File: dpml_ux_sqrt.c

package info (click to toggle)
intelrdfpmath 2.0u3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,088 kB
  • sloc: ansic: 310,558; makefile: 446; sh: 3
file content (576 lines) | stat: -rw-r--r-- 20,747 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
/******************************************************************************
  Copyright (c) 2007-2024, Intel Corp.
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of Intel Corporation nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/

#define BASE_NAME	sqrt

#include "dpml_ux.h"

#undef	INDEX_MASK		/* Conflict with sqrt_macros.h */
#include "sqrt_macros.h"
#undef	INDEX_MASK		/* Restore original definition */
#define	INDEX_MASK		MAKE_MASK(INDEX_WIDTH, 0)

#if D_PRECISION < 53
#   error "ux_divide required D_PRECISION >= 53"
#endif

extern const SQRT_COEF_STRUCT D_SQRT_TABLE_NAME[(1<<(NUM_FRAC_BITS+1))];

#if !defined(MAKE_INCLUDE)
#   include STR(BUILD_FILE_NAME)
#endif

/*
** The following routine computes either sqrt(x) or 1/sqrt(x) for an unpacked
** argument x = 2^(2n-d)*f', f' in [1/2, 1), and d = 0 or 1.  Defining
** f = f'/2^d, the basic approach is to convert the high bits of f' to double
** precision and index into the sqrt table to evaluate a polynomial,
**  p(f') ~ 1/sqrt(f), good to about 28 bits.  Then carefully perform a Newton's
** iteration to produce an approximation to sqrt(f) or 1/sqrt(f) good to about
** 72 bits.  This result (represented by two double precision values) is then
** converted to integers and stored as the high 64 bits of the unpacked x-float
** result.  Call this result s.  Then sqrt(x) or 1/sqrt(x) is computed
** via a Newton's iteration in unpacked format as:
**
**		t <-- f*s
**		d <-- (3 - t*s)/2
**		if (sqrt)
**		    result <-- t*d
**		else
**		    result <-- s*d
**
*/

#define EVALUATE_SQRT		0
#define EVALUATE_RSQRT		1

void
UX_SQRT_EVALUATION( UX_FLOAT * x, WORD evaluation_type, UX_FLOAT * y)
    {
    U_WORD  index, shift, cshift;
    UX_SIGNED_FRACTION_DIGIT_TYPE signed_digit;
    UX_FRACTION_DIGIT_TYPE msd, lsd, tmp_digit;
    UX_EXPONENT_TYPE exponent, exponent_parity;
    UX_FLOAT s, ux_tmp;
    D_UNION u;
    D_TYPE f, f_hi, f_lo, g, g_lo, t, w;
    SQRT_COEF_STRUCT const * p;

    /*
    ** Given x = 2^(2n-d)*f', where d = 0 or 1 and f' is in the interval
    ** [1/2,1), the first step is to get an approximation to f' as a floating
    ** point value.  We will use f' in a polynomial evaluation to approximate
    ** 1/sqrt(f), where f = f'/2^d.  As part of the Newton's iterations we
    ** will need f_hi as the high 24 bits of f and f_lo as the high 53 bits
    ** of f - f_hi.
    */

    msd = G_UX_MSD(x);
    lsd = G_UX_2nd_MSD(x);
    u.D_UNSIGNED_HI_WORD = (msd >> D_EXP_WIDTH) +
          ((WORD) (D_EXP_BIAS - D_NORM - 2) << D_EXP_POS);

    exponent = G_UX_EXPONENT(x);
    exponent_parity = exponent & 1;
    exponent = (exponent + exponent_parity) >> 1;

    shift = (BITS_PER_UX_FRACTION_DIGIT_TYPE + exponent_parity - S_PRECISION);

#   if (NUM_UX_FRACTION_DIGITS == 2)

         lsd = ((msd << (BITS_PER_UX_FRACTION_DIGIT_TYPE - shift)) |
                 (lsd >> shift)) >>
                   (BITS_PER_UX_FRACTION_DIGIT_TYPE - D_PRECISION);
         f_lo = (double) lsd;

#   else  /* this code is *WRONG* */

         u.D_UNSIGNED_LO_WORD =
            (msd << (BITS_PER_WORD - D_EXP_WIDTH - 1) |
                (lsd >> (D_EXP_WIDTH + 1));

         shift = D_EXP_WIDTH + exponent_parity;
         cshift = 32 - shift;

         tmp_digit = G_UX_FRACTION_DIGIT(x, 2);
         tmp_digit = (tmp_digit >> ? ) | (lsd << ?);
         lsd = (lsd >> ?) | ((msd << ?) >> ?);
         f_lo = ((double) msd)*D_TWO_POW_32 + (double) lsd;

