{ |x| - |y|*Q - |y|*B] }
** 
** Now Q = 2*q + l = trunc(x/y) so we have:
** 
** 	Mod(x,y,R) = (-1)^sx*{ |x| - |y|*Q - |y|*B] }
** 	           = (-1)^sx*{ |x| - |y|*trunc(|x|/|y|) - |y|*B] }
** 	           = (-1)^sx*{ mod(|x|, |y|) - |y|*B] }			(2)
** 
** That is, we can compute the generalized Mod function by computing
** mod(|x|,|y|), adjusting by 0 or |y|, and then optionally negating the
** result.  With the above result in mind, for the remainder of this
** discussion, we assume that x and y are positive.
** 
** A slight variation on the above description is to compute mod(2*x, y).  The
** binary expansion of 2x/y is
** 
** 		2x/y = qqqqqqqqqlr.pppppppp....
** 		       \_______/   \__________/
** 		          q             u
** 
** 		    = 4*q + 2*l + r + u
** 
** If we denote Q = trunc(2*x/y), then l and r are the two low bits of Q and 
** k = 0 or 1 if mod(2x,y) = 0 or not.  Now
** 
** 	mod(2*x,y) = 2*x - y*trunc(2*x/y)
** 	          = 2*x - y*(4*q + 2*l + r)
** 	          = 2*x - y*(4*q + 2*l) - y*r
** 	          = 2*[x - y*(2*q + l)] - y*r
** 	          = 2*[x - y*trunc(x/y)] - y*r
** 	          = 2*mod(x,y) - y*r
** 
** Substituting the above result into (2) we get
** 
** 	Mod(x,y,R) = mod(x, y) - y*B
** 	           = [ mod(2*x) + y*r ]/2 - y*B
** 	           = mod(2*x,y)/2 + y*(r/2 - B)
** 
** Since B = 0 or 1 depending on the values of s, l, r and k, and r = 0 or 1,
** it follows that r/2 - B = -1, -1/2, 0 or 1/2 depending on s, l, r and k.
** This means we can define a function, B'(R,s,l,r,k) that takes on the values
** -2, -1, 0 or 1 and compute Mod(x,y,R) as mod(2*x)/2 + y*(B'/2)
** 
** So we are led to the following basic approach to computing the generalized
** mod function:
** 
** 	o Compute u = mod(2*|x|, |y|) keeping track of the low order
** 	  digit, Q, of the quotient 2*|x|/|y|
** 	o Based on the sign bits of x and y, the low 2 bits of Q, and x',
** 	  determine the increment value B'
** 	o Compute the generalized mod function as x' + y*B' with the sign
**	  appropriately adjusted.
**
**
** LONG DIVISION REVISITED
** -----------------------
** 
** Given x = 2^n*f and y = 2^m*g where f and g are in the interval [1/2, 1),
** the basic approach to computing the quotient, 2*x/y, is to do it one
** "digit" at a time.  That is, we essentially perform long division,
** computing one quotient digit at a time while simultaneously producing
** the remainder in the process.  Continuing the analogy to long division,
** the basic process is as follows:
** 
**		(1) At each stage, we know the current remainder, x, and the 
**		    divisor, y.
**		(2) We make a guess at the next quotient digit, Q
**		(3) Compute a new remainder, x', as x' = x - Q*y.
** 
** Since the value of Q at in step (2) was a guess, the new remainder may be
** greater than y or less than zero depending on whether Q was too small or
** too large.  In any case, we can obtain the correct Q and x' by
** incrementing or decrementing Q and adding or subtracting y from x'.
** 
** An important conclusion to draw from the above discussion is that the
** correct computation of Q is very closely tied to the computation of the
** remainder.  In particular, the two computations are not done
** independently from one another, but rather they overlap each other.
** 
** In the discussion, that follows, we present a method for computing Q
** and x' that involve a 3 step process:
** 
** 	Step 1:	Obtain a mediocre estimate of Q, call it Q" based on only
** 		the high digit of x and y.
** 	Step 2: Obtain a fairly good estimate of Q, call it Q', based on
** 		the high two digits of x and Q".  In the process, we compute
** 		the high two digits of the new remainder.
** 	Step 3: Compute the low order digits of the remaider, and adjust it
** 		and Q' accordingly to obtain the final remainder and the 
** 		exact value of Q
*/ 

#define EXT_SHIFT(a,s,b,c)	(((a) << (s)) | ((b) >> (c)))

