File: dpml_ux_ops_64.c

package info (click to toggle)
intelrdfpmath 2.0u3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,088 kB
  • sloc: ansic: 310,558; makefile: 446; sh: 3
file content (987 lines) | stat: -rw-r--r-- 29,770 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
/******************************************************************************
  Copyright (c) 2007-2024, Intel Corp.
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of Intel Corporation nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/

#include "dpml_ux.h"

#if (NUM_UX_FRACTION_DIGITS != 2)
#   error "Must have 64 bit integers"
#endif

/*
** MULTIPLY essentially computes the high 128 bits of the product of two
** unpacked x-float values.  The algorithm attempts to limit the number
** of integer multiplications performed.  The resulting product has roughly
** a 6 lsb error bound in the worst case.
*/

void
MULTIPLY(UX_FLOAT * x, UX_FLOAT *y, UX_FLOAT *z)
    {
    U_WORD x_hi, x_lo, y_hi, y_lo, z_hi, z_lo, p1, p2;

    x_hi = G_UX_MSD(x);
    y_hi = G_UX_MSD(y);

    z_lo = y_hi*x_hi;
        x_lo = G_UX_LSD(x);
        y_lo = G_UX_LSD(y);

    UMULH(y_hi, x_lo, p2);
        P_UX_SIGN(z, G_UX_SIGN(x) ^ G_UX_SIGN(y));
        P_UX_EXPONENT(z, G_UX_EXPONENT(x) + G_UX_EXPONENT(y));

    UMULH(y_lo, x_hi, p1);
        z_lo += p2;
        z_hi = (z_lo < p2);

    UMULH(y_hi, x_hi, p2);
        z_lo = z_lo + p1;
        z_hi += (z_lo < p1);

    P_UX_LSD(z, z_lo);
    z_hi = z_hi + p2;
    P_UX_MSD(z, z_hi);
    }


/*
** EXTENDED_MULTIPLY computes the exact 256 bit product of two unpacked
** x-float values. The result is stored in two unpacked x-float values
** containing the high and low 128 bits of the result
*/

void
EXTENDED_MULTIPLY(UX_FLOAT * x, UX_FLOAT * y, UX_FLOAT * hi, UX_FLOAT * lo)
    {
    UX_EXPONENT_TYPE exponent;
    UX_SIGN_TYPE     sign;
    UX_FRACTION_DIGIT_TYPE x_hi, x_lo, y_hi, y_lo, tmp_digit, carry, p1, p2;

    x_lo = G_UX_LSD(x);
    y_lo = G_UX_LSD(y);

    p1 = y_lo*x_lo;
        x_hi = G_UX_MSD(x);
        y_hi = G_UX_MSD(y);

    UMULH(y_lo, x_lo, tmp_digit);
        P_UX_LSD(lo, p1);
        sign = G_UX_SIGN(x) ^ G_UX_SIGN(y);
        exponent = G_UX_EXPONENT(x) + G_UX_EXPONENT(y);
        P_UX_SIGN(lo, sign);
        P_UX_EXPONENT(lo, exponent - 128);

    p1 = y_lo*x_hi;
        P_UX_SIGN(hi, sign);
        P_UX_EXPONENT(hi, exponent);

    p2 = y_hi*x_lo;
        P_UX_SIGN(lo, sign);
        P_UX_EXPONENT(lo, exponent - 128);
        tmp_digit += p1;
        carry = (tmp_digit < p1);

    p1 = x_hi*y_hi;
        tmp_digit += p2;
        carry += (tmp_digit < p2);
        P_UX_MSD(lo, tmp_digit);

    UMULH(y_hi, x_lo, p2);
        tmp_digit = p1 + carry;
        carry = (tmp_digit < p1);

    UMULH(y_lo, x_hi, p1);
        tmp_digit += p2;
        carry += (tmp_digit < p2);

    UMULH(y_hi, x_hi, p2);
        tmp_digit += p1;
        carry += (tmp_digit < p1);
        P_UX_LSD(hi, tmp_digit);

    tmp_digit = p2 + carry;
    P_UX_MSD(hi, tmp_digit);
    }

/*
** This routine divides two unpacked numbers:
**
**	o The 'flags' argument controls whether a FULL or HALF precision
**	  result is generated.
**	o If the pointer to one of the unpacked results is 0, then that
**	  argument is implicitly treated as being equal to 1.
**	o both argument pointers *CANNOT* be zero.
*
** A detailed description of the algorithm is presented in note 6.2 of the
** X_FLOAT notes conference.  Note that to the extent possible, the variable
** names in this routine were chosen to match the description in the design
** note.  In particular, upper case name imply 64 bit integer data types, while
** double precision values are denoted with lower case names.
*/