#endif

    f = u.f;		/* This is actually f' at this point */
    f_hi = ((double) (msd >> shift)) * D_RECIP_TWO_POW_24;
    f_lo *= D_RECIP_TWO_POW_77;

    /* 
    ** Now compute a polynomial in f to obtain an approximation to 1/sqrt(f'),
    ** call it g.
    **
    ** Get index into the square root polynomial coefficient table as the 
    ** low exponent bit and the high fraction bits and calculate g.
    **
    ** There is a little bit of a problem with using the DPML sqrt tables.
    ** Specifically, the table assume that f' is normalized between 1/2 and
    ** 2, so that the polynomials from the table yield a result in the
    ** interval ( 1/sqrt(2), sqrt(2) ].  For a floating point implementation,
    ** this is not a problem, but for fixed point, the interval crosses an
    ** exponent boundary.  It is much easier in fixed point to normalize
    ** between 1/4 and 1, with the result in the interval ( 1, 2 ] ( We
    ** actually force the interval to be (1, 2)).  The following table
    ** summerizes the "skew" problem and solution:
    **
    **		Exponent				 "Swapped"
    **		 parity	    table gives	   We want	table gives
    **		---------  ------------  ------------	------------
    **		   even	    1/sqrt(f)    1/sqrt(f)	1/sqrt(2f)
    **		   odd	   1/sqrt(2f)    sqrt2/sqrt(f)	1/sqrt(f)
    **
    ** The sqrt table is divide into two halves, depending on the parity
    ** of the exponent.  If we "swap" the sense of the parity, we can
    ** get the result we need by multiplying by sqrt(2).
    */

    index = msd >> (BITS_PER_UX_FRACTION_DIGIT_TYPE - NUM_FRAC_BITS - 1);
    index = (index & MAKE_MASK(NUM_FRAC_BITS + 1, 0)) ^
                      (exponent_parity << NUM_FRAC_BITS);

    p = &D_SQRT_TABLE_NAME[ index ];
    g = ( (p->a)*(f*f) + ((p->b)*f + p->c) );
    g *= D_SQRT_TWO;


    /*
    ** Given g ~ 1/sqrt(f), we want to compute
    ** 
    **		g_lo = (g/8)*(1 - f*g^2)*(7 - 3*f*g^2)
    ** 
    ** However, computing g_lo is somewhat problematic, since there is
    ** a potential for a massive loss of significance when computing
    ** 1 - f*g^2.  To deal with this problem, we introduce the quantity, t,
    ** defined by:
    ** 
    ** 		t <-- (double)((float) f*g)
    **
    ** and reduce g to only 24 significant bits
    */

    f = f_hi + f_lo;
    t = (double) ((float) (f*g));
    g = (double) ((float) g);

    /*
    ** Note that f*g and t are essentially the same values up to about
    ** 24 bits.  Then we can write
    ** 
    **		w = 1 - f*g^2
    **	 	  = 1 - (f*g)*g
    ** 		  = 1 - [t + (f*g - t)]*g
    **	 	  = (1 - t*g) - (f*g - t)*g
    **	 	  ~ (1 - t*g) - [(f_hi + f_lo)*g - t]*g
    **	 	  = (1 - t*g) - [(f_hi*g - t) + f_lo*g]*g
    ** 
    ** Note that since g, t and f_hi have at most 24 significant bits,
    ** and since f*g ~ t, the products t*g and f_hi*g as well as the
    ** sums 1 - t*g and f_hi*g - t are all exact.  This basicly
    ** reduces the roundoff error in computing 1 - f*g^2 to a few lsbs.
    ** With the above in mind, we compute g_lo as
    ** 
    **
    **		g_lo = {g*[(7/16) - ((3/16)*f)*(g*g)]} * w
    */ 

    w    = D_GROUP(D_ONE - t*g) - D_GROUP(D_GROUP(f_hi*g - t) + f_lo*g)*g;
    g_lo =  (g*D_GROUP(D_SEVEN_EIGHTS - (D_THREE_EIGHTS*f)*(g*g)))*w;