#if BITS_PER_UX_FRACTION_TYPE == 32

#   define EXTENDED_DIGIT_SHIFT_LEFT_UX_FRACTION(g, m)			\
                (m) = G_UX_FRACTION_DIGIT(g,0);				\
		P_UX_FRACTION_DIGIT(g, 0, G_UX_FRACTION_DIGIT(g, 1));	\
		P_UX_FRACTION_DIGIT(g, 1, G_UX_FRACTION_DIGIT(g, 2));	\
		P_UX_FRACTION_DIGIT(g, 2, G_UX_FRACTION_DIGIT(g, 3));	\
		P_UX_FRACTION_DIGIT(g, 3, 0);

#   define EXTENDED_BIT_SHIFT_LEFT_UX_FRACTION(g, m, s, c)		\
		{							\
		UX_FRACTION_DIGIT_TYPE _t0, _t1, _t2, _t3;		\
		 							\
                _t0 = G_UX_FRACTION_DIGIT(g,0);				\
		(m) = _t0 >> (c);					\
                _t1 = G_UX_FRACTION_DIGIT(g,1);				\
		P_UX_FRACTION_DIGIT(g, 0, EXT_SHIFT(_t0, s, _t1, c));	\
                _t2 = G_UX_FRACTION_DIGIT(g,2);				\
		P_UX_FRACTION_DIGIT(g, 1, EXT_SHIFT(_t1, s, _t2, c));	\
                _t3 = G_UX_FRACTION_DIGIT(g,3);				\
		P_UX_FRACTION_DIGIT(g, 2, EXT_SHIFT(_t2, s, _t3, c));	\
		P_UX_FRACTION_DIGIT(g, 1, _t3 << (s));			\
		}

#   define DIGIT_SHIFT_LEFT_UX_FRACTION(g,p)				\
		P_UX_FRACTION_DIGIT(p, 0, G_UX_FRACTION_DIGIT(g, 1));	\
		P_UX_FRACTION_DIGIT(p, 1, G_UX_FRACTION_DIGIT(g, 2));	\
		P_UX_FRACTION_DIGIT(p, 2, G_UX_FRACTION_DIGIT(g, 3));	\
		P_UX_FRACTION_DIGIT(p, 3, 0);

#else

#   define EXTENDED_DIGIT_SHIFT_LEFT_UX_FRACTION(g, m)			\
                (m) = G_UX_FRACTION_DIGIT(g,0);				\
		P_UX_FRACTION_DIGIT(g, 0, G_UX_FRACTION_DIGIT(g, 1));	\
		P_UX_FRACTION_DIGIT(g, 1, 0);

#   define EXTENDED_BIT_SHIFT_LEFT_UX_FRACTION(g, m, s, c)		\
		{							\
		UX_FRACTION_DIGIT_TYPE _t0, _t1;			\
		 							\
                _t0 = G_UX_FRACTION_DIGIT(g,0);				\
		(m) = _t0 >> (c);					\
                _t1 = G_UX_FRACTION_DIGIT(g,1);				\
		P_UX_FRACTION_DIGIT(g, 0, EXT_SHIFT(_t0, s, _t1, c));	\
		P_UX_FRACTION_DIGIT(g, 1, _t1 << (s));			\
		}

#   define DIGIT_SHIFT_LEFT_UX_FRACTION(g,p)				\
		P_UX_FRACTION_DIGIT(p, 0, G_UX_FRACTION_DIGIT(g, 1));	\
		P_UX_FRACTION_DIGIT(p, 1, 0);

#endif

#define MINUS_2_FLAG		0
#define MINUS_1_FLAG		1
#define ZERO_FLAG		2
#define ONE_FLAG		3
#define FLAGS_BIT_WIDTH		2
#define FLAGS_MASK		MAKE_MASK(2,0)

#if !defined(UX_MOD)
#    define UX_MOD	__INTERNAL_NAME(ux_mod__)
#endif

static WORD
UX_MOD( UX_FLOAT * x, UX_FLOAT * y, WORD rounding_flags, UX_FLOAT * result )

    {
    U_WORD SKLR;
    UX_EXPONENT_TYPE J, tmp, exponent_y;
    UX_SIGN_TYPE sign_x, sign_xor;
    UX_FLOAT ux_tmp, ux_g_lo, ux_q, product, *addend;
    UX_FRACTION_DIGIT_TYPE F1, F2, G1, R, Q, T1, T2;
    UX_FRACTION_DIGIT_TYPE old_quot; 
    WORD quotient;
    D_TYPE r, r_hi, g_hi, g_lo, r_lo;

    sign_x = G_UX_SIGN(x);
    sign_xor = (sign_x ^ G_UX_SIGN(y));
    P_UX_SIGN(x, 0);
    P_UX_SIGN(y, 0);