#define _D_POW_2(n)	((double) ((U_WORD)1 << n))

#define       TWO_POW_62  (_D_POW_2(62))
#define       TWO_POW_124 (TWO_POW_62*TWO_POW_62)
#define RECIP_TWO_POW_16  (1./_D_POW_2(16))
#define RECIP_TWO_POW_60  (1./_D_POW_2(60))
#define RECIP_TWO_POW_184 (4./(TWO_POW_124 * TWO_POW_62 ))


static const UX_FLOAT __ux_one__ = { 0, 1, ((U_WORD) 1 << 63), 0 };
	
void
DIVIDE( UX_FLOAT * aPtr, UX_FLOAT * bPtr, U_WORD flags, UX_FLOAT * cPtr)
    {
    UX_EXPONENT_TYPE exponent;

    UX_FRACTION_DIGIT_TYPE A1, A2, B1, B2, Q1, Q2, S, R, P00, P01, P11,
                           N0, N1, N2, C1, mask, E;
    D_TYPE r, b_hi, b_lo, r_hi, r_lo, a_hi, a_lo, a, q_hi, q_lo;

    /*
    ** for performance reasons, pre-load some of the interesting items even
    ** though we might not actually use them.  Specifically, by loading B1
    ** and B2 before the normalization check allows the compiler to better
    ** schedule the code after the check.
    */

    bPtr = (bPtr == 0) ? (UX_FLOAT *)&__ux_one__ : bPtr;	
    aPtr = (aPtr == 0) ? (UX_FLOAT *)&__ux_one__ : aPtr;
    B1 = G_UX_MSD(bPtr);
    B2 = G_UX_LSD(bPtr);

    if (bPtr == &__ux_one__)
        {
        UX_COPY(aPtr, cPtr);
        return;
        }

    /*
    ** If b isn't normalized, then the whole algorithm falls apart.  So make
    ** sure that b is normalized.
    */

    if ((UX_SIGNED_FRACTION_DIGIT_TYPE) B1 >= 0)
        {
        NORMALIZE(bPtr);
        B1 = G_UX_MSD(bPtr);
        B2 = G_UX_LSD(bPtr);
        }

    /*
    ** The first step is to estimate 1/b in double precsion to more then 70
    ** bits. This is done by getting an initial estimate to 1/b and use a 
    ** variation of Newton's iteration to improve the accuracy.  The basic
    ** approach is
    **
    **		b'    = high 53 bits of b
    **		b_hi' = high 26 bits of b
    **		b_lo' = bits 27 through 80 of b
    **
    **		r'    = 1/b'
    **		r_hi' = high 26 bits of r
    **		r_lo' = [ (1 - b_hi'*r_hi') - b_lo'*r_hi'] * r'
    **
    ** However, there is certain amount of weird scaling of the values that
    ** takes place to deal with the integer to float conversion and subsequent
    ** uses of the results.
    **
    ** Note that the two macros below are used to convert *signed* integers
    ** to and from double precision.  We use signed conversions because they
    ** are generally faster than unsigned conversions.
    */

#   define TO_DOUBLE(a) ((double) ((UX_SIGNED_FRACTION_DIGIT_TYPE) (a)))
#   define TO_DIGIT(a)  ((UX_SIGNED_FRACTION_DIGIT_TYPE) (a))

    r = TWO_POW_124 / TO_DOUBLE( B1 >> 1 );

        /*
        ** While the divide is going on, we can compute all sorts of stuff
        */

        mask = MAKE_MASK( 38, 0 );

        b_hi = TO_DOUBLE((B1 & ~mask) >> 1);
        b_lo = RECIP_TWO_POW_16 * TO_DOUBLE(((B1 & mask) << 15) | (B2 >> 49));

        A1 = G_UX_MSD(aPtr);
        A2 = G_UX_LSD(aPtr);

        P_UX_SIGN(    cPtr, G_UX_SIGN(aPtr) ^ G_UX_SIGN(bPtr) );
        exponent = G_UX_EXPONENT(aPtr) - G_UX_EXPONENT(bPtr);

    /*
    ** Get the high part of r as both an integer and a floating point value.
    ** In the process, bias r_hi downward to insure that r_lo is positive.
    ** (See the design note for details.)
    */