    /*
    ** At this point, g + g_lo approximates 1/sqrt(f) to roughly 72 bits
    ** and g_hi contains at most 24 significant bits.
    **
    ** The next step is to convert g + g_lo to an unpacked x-float value
    ** rounding g + g_lo to 64 bits.  This is done a little differently
    ** depending on the size of the integer format.  Also, we must be careful
    ** to insure that the approximation is in the interval [1, 2)
    */

    msd = (UX_FRACTION_DIGIT_TYPE) (D_TWO_POW_24*g);

#   if NUM_UX_FRACTION_DIGITS == 2

        signed_digit = (UX_SIGNED_FRACTION_DIGIT_TYPE) (D_TWO_POW_75*g_lo);
        msd = (msd << 39) + (signed_digit >> 12) + ((signed_digit >> 11) & 1);
        tmp_digit = (msd & SET_BIT(62)) ?
           (UX_MSB - 1) : ((UX_FRACTION_DIGIT_TYPE) -1);
        msd = ((UX_SIGNED_FRACTION_DIGIT_TYPE) msd < 0) ? msd : tmp_digit;

#   else

#       error "Sqrt not NYI for 32 bit integers"        

#   endif

    /*
    ** Get the current approximation, s, into unpacked format and compute
    ** 3 - x*s^2
    */

    P_UX_SIGN(&s, 0);
    P_UX_EXPONENT(&s, 1-exponent);
    P_UX_MSD(&s, msd);
    P_UX_LSD(&s, 0);

    MULTIPLY(&s, x, &ux_tmp);
    MULTIPLY(&s, &ux_tmp, y);
    ADDSUB(UX_THREE, y, SUB | NO_NORMALIZATION, y);

    /*
    ** Depending on the evaluation, multiply by s/2 or x*s/2
    */

    MULTIPLY(y, (evaluation_type == EVALUATE_SQRT) ? &ux_tmp : &s, y);
    UX_DECR_EXPONENT(y, 1);
    
    return;
    }

#if !defined(C_UX_SQRT)
#   define C_UX_SQRT	__INTERNAL_NAME(C_ux_sqrt__)
#endif

#define RND_CHECK_MASK		MAKE_MASK(10, 4)
#define RND_CHECK_INC		SET_BIT(3)
#define HALF_LSB		SET_BIT(14)
#define CLEAR_EXTRA_BITS(l)	((l) & ~MAKE_MASK(15,0))

static void
C_UX_SQRT(_X_FLOAT * packed_argument, WORD evaluation_code,
  _X_FLOAT * packed_result OPT_EXCEPTION_INFO_DECLARATION )
    {    
    WORD      fp_class;
    UX_FRACTION_DIGIT_TYPE lsd, tmp_digit;
    UX_FLOAT unpacked_argument, unpacked_result, diff, hi, lo;

    fp_class  = UNPACK(
        packed_argument,
        & unpacked_argument,
        (EVALUATE_SQRT == evaluation_code) ? SQRT_CLASS_TO_ACTION_MAP :
                                             RSQRT_CLASS_TO_ACTION_MAP,
        packed_result
        OPT_EXCEPTION_INFO_ARGUMENT );

    if (0 > fp_class)
        return;

    UX_SQRT_EVALUATION(&unpacked_argument, evaluation_code, &unpacked_result);

    if (EVALUATE_SQRT == evaluation_code)
        {
        /*
        ** Now we have to fool around with the low digit of the result to
        ** insure that correct rounding takes place.  If the result is 
        ** sufficiently far away from the half way case, the PACK routine will
        ** do the correct rounding.  However, "too close to call", we need
        ** to force the low bits of the result to insure PACK does the right
        ** thing.  We do this by looking at the sign of the difference
        ** argument - (result + 1/2lsb)^2.
        */

        NORMALIZE(&unpacked_result);
        lsd = G_UX_LSD(&unpacked_result);
        if ( 0 == ((lsd + RND_CHECK_INC) & RND_CHECK_MASK))
            { /* too close to the middle.  Check sign of difference */

            lsd = CLEAR_EXTRA_BITS(lsd);
            tmp_digit = lsd + HALF_LSB;
            P_UX_LSD(&unpacked_result, tmp_digit);
            EXTENDED_MULTIPLY(&unpacked_result, &unpacked_result, &hi, &lo);
            ADDSUB(&unpacked_argument, &hi, SUB, &diff);
            ADDSUB(&diff, &lo, SUB, &diff);
            lsd = G_UX_SIGN(&diff) ? lsd : tmp_digit;
            P_UX_LSD(&unpacked_result, lsd);
            } 
        }