    /*
    ** At this point, we consider the general algorithm for long division.
    ** With x = 2^n*f, y = 2^m*g consider the following algorithm:
    ** 
    ** 			 (1) J = n - m + 1
    ** 			 (2) if (J < 0) goto (11)
    ** 			 (3) if f < g
    ** 			         f' <-- f
    ** 			         Q <-- 0 
    ** 			     else
    ** 			         Q <-- 1 
    ** 			         f' <-- f - g 
    ** 			 (4) if (J <= 0) goto (11)
    ** 			 (5) t <-- (J >= k) ? k : J
    ** 			 (6) f" <-- 2^t*f'
    ** 			 (7) Q <-- trunc(f"/g)
    ** 			 (8) f' <-- f" - Q*g
    ** 			 (9) J <-- j - t
    ** 			(10) goto 4
    ** 			(11)
    ** 
    ** 				Algorithm 1
    ** 				-----------
    ** 
    ** We state here without proof that at step (11), Q is the low order digit
    ** of the quotient 2*x/y and f' is mod(2*x, y).  
    ** 
    ** The next section of code implements the first four steps of algorithm 1.
    */

    exponent_y = G_UX_EXPONENT(y);
    J = G_UX_EXPONENT(x) - exponent_y + 1;
    P_UX_EXPONENT(x, 0);
    P_UX_EXPONENT(y, 0);
    UX_COPY(x, result);
    Q = 0;

    if (J >= 0)
        {
        ADDSUB(x, y, SUB | NO_NORMALIZATION, &ux_tmp);

        if ( G_UX_SIGN(&ux_tmp) == 0 )
            {
            Q = 1;
            UX_COPY(&ux_tmp, result);
            }
        }

    if (J <= 0)
        goto final_step;

    /* 
    ** COMPUTING Q"
    ** ------------
    ** 
    ** In step 7, we compute an estimate for Q, call it Q" by multiplying the
    ** high digit of 1/g by the high digit of f".  That is, we assume that we
    ** have a k-bit integer R, such that r = 2*R/M is a good approximation to
    ** 1/g.  For reasons that will be discussed later, we want r < 1/g.  In this
    ** section we describe how to compute R.
    ** 
    ** We note that the method for computing of R is almost identical to the
    ** method used to obtain the initial reciprocal approximation in the divide
    ** algorithm (see note 6.x).  The main difference being that in divide
    ** algorithm, r was to be as close to 1/g as possible, and for mod, we want
    ** r to underestimate 1/g. 
    ** 
    ** The value of R is computed using multi-precision floating point
    ** arithmetic and then is converted back to an integer data type.  We
    ** assume the existence of a floating point type with 53 bits of precision.
    */ 

#   if (D_PRECISION < 53)
#       error "Must have D_PRECISION >= 53"
#   endif

    /* 
    ** Let G1 be the high digit of g, K = 2^k and define g" = (G1 + 1)/K. 
    ** Note that 1/g" < 1/g.  The remainder of this section is concerned
    ** with the computation R = trunc[(K/2)/g"].  The computation of R depends
    ** on the relative size of a digit, k, compared to the floating point
    ** precision.
    */ 

    G1 = G_UX_MSD(y);

#   if (BITS_PER_UX_FRACTION_DIGIT_TYPE < D_PRECISION)

        /* 
        ** If k <= 53, then define gt = high k bits of g plus 1/K - i.e.
        ** gt = (G1 + 1)/K.  Then let R = trunc[(K/2)/gt - 1/2^53].  (NOTE:
        ** the 1/2^53 term is to compensate for a possible round up on the
        ** division.)
        */ 

        R = (UX_FRACTION_DIGIT_TYPE)
             (D_TWO_POW_2Km1/((double) (G1 + 1)) - D_TWO_POW_Km53);

#   else

        /* 
        ** If 53 < k < 78, then define the following double precision floating
        ** point values:
        ** 
        ** 		gt   = high 53 bits of g
        ** 		r    = 1/gt
        ** 		r_hi = high 24 bits of r
        ** 		g_hi = high 26 bits of g
        ** 		g_lo = next (k - 26) bits of g incremented by 1/K
        **	 	r_lo = [ (1 - g_hi*r_hi) - g_lo*r_hi] * r
        ** 
        ** and then compute
        **
        **		R = floor[ K*(r_hi + r_lo) - 1/2^78 ]		(1)
        **
        ** The 1/2^78 term corrects for any possible "rounding-up" that might
        ** take place so that taking r = 2*R/K is guaranteed to be less than
        ** 1/g and R is in the interval [K/2, K-1].  In order to ease the
        ** conversion to integer, force r_hi to be less than 1/g.  This will
        ** make r_lo positive.
        */ 

        r    = D_TWO_POW_53 / ((double) (G1 >> 11));
        r_hi = ((double)((float) r)) - D_RECIP_TWO_POW_23;
        g_hi = D_RECIP_TWO_POW_26 * ((double) ((WORD) (G1 >> 38)));
        g_lo = D_RECIP_TWO_POW_64 *
               ((double) ((WORD) ((G1 & MAKE_MASK(38, 0)) + 1)));
        r_lo = (D_GROUP( D_ONE - g_hi*r_hi) - g_lo*r_hi)*r;