    R = TO_DIGIT( r );
    R = (R - (5 << 8)) & ~MAKE_MASK( 36, 0 );
    r_hi = TO_DOUBLE(R);

    /*
    ** At this point we have:
    **
    ** 		r    = 2^61 * r'
    **		r_hi = 2^61 * r_hi'
    **		b_hi = 2^63 * b_hi'
    **		b_lo = 2^63 * b_lo'
    **
    ** so that
    **
    **		2*r_lo' = [ (2^124 - b_hi*r_hi) - b_lo*r_hi ] * (r/2^184)
    */

    r_lo = D_GROUP(D_GROUP((TWO_POW_124) - b_hi*r_hi) - (b_lo*r_hi)) * (RECIP_TWO_POW_184*r);

    /*
    ** Now that we have 1/b ~ r_hi' + r_lo' (scaling notwithstanding), we can
    ** compute an approximation to q = a/b = a*(1/b), where the product is
    ** performed in high and low pieces:
    **
    **		q = (a_hi' + a_lo') * (r_hi' + r_lo')
    **		  = a_hi' * r_hi' + [ a_lo' * r_hi' + (a_hi' + a_lo') * r_lo' ]
    **		  = a_hi' * r_hi' + [ a_lo' * r_hi' + a' * r_lo' ]
    **		  = q_hi' + q_lo'
    **
    ** Note that in the above, we want to insure that a' ~ a_hi' + a_lo' is
    ** less than the actual value of a to insure that the computed value of
    ** q is less that 2.
    */

    a    = TO_DOUBLE( (A1 >> 11) << 10 );
    a_hi = TO_DOUBLE( (A1 & ~mask) >> 1);
    a_lo = RECIP_TWO_POW_16 * TO_DOUBLE(((A1 & mask) << 15) | (A2 >> 49));

    r_hi = RECIP_TWO_POW_60 * r_hi;
    q_hi = a_hi*r_hi;
    q_lo = a_lo*r_hi + a*r_lo;

    /*
    ** With the above conversions and computations we have
    **
    **		a    = 2^63*a'
    **		a_hi = 2^63*a_hi'
    **		a_lo = 2^63*a_lo'
    **		r_hi = 2*r_hi'
    **		r_lo = 2*r_lo'
    **		q_hi = 2^64 * q_hi'
    **		q_lo = 2^64 * q_lo'
    **
    ** We would like to convert the high 65 bits of q_hi + q_lo into integers,
    ** S' and Q1'.  Note that converting q_hi to an integer can cause an
    ** overflow.  However since q_hi contains only 52 significant bits, we
    ** can convert .25 * q_hi instead which won't overflow.
    */

    Q1 = TO_DIGIT(.25 * q_hi);
    E  = TO_DIGIT( q_lo );

    S = ( Q1 >> 62 );
    Q1 = (4*Q1) + E;
    S += (Q1 < E);
    Q2 = 0;

    if (flags == HALF_PRECISION) goto pack_it;

    /*
    ** While we're at it, compute an integer approximation to 1/b.  I.e. get
    ** and integer R such that R/2^63 ~ 1/b.
    **
    **		 R = 2^63 * (r_hi' + r_lo' )
    **		   = 2^63 * r_hi' + 2^63 * r_lo'
    **		   = 2^63 * r_hi' + 2^62 * r_lo
    **
    ** Recall that in the original computation of r_hi, we previously computed
    ** the integer value R as 2^61*r_hi', so that we can now compute
    ** 
    **		R <-- 4*R + 2^62 * r_lo 
    **
    ** Note that for b very close to 1/2, R will be 2^64 which can't be 
    ** represented in 64 bits.  In this case, we take R = 2^64 - 1 which is
    ** close enough and can be represented in 64 bits.
    */

    R = (R << 2) + TO_DIGIT( TWO_POW_62*r_lo );
    R = ( R == 0 ) ? ( (UX_SIGNED_FRACTION_DIGIT_TYPE) -1 ) : R;