    PACK(
        &unpacked_result,
        packed_result,
        NOT_USED,
        NOT_USED
        OPT_EXCEPTION_INFO_ARGUMENT );
    }

/*
** The following two routines implement the user level functions sqrtl and
** rsqrtl calling C_UX_SQRT
*/ 

#if !defined(F_ENTRY_NAME)
#   define F_ENTRY_NAME		F_SQRT_NAME
#endif

X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
    {
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)

    INIT_EXCEPTION_INFO;
    C_UX_SQRT(
        PASS_ARG_X_FLOAT(packed_argument),
        EVALUATE_SQRT,
        PASS_RET_X_FLOAT(packed_result)
        OPT_EXCEPTION_INFO );

    RETURN_X_FLOAT(packed_result);

    }

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME	F_RSQRT_NAME

X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)
    {
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)

    INIT_EXCEPTION_INFO;
    C_UX_SQRT(
        PASS_ARG_X_FLOAT(packed_argument),
        EVALUATE_RSQRT,
        PASS_RET_X_FLOAT(packed_result)
        OPT_EXCEPTION_INFO );

    RETURN_X_FLOAT(packed_result);

    }

/*
** UX_HYPOT computes the sqrt(x^2 + y^2) for unpacked x-float arguments
** x and y.
*/

#if !defined(UX_HYPOT)
#   define UX_HYPOT	__INTERNAL_NAME(ux_hypot__)
#endif

void
UX_HYPOT(
   UX_FLOAT * unpacked_x,
   UX_FLOAT * unpacked_y,
   UX_FLOAT * unpacked_result)
    {
    UX_FLOAT sum;

    MULTIPLY(unpacked_x, unpacked_x, &sum);
    MULTIPLY(unpacked_y, unpacked_y, unpacked_result);
    ADDSUB(unpacked_result, &sum, ADD, &sum);
    NORMALIZE(&sum);
    UX_SQRT(&sum, unpacked_result);
    return;
    }

/*
** F_HYPOT_NAME is the user lever hypot function
*/

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME	F_HYPOT_NAME

X_XX_PROTO(F_ENTRY_NAME, packed_result, packed_x, packed_y)
    {
    WORD    fp_class;
    UX_FLOAT unpacked_x, unpacked_y, unpacked_result;
    EXCEPTION_INFO_DECL
    DECLARE_X_FLOAT(packed_result)

    fp_class  = UNPACK2(
        PASS_ARG_X_FLOAT(packed_x),
        PASS_ARG_X_FLOAT(packed_y),
        & unpacked_x,
        & unpacked_y,
        HYPOT_CLASS_TO_ACTION_MAP,
        PASS_RET_X_FLOAT(packed_result)
        OPT_EXCEPTION_INFO );

    if (0 > fp_class)
       RETURN_X_FLOAT(packed_result);

    UX_HYPOT( &unpacked_x, &unpacked_y, &unpacked_result);

    PACK(
        &unpacked_result,
        PASS_RET_X_FLOAT(packed_result),
        /* Not Used */ 0,
        CABS_OVERFLOW
        OPT_EXCEPTION_INFO );

    RETURN_X_FLOAT(packed_result);

    }

#if defined(MAKE_INCLUDE)

    @divert -append divertText

#   undef TABLE_NAME

    START_TABLE;

    TABLE_COMMENT("Square root class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "SQRT_CLASS_TO_ACTION_MAP");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(2) + 
	      CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_POS_NORM,   RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_NEG_NORM,   RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     0) );

    TABLE_COMMENT("Reciprocal square root class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "RSQRT_CLASS_TO_ACTION_MAP");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) + 
              CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_VALUE,     4) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_POS_NORM,   RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_NEG_NORM,   RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_ERROR,     2) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_ERROR,     3));

    TABLE_COMMENT("Data for the above mapping");
        PRINT_U_TBL_ITEM( /* data 1 */  SQRT_OF_NEGATIVE );
        PRINT_U_TBL_ITEM( /* data 2 */ RSQRT_OF_POS_ZERO );
        PRINT_U_TBL_ITEM( /* data 3 */ RSQRT_OF_NEG_ZERO );
        PRINT_U_TBL_ITEM( /* data 4 */              ZERO );


    TABLE_COMMENT("Hypot(x,y) root class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "HYPOT_CLASS_TO_ACTION_MAP");

	  /* Index 0: mapping for x */

    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) + 
	      CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
	      CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) );