        /* 
        ** Some care is required in computing (1) in order to insure no
        ** additional rounding takes place.  We begin by defining
        ** 
        ** 		R1 = floor(2^23*r_hi)
        ** 		R2 = floor(2^78*r_lo)
        ** 
        ** Since r_hi has at most 24 significant bits and r_hi > 1,
        ** R1 = 2^23*r_hi.  Also, since |r_lo| < 1/2^24, no integer overflow
        ** will occur when computing R2.  It follows that 
        ** 
        ** 		r_hi + r_lo = R1/2^23 + (R2 + e)/2^78
        ** 
        ** where 0 <= e < 1 is the error in truncating 2^78*r_lo. This implies
        ** that
        ** 
        ** 		R = floor[ K*(r_hi + r_lo) - 1/2^75 ]
        ** 		  = floor[ K*(R1/2^23 + (R2 + e))/2^78 - 1/2^75]
        ** 		  = floor[ K*(2^25*R1 + R2 + e - 8)/2^78 ]
        ** 		  = floor[ K*(2^25*R1 + R2 + e - 8)/2^78 ]
        ** 		  = 2^*(k-53)*R1 + floor[K*(R2 + e - 8)/2^78 ]
        ** 		  = [R1 << (k-53)] + [(R2 - 8) >> (78-k)]
        ** 
        ** Note that the shift of (R2-8) should be a signed shift.
        */ 

        R = (UX_SIGNED_FRACTION_DIGIT_TYPE) (D_TWO_POW_23*r_hi);
        T1 = (UX_SIGNED_FRACTION_DIGIT_TYPE) (D_TWO_POW_78*r_lo);
        R = (R << (BITS_PER_UX_FRACTION_DIGIT_TYPE - S_PRECISION)) +
	     ((T1 - 8) >> (79 - BITS_PER_UX_FRACTION_DIGIT_TYPE));

#    endif

    /*
    ** Eventually, we will want to compute Q*g exactly.  We will do that
    ** by Q*g in high and low pieces, with g_hi being the first digit of
    ** g and g_lo being the remaining digits.  At this point we create
    ** g_lo by shifting the digits of g "up" one and bringing in a zero.
    **
    ** While we're at it, we create an unpacked x-float quantity, q, so we
    ** can convert the integer Q, to an unpacked format.
    */

    DIGIT_SHIFT_LEFT_UX_FRACTION(y, &ux_g_lo);
    P_UX_SIGN(&ux_g_lo, 0);
    P_UX_EXPONENT(&ux_g_lo, 0);

    UX_SET_SIGN_EXP_MSD(&ux_q, 0, 0, 0);

    do  {

        J -= BITS_PER_UX_FRACTION_DIGIT_TYPE;
        if (J >= 0)
            { 
            EXTENDED_DIGIT_SHIFT_LEFT_UX_FRACTION(result, F1);
	    old_quot = 0; 
            }
        else
            {
            WORD shift, cshift;

            shift = BITS_PER_UX_FRACTION_DIGIT_TYPE + J;
            cshift = -J;
	    old_quot = (Q << shift);
            EXTENDED_BIT_SHIFT_LEFT_UX_FRACTION(result, F1, shift, cshift);
            J = 0;
            }

        /* 
        ** COMPUTING THE REAL Q AND NEW F'
        ** ------------------------------
        ** 
        ** The two key issues associated with algorithm 1 from a computational
        ** point of view is getting Q = trunc(2^t*f'/g) and updating f' to
        ** 2^t*f' - Q*g.  In this section we address these two issues.
        ** 
        ** Denoting the high k bits of f' by F1, the next k bits by F2, the
        ** first 2k bits by F1:F2, and denoting the high k bits of g by G1,
        ** consider the following algorithm:
        ** 
        ** 
        ** 		if (F1 == G1)				// line 1
        ** 		    {					// line 2
        ** 		    Q' <-- K - 1			// line 3
        ** 		    T1:T2 <-- F2 + G1			// line 4
        ** 		    }					// line 5
        ** 		else					// line 6
        ** 		    {					// line 7
        ** 		    Q'    <-- 2*umulh(F1*R)		// line 8
        ** 		    T1:T2 <-- F1:F2 - Q'*G1		// line 9
        ** 		    while ((T1 != 0) || (T2 >= G1))	// line 10
        ** 		        {				// line 11
        ** 		        T1:T2 <-- T1:T2 - 0:G1		// line 12
        ** 		        Q' <-- Q' + 1			// line 13
        ** 		        }				// line 14
        ** 		    }					// line 15
        ** 
        ** 			Algorithm 2
        ** 			-----------
        ** 
        ** We note that since 2*R/K underestimates 1/g and F1/K underestimates
        ** f', the Q' in line 8 underestimates Q.  Lines 9 through 15 continue
        ** to increment Q' by one until the following condition is satisfied:
        ** 
        ** 		0 <= (K*F1 + F2) - Q'*G1 <= G1 - 1	(5)
        ** 
        ** or equivalently
        ** 
        ** 		Q' = trunc[(K*F1 + F2)/G1]
        ** 
        ** We note without proof that Q' <= K-1 and Q <= Q' <= Q + 2.  I.e.
        ** Q' overestimates Q by at most 2.
        */ 