    /*
    ** Using S and Q1 as the current guess for the high 65 bits of the result
    ** compute the remainder:
    **
    **             +----------+----------+
    **             |    A1    |    A2    |                2^128*(2^64*A1 + A2)
    **             +----------+----------+
    **
    **             +----------+----------+
    **             |    B1    |    B2    |              s'*2^128*(2^64*B1 + B2)
    **             +----------+----------+
    **             |       Q1'*B1        |                2^128*Q1'*B1
    **             +----------+----------+----------+
    **                        |       Q1'*B2        |      2^64*Q1'*B2
    **                        +----------+----------+
    **
    **  +----------+----------+----------+----------+
    **  |    N0'   |    N1'   |   N2'    |   N3'    |
    **  +----------+----------+----------+----------+
    **
    ** Start by summing all the products into N0:N1:N2:N3
    **
    **		NOTE: for performance reasons, we don't actually
    **		compute N3'
    */

    mask = -S;

    UMULH( Q1, B2, P11 );
    P01 = Q1 * B1;
    UMULH( Q1, B1, P00 );

    N2 = B2 & mask;	/* N2/N1 = B2/B1 if S = 1, 0 otherwise */
    N1 = B1 & mask;

    N2 += P11;
    C1 =  (N2 < P11);
    N2 += P01;
    C1 += (N2 < P01);

    N1 += P00;
    N0 =  (N1 < P00);
    N1 += C1;
    N0 += (N1 < C1);

    /* Subtract the sum from A1:A2 */

    N0 = -N0;
    C1 = (A2 < N2);
    N2 = A2 - N2;
    N0 -= (A1 < N1);
    N1 = A1 - N1;
    N0 -= (N1 < C1);
    N1 -= C1;

    /*
    ** Since the original estimate to S:Q1 was good to more then 70 bits, the
    ** current value of S:Q1 can be off by at most one.  By looking at the
    ** values of N0 and N1, we can determine an adjustment, E, to S:Q1.
    ** With the adjusted S:Q1 we know that N0 = N1 = 0, so we only need to
    ** adjust N2.
    */

    E = (N0 | (N1 != 0));
    mask = (E == 0) ? B1 : N0;
    N2 = N2 - (mask ^ B1);

    /*
    ** Using R/2^63 ~ 1/b and the adjusted N2, compute an approximation to Q2
    ** Note that if Q2 has it's high bit set, then the original value of E was
    ** one too low.
    */

    UMULH( R, N2, Q2 );

    E += ( ( (UX_SIGNED_FRACTION_DIGIT_TYPE) Q2 ) < 0);
    Q2 = 2*Q2 + ((A1 | A2) != 0);	/* Make sure 0/b is zero */

    /* Adjust S and Q1 using the final value of E */

    Q1 += E;
    S  =  S + (((UX_SIGNED_FRACTION_DIGIT_TYPE) E) >> 63) + (Q1 < E);

    /* Last but not least, pack it */

pack_it:

    P_UX_MSD(     cPtr,        (S << 63) | (Q1 >> S) );
    P_UX_LSD(     cPtr, ((Q1 & S) << 63) | (Q2 >> S) );
    P_UX_EXPONENT(cPtr, exponent + S);

    return;
    }

    
/*
**
** The following two routines evaluate polynomials, P(x), via Horner's
** scheme for positive x:
**
**		s(k) <-- c(k) +/- x*s(k+1)  for k = n-1, ..., 0
**
** where the c(k)'s are the polynomial coefficients and	s(n) = c(n). The
** arguments to these routines (not in order) are
**
**	x		a pointer to the unpacked bits of x
**	cnt		the degree of the polynomial
**	coef		A pointer to pairs of quadwords specifying the hi/lo
**			bits of the coefficient.  We assume the coefficients
**			are stored reverse order: c(n) to c(0)
**	shift		cnt*(x->exp) - This is passed in rather than computed
**			here sense on the calling side, cnt is a known
**			constant, so the multiply can be done by shifts and
**			adds rather than a real integer multiply.
**	p		a pointer to the unpacked result.
**
** The routines return the high bits of the result.
**
** IMPORTANT ASSUMPTIONS:
** ######################
**
**	o This routine assumes that the terms of the polynomial are decreasing.
**	  I.e. that c(k) > x*s(k+1) for all k.
**
**	o shift = cnt*(x->exp), so that if shift is decremented by x->exp
**	  each time cnt decremented, then shift will become 0 before cnt
**	  becomes negative.
*/

static void
__eval_pos_poly(UX_FLOAT * x, WORD shift, FIXED_128 * coef, WORD cnt,
  UX_FLOAT * p)
    {
    UX_FRACTION_DIGIT_TYPE c_hi, c_lo, s_hi, s_lo, p1, p2;
    UX_FRACTION_DIGIT_TYPE x_hi, x_lo, carry;
    UX_EXPONENT_TYPE exponent;
    WORD shift_inc;