	  /* Index 1: class-to-index mapping */

    PRINT_64_TBL_ITEM( 
	      CLASS_TO_INDEX( F_C_POS_ZERO,   2) +
	      CLASS_TO_INDEX( F_C_NEG_ZERO ,  2) +
	      CLASS_TO_INDEX( F_C_POS_DENORM, 3) +
	      CLASS_TO_INDEX( F_C_NEG_DENORM, 3) +
	      CLASS_TO_INDEX( F_C_POS_NORM,   3) +
	      CLASS_TO_INDEX( F_C_NEG_NORM,   3) +
	      CLASS_TO_INDEX( F_C_POS_INF,    4) +
	      CLASS_TO_INDEX( F_C_NEG_INF,    4) );

	  /* Index 2: y class-to-index mapping for x = +/- zero */

    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) + 
	      CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_ABSOLUTE,  1) +
	      CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_ABSOLUTE,  1) +
	      CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_ABSOLUTE,  1) +
	      CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_ABSOLUTE,  1) +
	      CLASS_TO_ACTION( F_C_POS_NORM,   RETURN_ABSOLUTE,  1) +
	      CLASS_TO_ACTION( F_C_NEG_NORM,   RETURN_ABSOLUTE,  1) +
	      CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ABSOLUTE,  1) +
	      CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ABSOLUTE,  1) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 1) +
	      CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     1) );

	  /* Index 3: y class-to-index mapping for x = +/- norm or denorm */

    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) + 
	      CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_ABSOLUTE,  0) +
	      CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_ABSOLUTE,  0) +
	      CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED,  1) +
	      CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_UNPACKED,  1) +
	      CLASS_TO_ACTION( F_C_POS_NORM,   RETURN_UNPACKED,  1) +
	      CLASS_TO_ACTION( F_C_NEG_NORM,   RETURN_UNPACKED,  1) +
	      CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ABSOLUTE,  1) +
	      CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ABSOLUTE,  1) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 1) +
	      CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     1) );

	  /* Index 4: y class-to-index mapping for x = +/- Inf */

    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) + 
	      CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_ABSOLUTE,  0) +
	      CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_ABSOLUTE,  0) +
	      CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_ABSOLUTE,  0) +
	      CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_ABSOLUTE,  0) +
	      CLASS_TO_ACTION( F_C_POS_NORM,   RETURN_ABSOLUTE,  0) +
	      CLASS_TO_ACTION( F_C_NEG_NORM,   RETURN_ABSOLUTE,  0) +
	      CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ABSOLUTE,  0) +
	      CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ABSOLUTE,  0) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 1) +
	      CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     1) );

    PAD_IF_NEEDED(MP_BIT_OFFSET, 64);

    /* Print various powers of 2 */

    TABLE_COMMENT("2^n, n = .5, 0, 24, 75, -24, -77 in double precision");

    PRINT_R_TBL_VDEF_ITEM( "D_SQRT_TWO\t",               sqrt(2));
    PRINT_R_TBL_VDEF_ITEM( "D_ONE\t\t",                        1);
    PRINT_R_TBL_VDEF_ITEM( "D_TWO_POW_24\t",     bldexp(1,   24));
    PRINT_R_TBL_VDEF_ITEM( "D_TWO_POW_75\t",     bldexp(1,   75));
    PRINT_R_TBL_VDEF_ITEM( "D_RECIP_TWO_POW_24", bldexp(1,  -24));
    PRINT_R_TBL_VDEF_ITEM( "D_RECIP_TWO_POW_77", bldexp(1,  -77));

    TABLE_COMMENT(
       "Rsqrt iteration (double precision) constants: 7/8 and 3/8");

    PRINT_R_TBL_VDEF_ITEM( "D_SEVEN_EIGHTS", 7/8);
    PRINT_R_TBL_VDEF_ITEM( "D_THREE_EIGHTS", 3/8);

    TABLE_COMMENT("3 in unpacked format");
    PRINT_UX_TBL_ADEF_ITEM( "UX_THREE\t\t",             3);

    END_TABLE;

    @end_divert
    @eval my $tableText;						\
          my $outText    = MphocEval( GetStream( "divertText" ) );	\
          my $defineText = Egrep( "#define", $outText, \$tableText );	\
             $outText    = "$tableText\n\n$defineText";			\
          my $headerText = GetHeaderText( STR(BUILD_FILE_NAME),         \
                           "Definitions and constants square root " .	\
                              "related routines", __FILE__ );		\
             print "$headerText\n\n$outText\n";
#endif