        F2 = G_UX_FRACTION_DIGIT(result, 0);

        if (F1 == G1)
            {
            Q = -1;
            T2 = F2 + G1;
            T1 = (T2 < G1);
            }
        else
            {
            UMULH(F1, R, Q);
            Q += Q;
            EXTENDED_DIGIT_MULTIPLY(Q, G1, T1, T2);
            T2 = F2 - T2;
            T1 = F1 - T1 - (T2 > F2);
            while ((T1 != 0) || (T2 >= G1))
                {
                T1 -= (T2 < G1);
                T2 -= G1;
                Q++;
                }
            }

        /* 
        ** UPDATING F'
        ** -----------
        ** 
        ** With Q' defined as above, define:
        **
        **	fh' 	the high two digits of f'
        **	fl'	the remaining digits of f'
	**	gh	the high digit of g
	**	gl	the remaining digits of g
        **
        ** we proceed with the updating of f':
        ** 
        ** 		f' <-- K*f' - Q'g
        ** 		   <-- K*(fh' + fl') - Q'(gh + gl)
        ** 		   <-- K*[(K*F1 + F2)/K^2 + fl'] - Q'(G1/K + gl)
        ** 		   <-- (K*F1 + F2)/K + K*fl' - Q'*G1/K - Q'*gl
        ** 		   <-- [(K*F1 + F2) - Q'*G1]/K + K*fl' - Q'*gl
        ** 
        ** Now the quantity in square brackets has already been computed by
        ** algorithm 2.  In particular, [(K*F1 + F2) - Q'*G1] = K*T1 + T2,
        ** and T1 is guaranteed to be 0 or 1.  Consequently we can write
        ** 
        ** 		f' <-- [(K*F1 + F2) - Q'*G1]/K + K*fl' - Q'*gl
        ** 		   <-- (K*T1+T2)/K + K*fl' - Q'*gl
        ** 
        ** Since Q' overestimates Q by at most 2, we know that we may need to
        ** adjust f' by adding in g at most twice.
        */ 

	P_UX_MSD(result, T2);
        P_UX_MSD(&ux_q, Q);
        MULTIPLY(&ux_q, &ux_g_lo, &product);
        ADDSUB(result, &product, SUB | NO_NORMALIZATION, result);

        while (G_UX_SIGN(result))
            {
            if (!T1)
                {
                addend = y;
                Q--;
                }
            else
                {
                T1--;
                addend = UX_HALF;
                ADDSUB(result, addend, ADD | NO_NORMALIZATION, result);
                }
            ADDSUB(result, addend, ADD | NO_NORMALIZATION, result);
            }
	    Q |= old_quot; 

        } while (J > 0);

    /*
    ** Now we need to deal with the rounding modes.  Get the SKLR, the sign,
    ** stick, lsb and rounding bit of the quotient and index into the rounding
    ** flags to determine how (if) x should be modified
    */

    NORMALIZE(result);

final_step:

    SKLR = ((sign_xor >> (BITS_PER_UX_SIGN_TYPE - 4)) & 8)
      | (((UX_OR_LOW_FRACTION_DIGITS(result) | G_UX_MSD(result)) == 0) ? 0 : 4)
      | (Q & 3);

    rounding_flags = (rounding_flags >> (SKLR*FLAGS_BIT_WIDTH)) & FLAGS_MASK;

    Q >>= 1;    
    UX_DECR_EXPONENT(result, 1);
    if (rounding_flags != ZERO_FLAG )
        {
        UX_DECR_EXPONENT(y, rounding_flags & 1);
        ADDSUB(result, y, (rounding_flags & 2) ? ADD : SUB, result);
        if (!(rounding_flags & 2))
            Q += 1;
        }