    /* Initialize internal copies and accumulators */

    x_hi = G_UX_MSD(x);
    x_lo = G_UX_LSD(x);
    shift_inc = G_UX_EXPONENT(x);
    s_lo = s_hi = 0;


    /*
    ** If the shift count is >= 128, than this product won't contribute to
    ** the final product.  Skip over all of the coefficients that correspond
    ** to large shifts
    */

    if (shift < 128) goto p_check_shift_64_to_127;

    p_shift_ge_128:
        shift += shift_inc;
        coef++;
        cnt--;
        if (shift >= 128) goto p_shift_ge_128;
//printf("Eval_pos_poly, shift=%lld !!\n",shift);

    /*
    ** Each time through this loop, c_hi = 0.  Since we assume that c(k) >
    ** x*s(k+1), if there is a carry out on the sum s(k) = c(k) + x*s(k*1),
    ** then the shift count for the next iteration must be less than 64.
    ** Consequently, we need only worry about the carry out from the sum
    ** when we leave this loop.  That means each time we enter the top of
    ** the loop, both c_hi and s_hi = 0;
    */

    p_check_shift_64_to_127:
        if (shift < 64) goto p_check_shift_1_to_63;

    /*
    ** Depending on the size of shift_inc and the rate at which the
    ** coefficients decrease, several of the next Horner's scheme iterations
    ** will yield zero results, so there is no need to do the multiply.
    ** Since multiplies are likely to be expensive, we check for this case
    ** and skip over them.
    */

    if (s_lo) goto p_shift_64_to_127;

    p_shift_64_to_127_zero_loop:
        s_lo = coef->digits[1] >> (shift - 64);
 	//printf("s_lo, sh, sh_inc, c: %llx, %llx, %llx, %llx (%llx)\n",s_lo,shift, shift_inc,coef->digits[1],coef->digits[0]);
       shift += shift_inc;
        coef++;
        cnt--;
        if (shift < 64) goto p_check_shift_1_to_63;
        if (s_lo == 0) goto p_shift_64_to_127_zero_loop;

    /*
    ** s_lo is no longer zero, so do the multiply and accumulate the
    ** products.
    */

p_shift_64_to_127:
		//printf("s_lo,x_hi,p1: %llx, %llx, %llx\n",s_lo,x_hi,p1);
        UMULH(s_lo, x_hi, p1);
		//printf("s_lo,x_hi,p1: %llx, %llx, %llx\n",s_lo,x_hi,p1);
            c_lo = coef->digits[1] >> (shift - 64);
            shift += shift_inc;
            coef++;
            cnt--;
        s_lo = c_lo + p1;
        if (shift >= 64) goto p_shift_64_to_127;

    /* Set carry out from last add */
    s_hi = (s_lo < p1);
        
    /* 
    ** When shift = 0, the complementary shift is 64.  ANSI C does not
    ** specify the result of a shift by 64, so we need to handle this as
    ** a special case.
    */

    p_check_shift_1_to_63:
        exponent = 0;
        if (shift == 0) goto p_shift_eq_0;

    /*
    ** Depending on the size of shift_inc and the rate at which the
    ** coefficients decrease, several of the next Horner's scheme iterations
    ** will yield zero results for s_hi, so there is no need to do the
    ** multiplies associated with s_hi.  Since multiplies are likely to be
    ** expensive, we check for this case and skip over them.
    */

    if (s_hi) goto p_shift_1_to_63;

    p_shift_1_to_63_zero_loop:
        UMULH(s_lo, x_hi, p1);
            c_hi = coef->digits[1];
            c_lo = coef->digits[0];
            c_lo = (c_lo >> shift) | (c_hi << (64 - shift));
            s_hi = c_hi >> shift;
            shift += shift_inc;
            coef++;
            cnt--;
        s_lo = c_lo + p1;
        s_hi += (s_lo < p1);
        if (shift == 0) goto p_shift_eq_0;
        if (s_hi == 0) goto p_shift_1_to_63_zero_loop;

    p_shift_1_to_63:

    while (cnt >= 0)
        {
        p1 = s_hi*x_hi;
            c_hi = coef->digits[1];
            c_lo = coef->digits[0];
            c_lo = (c_lo >> shift) | (c_hi << (64 - shift));
            c_hi >>= shift;

        UMULH(s_hi, x_lo, p2);
            c_lo += p1;
            carry = (c_lo < p1);
            cnt--;