    /* 
    ** remquo returns a pointer to the lo (BITS_PER_INT - 2) bits 
    ** of the signed quotient 
    */

     Q &= KMASK;
     quotient = ((sign_xor) ? -Q : Q );

     /* add final sign */
     UX_TOGGLE_SIGN(result, sign_x);
     UX_INCR_EXPONENT(result, exponent_y + J);
     return quotient;
     }


/*
** C_UX_MOD is the common processing for both mod and rem.  It unpacks its
** input arguments and invokes UX_MOD to get the appropriate result.
*/

#if !defined(C_UX_MOD)
#   define C_UX_MOD	__INTERNAL_NAME(C_ux_mod__)
#endif

static WORD
C_UX_MOD(_X_FLOAT * packed_x, _X_FLOAT * packed_y, U_WORD bit_vector,
  WORD underflow_error, const U_WORD * class_to_action_map,
  _X_FLOAT * packed_result  OPT_EXCEPTION_INFO_DECLARATION)
    {
    WORD fp_class, index;
    WORD quot;
    UX_FLOAT unpacked_x, unpacked_y, unpacked_result;

    quot = 0;

    fp_class = UNPACK2(
        packed_x,
        packed_y,
        & unpacked_x,
        & unpacked_y,
        class_to_action_map,
        packed_result
        OPT_EXCEPTION_INFO_ARGUMENT
        );

    if (0 > fp_class)
        return quot;

    quot = UX_MOD(
        &unpacked_x,
        &unpacked_y,
        bit_vector,
        &unpacked_result);

    PACK(
        &unpacked_result,
        packed_result,
        underflow_error,
        NOT_USED
        OPT_EXCEPTION_INFO_ARGUMENT
        );

    return quot;
    }


/*
** The following three routines are the user level entry points for mod,
** rem, and remquo.
**
** The following macros convert the rounding flags defined in dpml_ux.h
** (referred to at B above) to the flags used by UX_MOD (referred to at B' above)
*/

#define R_minus_2B(B,i)		\
		((2 + ((i & 1) - (((2*B) >> i) & 2))) << (i * FLAGS_BIT_WIDTH))

#define CVT_B_TO_B_PRIME(B)	( R_minus_2B(B, 0) | R_minus_2B(B, 1) | \
				  R_minus_2B(B, 2) | R_minus_2B(B, 3) | \
				  R_minus_2B(B, 4) | R_minus_2B(B, 5) | \
				  R_minus_2B(B, 6) | R_minus_2B(B, 7) | \
				  R_minus_2B(B, 8) | R_minus_2B(B, 9) | \
				  R_minus_2B(B,10) | R_minus_2B(B,11) | \
				  R_minus_2B(B,12) | R_minus_2B(B,13) | \
				  R_minus_2B(B,14) | R_minus_2B(B,15) )

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME	F_MOD_NAME

X_XX_PROTO(F_ENTRY_NAME, packed_result, packed_x, packed_y)
    {
     
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)
    INIT_EXCEPTION_INFO;
    C_UX_MOD(
        PASS_ARG_X_FLOAT(packed_x),
        PASS_ARG_X_FLOAT(packed_y),
        CVT_B_TO_B_PRIME(RZ_BIT_VECTOR),
        MOD_UNDERFLOW,
        MOD_CLASS_TO_ACTION_MAP,
        PASS_RET_X_FLOAT(packed_result)
        OPT_EXCEPTION_INFO );

    RETURN_X_FLOAT(packed_result);

    }

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME	F_REM_NAME

X_XX_PROTO(F_ENTRY_NAME, packed_result, packed_x, packed_y)
    {
     
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)

    INIT_EXCEPTION_INFO;
    C_UX_MOD(
        PASS_ARG_X_FLOAT(packed_x),
        PASS_ARG_X_FLOAT(packed_y),
        CVT_B_TO_B_PRIME(RN_BIT_VECTOR),
        REM_UNDERFLOW,
        REM_CLASS_TO_ACTION_MAP,
        PASS_RET_X_FLOAT(packed_result)
        OPT_EXCEPTION_INFO );

    RETURN_X_FLOAT(packed_result);

    }

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME	F_REMAINDER_NAME

X_XX_PROTO(F_ENTRY_NAME, packed_result, packed_x, packed_y)
    {
     
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)

    INIT_EXCEPTION_INFO;
    C_UX_MOD(
        PASS_ARG_X_FLOAT(packed_x),
        PASS_ARG_X_FLOAT(packed_y),
        CVT_B_TO_B_PRIME(RN_BIT_VECTOR),
        REM_UNDERFLOW,
        REM_CLASS_TO_ACTION_MAP,
        PASS_RET_X_FLOAT(packed_result)
        OPT_EXCEPTION_INFO );

    RETURN_X_FLOAT(packed_result);

    }

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME	F_REMQUO_NAME

X_XXIptr_PROTO(F_ENTRY_NAME, packed_result, packed_x, packed_y, quotient)
    {
     
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)
    WORD quot;

    INIT_EXCEPTION_INFO;

    quot = C_UX_MOD(
        PASS_ARG_X_FLOAT(packed_x),
        PASS_ARG_X_FLOAT(packed_y),
        CVT_B_TO_B_PRIME(RN_BIT_VECTOR),
        REMQUO_UNDERFLOW,
        REMQUO_CLASS_TO_ACTION_MAP,
        PASS_RET_X_FLOAT(packed_result)
        OPT_EXCEPTION_INFO );

    *quotient = (int) quot;

    RETURN_X_FLOAT(packed_result);

    }


#if defined(MAKE_INCLUDE)

    @divert -append divertText

    precision = ceil(UX_PRECISION/8) + 4;

    START_TABLE;

    /*
    ** Unfortunately, because the error codes for mod and rem are different,
    ** we need to duplicate the class to action mapping tables with different
    ** error codes.  Consequently, we use a subroutine to print them out
    */

    procedure print_class_to_action_table( infinity_error, zero_error )
        {
	   /* Index 0: mapping for x */	

        PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(6) +
	      CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,      0) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN,  0) );

	   /* Index 1: class-to-index mapping */

        PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(5) +
	       CLASS_TO_INDEX( F_C_POS_INF,    2) +
	       CLASS_TO_INDEX( F_C_NEG_INF,    2) +
	       CLASS_TO_INDEX( F_C_POS_NORM,   3) +
	       CLASS_TO_INDEX( F_C_NEG_NORM,   3) +
	       CLASS_TO_INDEX( F_C_POS_DENORM, 4) +
	       CLASS_TO_INDEX( F_C_NEG_DENORM, 4) +
	       CLASS_TO_INDEX( F_C_POS_ZERO,   5) +
	       CLASS_TO_INDEX( F_C_NEG_ZERO ,  5) );

	    /* Index 2: mapping for y given x was +/- Infinity */

        PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(4) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,	RETURN_QUIET_NAN, 1) +
	      CLASS_TO_ACTION( F_C_QUIET_NAN,	RETURN_VALUE,     1) +
	      CLASS_TO_ACTION( F_C_POS_INF,	RETURN_ERROR,	  2) +
	      CLASS_TO_ACTION( F_C_NEG_INF,	RETURN_ERROR,	  2) +
	      CLASS_TO_ACTION( F_C_POS_NORM,	RETURN_ERROR,	  2) +
	      CLASS_TO_ACTION( F_C_NEG_NORM,	RETURN_ERROR,	  2) +
	      CLASS_TO_ACTION( F_C_POS_DENORM,	RETURN_ERROR,	  2) +
	      CLASS_TO_ACTION( F_C_NEG_DENORM,	RETURN_ERROR,	  2) +
	      CLASS_TO_ACTION( F_C_POS_ZERO,	RETURN_ERROR,	  3) +
	      CLASS_TO_ACTION( F_C_NEG_ZERO,	RETURN_ERROR,	  3) );

	    /* Index 3: mapping for y given x was +/- Norm */

        PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(3) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,	RETURN_QUIET_NAN, 1) +
	      CLASS_TO_ACTION( F_C_QUIET_NAN,	RETURN_VALUE,	  1) +
	      CLASS_TO_ACTION( F_C_POS_INF,	RETURN_VALUE,	  0) +
	      CLASS_TO_ACTION( F_C_NEG_INF,	RETURN_VALUE,	  0) +
	      CLASS_TO_ACTION( F_C_POS_NORM,	RETURN_UNPACKED,  1) +
	      CLASS_TO_ACTION( F_C_NEG_NORM,	RETURN_UNPACKED,  1) +
	      CLASS_TO_ACTION( F_C_POS_DENORM,	RETURN_UNPACKED,  1) +
	      CLASS_TO_ACTION( F_C_NEG_DENORM,	RETURN_UNPACKED,  1) +
	      CLASS_TO_ACTION( F_C_POS_ZERO,	RETURN_ERROR,	  3) +
	      CLASS_TO_ACTION( F_C_NEG_ZERO,	RETURN_ERROR,	  3) );