        UMULH(s_lo, x_hi, p1);
            c_lo += p2;
            carry += (c_lo < p2);
            shift += shift_inc;

        UMULH(s_hi, x_hi, p2);
            s_lo = c_lo + p1;
            carry += (s_lo < p1);
            c_hi += carry;
            carry = (c_hi < carry);
            coef++;

        s_hi = c_hi + p2;
        carry += (s_hi < p2);
        if (carry)
            {
            s_lo = (s_lo >> 1) | (s_hi << 63);
            s_hi = (s_hi >> 1) | SET_BIT(63);
            shift++;
            exponent++;
            }
        if (shift == 0) break;
        }


    p_shift_eq_0:

    while (cnt >= 0)
        {
        p1 = s_hi*x_hi;
            c_hi = coef->digits[1];
            c_lo = coef->digits[0];

        UMULH(s_hi, x_lo, p2);
            c_lo += p1;
            carry = (c_lo < p1);
            cnt--;

        UMULH(s_lo, x_hi, p1);
            c_lo += p2;
            carry += (c_lo < p2);

        UMULH(s_hi, x_hi, p2);
            s_lo = c_lo + p1;
            carry += (s_lo < p1);
            c_hi += carry;
            carry = (c_hi < carry);
            coef++;

        s_hi = c_hi + p2;
        carry += (s_hi < p2);
        if (carry)
            {
            s_lo = (s_lo >> 1) | (s_hi << 63);
            s_hi = (s_hi >> 1) | SET_BIT(63);
            shift = 1;
            exponent++;
            if (cnt >= 0)
                goto p_shift_1_to_63;
            }
        }
        
    P_UX_LSD(p, s_lo);
    P_UX_MSD(p, s_hi);
    P_UX_EXPONENT(p, exponent);
    P_UX_SIGN(p, 0);
    }

static void
__eval_neg_poly(UX_FLOAT * x, WORD shift, FIXED_128 * coef, WORD cnt,
  UX_FLOAT * p)
    {
    UX_FRACTION_DIGIT_TYPE c_hi, c_lo, s_hi, s_lo, p1, p2, tmp;
    UX_FRACTION_DIGIT_TYPE x_hi, x_lo;
    WORD shift_inc;

    x_hi = G_UX_MSD(x);
    x_lo = G_UX_LSD(x);
    shift_inc = G_UX_EXPONENT(x);

    s_lo = s_hi = 0;
    if (shift < 128) goto n_check_shift_64_to_127;

    /* Skip over all the big shifts */

    n_shift_ge_128:
        shift += shift_inc;
        coef++;
        cnt--;
        if (shift >= 128) goto n_shift_ge_128;

    /*
     * Each time through this loop, c_hi = 0.  Since we assume that c(k) >
     * x*s(k+1), s(k) = c(k) - x*s(k*1) < c(k).  Consequently, there is
     * no borrow from the computation of s(k) into it high 64 bits.
     * That means each time we enter the top of the loop, both c_hi and
     * s_hi = 0;
     */

    n_check_shift_64_to_127:
        if (shift < 64) goto n_check_shift_1_to_63;

    /*
     * Depending on the size of shift_inc and the rate at which the
     * coefficients decrease, several of the next Horner's scheme iterations
     * will yield zero results, so there is no need to do the multiply.
     * Since multiplies are likely to be expensive, we check for this case
     * and skip over them.
     */

    if (s_lo) goto n_shift_64_to_127;

    n_shift_64_to_127_zero_loop:
        s_lo = coef->digits[1] >> (shift - 64);
        shift += shift_inc;
        coef++;
        cnt--;
        if (shift < 64) goto n_check_shift_1_to_63;
        if (s_lo == 0) goto n_shift_64_to_127_zero_loop;

    /*
     * s_lo is no longer zero, so do the multiply and accumulate the
     * products.
     */

    n_shift_64_to_127:
        UMULH(s_lo, x_hi, p1);
            c_lo = coef->digits[1] >> (shift - 64);
            shift += shift_inc;
            coef++;
            cnt--;
        s_lo = c_lo - p1;
        if (shift >= 64) goto n_shift_64_to_127;

    /* 
     * When shift = 0, the complementary shift is 64.  ANSI C does not
     * specify the result of a shift by 64, so we need to handle this as
     * a special case.
     */

    n_check_shift_1_to_63:
        if (shift == 0) goto n_shift_eq_0;

    /*
     * Depending on the size of shift_inc and the rate at which the
     * coefficients decrease, several of the next Horner's scheme iterations
     * will yield zero results for s_hi, so there is no need to do the
     * multiplies associated with s_hi.  Since multiplies are likely to be
     * expensive, we check for this case and skip over them.
     */

    if (s_hi) goto n_shift_1_to_63;

    n_shift_1_to_63_zero_loop:
        UMULH(s_lo, x_hi, p1);
            c_hi = coef->digits[1];
            c_lo = coef->digits[0];
            c_lo = (c_lo >> shift) | (c_hi << (64 - shift));
            s_hi = (c_hi >> shift);
            shift += shift_inc;
            coef++;
            cnt--;
        s_lo = c_lo - p1;
        s_hi -= (s_lo > c_lo);
        if (shift == 0) goto n_shift_eq_0;
        if (s_hi == 0) goto n_shift_1_to_63_zero_loop;

    n_shift_1_to_63:
        p1 = s_hi*x_hi;
            c_hi = coef->digits[1];
            c_lo = coef->digits[0];
            c_lo = (c_lo >> shift) | (c_hi << (64 - shift));
            c_hi >>= shift;

        UMULH(s_hi, x_lo, p2);
            tmp = c_lo - p1;
            c_hi -= (tmp > c_lo);
            cnt--;

        UMULH(s_lo, x_hi, p1);
            c_lo = tmp - p2;
            c_hi -= (c_lo > tmp);
            shift += shift_inc;

        UMULH(s_hi, x_hi, p2);
            s_lo = c_lo - p1;
            c_hi -= (s_lo > c_lo);
            coef++;

        s_hi = c_hi - p2;
        if (shift) goto n_shift_1_to_63;


    n_shift_eq_0:

    while (cnt >= 0)
        {
        p1 = s_hi*x_hi;
            c_hi = coef->digits[1];
            c_lo = coef->digits[0];

        UMULH(s_hi, x_lo, p2);
            tmp = c_lo - p1;
            c_hi -= (tmp > c_lo);
            cnt--;

        UMULH(s_lo, x_hi, p1);
            c_lo = tmp - p2;
            c_hi -= (c_lo > tmp);

        UMULH(s_hi, x_hi, p2);
            s_lo = c_lo - p1;
            c_hi -= (s_lo > c_lo);
            coef++;

        s_hi = c_hi - p2;
        }
    P_UX_LSD(p, s_lo);
    P_UX_MSD(p, s_hi);
    P_UX_EXPONENT(p, 0);
    P_UX_SIGN(p, 0);
    }


/*
** EVALUATE_RATIONAL is a driver routine for the two polynomial evaluation
** routines.  Even though it is architecture and word size independent, it
** is included in this file to increase "locality".
**
** EVALUATE_RATIONAL generally computes a rational approximation, however,
** by specifying the appropriate set of flags, one, or two polynomial
** evaluation can be performed.
**
** The following flags are used to independently control the "form" of the
** numerator and denominator polynomials:
**
**		SQUARE_TERM
**		ALTERNATE_SIGN
**		POST_MULTIPLY
**		STANDARD
**
** The following flags control whether or not a rational approximation is
** performed and what form it has:
**
**		SWAP
**		SKIP
**		NO_DIVIDE
**
** If the SKIP flag is specified in conjunction with the flags for either
** the numerator or denominator being zero, only one part of a rational
** will be evaluated.
*/

#define EITHER(n)	   (DENOMINATOR_FLAGS(n) | NUMERATOR_FLAGS(n))
#define NUMERATOR_MASK	   NUMERATOR_FLAGS(MAKE_MASK(NUM_DEN_FIELD_WIDTH, 0))
#define DENOMINATOR_MASK   DENOMINATOR_FLAGS(MAKE_MASK(NUM_DEN_FIELD_WIDTH, 0))

#define UPDATE_COEF_PTR(c,d)	(c) = ((FIXED_128 *)((char *) (c) + (d)))
#define G_EXPONENT(c)		((UX_EXPONENT_TYPE) ((WORD *) (c))[-1])


void
EVALUATE_RATIONAL(
  UX_FLOAT  * argument,
  FIXED_128 * coefficients,
  U_WORD      degree,
  U_WORD      flags,
  UX_FLOAT  * result)
    {
    WORD tmp;
    WORD sign, shift, byte_length, poly_shift;
    UX_EXPONENT_TYPE exponent;
    UX_FLOAT * first_result, *second_result, arg_squared, *poly_arg;
    void (* poly_func)(UX_FLOAT *, WORD, FIXED_128 *, WORD, UX_FLOAT *);