	    /* Index 4: mapping for y given x was +/- Denorm */

        PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(2) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,	RETURN_QUIET_NAN, 1) +
	      CLASS_TO_ACTION( F_C_QUIET_NAN,	RETURN_VALUE,	  1) +
	      CLASS_TO_ACTION( F_C_POS_INF,	RETURN_VALUE,	  0) +
	      CLASS_TO_ACTION( F_C_NEG_INF,	RETURN_VALUE,	  0) +
	      CLASS_TO_ACTION( F_C_POS_NORM,	RETURN_VALUE,     0) +
	      CLASS_TO_ACTION( F_C_NEG_NORM,	RETURN_VALUE,     0) +
	      CLASS_TO_ACTION( F_C_POS_DENORM,	RETURN_UNPACKED,  1) +
	      CLASS_TO_ACTION( F_C_NEG_DENORM,	RETURN_UNPACKED,  1) +
	      CLASS_TO_ACTION( F_C_POS_ZERO,	RETURN_ERROR,	  3) +
	      CLASS_TO_ACTION( F_C_NEG_ZERO,	RETURN_ERROR,	  3) );

	    /* Index 5: mapping for y given x was +/- zero */

        PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,	RETURN_QUIET_NAN, 1) +
	      CLASS_TO_ACTION( F_C_QUIET_NAN,	RETURN_VALUE,	  1) +
	      CLASS_TO_ACTION( F_C_POS_INF,	RETURN_VALUE,	  0) +
	      CLASS_TO_ACTION( F_C_NEG_INF,	RETURN_VALUE,	  0) +
	      CLASS_TO_ACTION( F_C_POS_NORM,	RETURN_VALUE,     0) +
	      CLASS_TO_ACTION( F_C_NEG_NORM,	RETURN_VALUE,     0) +
	      CLASS_TO_ACTION( F_C_POS_DENORM,	RETURN_VALUE,     0) +
	      CLASS_TO_ACTION( F_C_NEG_DENORM,	RETURN_VALUE,     0) +
	      CLASS_TO_ACTION( F_C_POS_ZERO,	RETURN_ERROR,	  3) +
	      CLASS_TO_ACTION( F_C_NEG_ZERO,	RETURN_ERROR,	  3) );

	    PRINT_U_TBL_ITEM( /* data 1 */ NULL );
	    PRINT_U_TBL_ITEM( /* data 2 */ infinity_error );
	    PRINT_U_TBL_ITEM( /* data 3 */ zero_error );
	}

    TABLE_COMMENT("mod class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "MOD_CLASS_TO_ACTION_MAP");
    print_class_to_action_table( MOD_OF_INF, MOD_BY_ZERO );

    TABLE_COMMENT("rem class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "REM_CLASS_TO_ACTION_MAP");
    print_class_to_action_table( REM_OF_INF, REM_BY_ZERO );

    TABLE_COMMENT("remquo class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "REMQUO_CLASS_TO_ACTION_MAP");
    print_class_to_action_table( REMQUO_OF_INF, REMQUO_BY_ZERO );

    TABLE_COMMENT("Unpacked constants 1/2");
    PRINT_UX_TBL_ADEF_ITEM( "UX_HALF\t\t", 1/2);

    k = BITS_PER_UX_FRACTION_DIGIT_TYPE;

    TABLE_COMMENT(
      "2^n, for n = -64, -26, -23, 0, 23, 53, 78, k-53, 2k-1, in double");
    PRINT_R_TBL_VDEF_ITEM( "D_RECIP_TWO_POW_64",  bldexp(1,     -64));
    PRINT_R_TBL_VDEF_ITEM( "D_RECIP_TWO_POW_26",  bldexp(1,     -26));
    PRINT_R_TBL_VDEF_ITEM( "D_RECIP_TWO_POW_23",  bldexp(1,     -23));
    PRINT_R_TBL_VDEF_ITEM( "D_ONE\t\t",                           1);
    PRINT_R_TBL_VDEF_ITEM( "D_TWO_POW_23\t",      bldexp(1,      23));
    PRINT_R_TBL_VDEF_ITEM( "D_TWO_POW_53\t",      bldexp(1,      53));
    PRINT_R_TBL_VDEF_ITEM( "D_TWO_POW_78\t",      bldexp(1,      78));
    PRINT_R_TBL_VDEF_ITEM( "D_TWO_POW_Km53\t",    bldexp(1,  k - 53));
    PRINT_R_TBL_VDEF_ITEM( "D_TWO_POW_2Km1\t",    bldexp(1, 2*k - 1));

    END_TABLE;

    @end_divert
    @eval my $tableText;						\
          my $outText    = MphocEval( GetStream( "divertText" ) );	\
          my $defineText = Egrep( "#define", $outText, \$tableText );	\
             $outText    = "$tableText\n\n$defineText";			\
          my $headerText = GetHeaderText( STR(BUILD_FILE_NAME),         \
                           "Definitions and constants remainder " .	\
                              "related routines", __FILE__ );		\
             print "$headerText\n\n$outText\n";
#endif