    /* Scale argument and squared it if its needed */

    sign = flags;
    UX_INCR_EXPONENT(argument, G_SCALE(flags));
    if (flags & EITHER(SQUARE_TERM))
        {
        poly_arg = &arg_squared;
        MULTIPLY(argument, argument, &arg_squared);
        }
    else
        {
        poly_arg = argument;
        tmp = G_UX_SIGN(argument) ? EITHER(ALTERNATE_SIGN) : 0;
        sign = flags ^ tmp;
        }

    /* Start calculation of shift parameter. */

    NORMALIZE(poly_arg);
    exponent = G_UX_EXPONENT(poly_arg);
    P_UX_EXPONENT(poly_arg, exponent);
    shift = -degree*exponent;
    byte_length = (degree + 1)*sizeof(FIXED_128) + sizeof(WORD);

    /* allocate locations for 1st and 2nd result */

    tmp = (((flags & SWAP) == 0) || (flags & SKIP)) ? 0 : 1;
    first_result  = result + tmp;
    second_result = result + 1 - tmp;

    if (NUMERATOR_MASK & flags)
        {
//printf("NUMERATOR_MASK !!\n");
        poly_func =  (ALTERNATE_SIGN & sign) ? __eval_neg_poly :
            __eval_pos_poly;

        first_result = (DENOMINATOR_MASK & flags) ? first_result : result;

        poly_func(
            poly_arg,
            shift,
	    coefficients,
	    degree,
	    first_result);
 		//printf("f_result= (%x %x) %llx %llx\n",first_result->sign,first_result->exponent,first_result->fraction[0],first_result->fraction[1]);

 //printf("fl & NUMERATOR_FLAGS(POST_MULTIPLY) = %llx (%llx)\n", flags & NUMERATOR_FLAGS(POST_MULTIPLY), flags); 
        if (flags & NUMERATOR_FLAGS(POST_MULTIPLY))
            MULTIPLY(argument, first_result, first_result);
 		//printf("result..= (%x %x) %llx %llx\n",result->sign,result->exponent,result->fraction[0],result->fraction[1]);

        UPDATE_COEF_PTR(coefficients, byte_length);
        UX_INCR_EXPONENT(first_result, G_EXPONENT(coefficients));
        }
    else
        {
        second_result = result;
        flags |= NO_DIVIDE;
        if ( flags & SKIP )
            UPDATE_COEF_PTR(coefficients, byte_length);
        }


    if (DENOMINATOR_MASK & flags)
        {
 //printf("DENOMINATOR_MASK !!\n");
       poly_func = ( DENOMINATOR_FLAGS(ALTERNATE_SIGN) & sign ) ?
            __eval_neg_poly : __eval_pos_poly;

        poly_func(
            poly_arg,
            shift,
	    coefficients,
	    degree,
	    second_result);

        if (flags & DENOMINATOR_FLAGS(POST_MULTIPLY))
            MULTIPLY(argument, second_result, second_result);

        UPDATE_COEF_PTR(coefficients, byte_length);
        UX_INCR_EXPONENT(second_result, G_EXPONENT(coefficients));

        if ( flags & SKIP )
            /* Numerator was skipped, we're done */
            return;
        }
    else
        {
        flags |= NO_DIVIDE;
        if ( flags & SKIP )
            UPDATE_COEF_PTR(coefficients, byte_length);
        }

 //printf("fl & NO_DIV = %llx\n", flags & NO_DIVIDE);
 		//printf("result0= (%x %x) %llx %llx\n",result->sign,result->exponent,result->fraction[0],result->fraction[1]);

    if ((flags & NO_DIVIDE) == 0)
        DIVIDE(result, result + 1, FULL_PRECISION, result);
    }


#if 0
U_INT_64 __umulh( U_INT_64 i, U_INT_64 j ) {
    U_INT_64 k;
        {
	U_INT_64 iLo, iHi, jLo, jHi, p0, p1, p2; 
        iLo = __LO(i); iHi = __HI(i);
        jLo = __LO(j); jHi = __HI(j);
	p0  = iLo * jLo;
	p1  = (iLo * jHi);
	p2  = (iHi * jLo) + __HI(p0) + __LO(p1);\
        k   = (iHi * jHi) + __HI(p1) + __HI(p2);
	}
    return k;
}
#endif