File: dpml_ux_trig.c

package info (click to toggle)
intelrdfpmath 2.0u3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,088 kB
  • sloc: ansic: 310,558; makefile: 446; sh: 3
file content (1106 lines) | stat: -rw-r--r-- 42,266 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
/******************************************************************************
  Copyright (c) 2007-2024, Intel Corp.
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of Intel Corporation nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/

#define	BASE_NAME	trig
#include "dpml_ux.h"

#if !defined(MAKE_INCLUDE)
#   include STR(BUILD_FILE_NAME)
#endif

/* 
** OVERVIEW
** --------
**
** The implementation of the trig functions is based on four support routines:
** two common evaluation routine (one for sin/cos/sind/cosd and one for
** tan/cot/tand/cotd) together with two argument reduction routines, one for
** radian arguments and one for degree arguments.
** 
** There are various reduction schemes that can be used for trigonometric
** functions.  The polynomial evaluation routines require that the terms in
** the series decrease in magnitude.  For the trig functions, this implies
** that an argument reduction scheme should return a reduce argument with
** magnitude less than or equal to pi/4 is an appropriate choice.  In
** particular, we assume that for a given value, x, the argument reduction
** scheme (for both radian and degrees) produces two integers, I1 and I and an
** unpacked floating point result, z, such that
** 
** 	x = (2*pi)*I1 + I*(pi/2) + z, 	|z| <= pi/4
** 
**		NOTE: having the degree reduction return the reduced
**		argument in radian permits the use of only one set
**		of polynomial coefficient and simplifies the evaluation
**		logic.
**
** The value of I we will refer to as the quadrant bits and z as the reduced
** argument.  We assume also that argument reduction routines returns both I
** and z to its caller.  (I1 is never needed in the subsequent computations,
** so it is not returned.)
** 
** The following table gives an estimate of the number of terms in a polynomial
** and rational approximation for each of the basic trig functions.  For
** rational approximations the degree of the numerator and denominator are
** presented as an ordered pair.  The approximation is assumed to be good to
** 128 bits for |x| <= pi/4.  The values in this table were extrapolated from
** the tables given in Hart et. al.
** 
** 			   approximation form
** 			------------------------
** 	function	polynomial	rational
** 	--------	----------	--------
** 	sin		    12		 (6, 6)
** 	cos		    12		 (6, 6)
** 	tan		    29		 (7, 7)
** 
** So from the above table, it seems most efficient to evaluate sin and cos via
** polynomials and evaluate tangent via a rational approximation.  So we assume
** that for |x| <= pi/4, we have polynomials, S, C, P and Q such that
** 
** 		sin(x) ~ x*S(x^2)
** 		cos(x) ~ C(x^2)
** 		tan(x) ~ x*P(x^2) / Q(x^2)
** 		cot(x) ~ Q(x^2) / *[x*P(x^2)]
** 
** Now, for any argument, x, given its reduced argument, z, and its quadrant
** bits, I, we can evaluate sin, cos, tan and cot of x according to Table 1.
** ( For brevity we denote z*P(z^2) by p, Q(z^2) by q, etc):
** 
** 				   Quadrant bits, I
** 				----------------------------
** 		function	  0	  1	  2	  3
** 		--------	-----	-----	-----	-----
** 		sin		  s	  c	 -s	 -c
** 		cos		  c	 -s	 -c	  s
** 		tan		 p/q	-q/p	 p/q	-q/p
** 		cot		 q/p	-p/q	 q/p	-p/q
** 
** 				   Table 1
** 				   -------
** 
**
** REDUCTION INTERFACE:
** --------------------
** 
** As mentioned earlier, the overall design of the the trig routines is
** dependent on two routines to do argument reduction.  The prototype for 
** these functions is;
** 
** 		WORD
** 		__reduce(
** 		    _UX_FLOAT * unpacked_argument,
** 		    INT_64      octant,
** 		    _UX_FLOAT * reduced_argument
** 		    )
** 
** Assuming that 'unpacked_argument' points to a _UX_FLOAT data item with value
** x, then the semantics of the reduction routines are to compute integers I1
** and I, and a floating point value, z, such that
** 
** 	x + octant*(CYCLE/4) = (2*CYCLE)*I1 + (CYCLE/2) + z,  |z| < CYCLE/4
** 
** Note that performing the reduction on x + octant*(CYCLE/4), rather than x,
** not only allows us to deal with the <name>_vo entry points easily, it also
** permits easy use of the identities cos(x) = sin(x + CYCLE/2) and cot(x) = 
** tan(CYCLE/2) to consolidate the overall processing.
** 
** 
** 
** EVALUATION INTERFACE:
** ---------------------
** 
** The prototypes for each of the two evaluation routines is;
** 
** 	void
** 	__trig_evaluate(
** 	    UX_FLOAT * unpacked_argument,
** 	    WORD       octant,
** 	    U_WORD     function_code,
** 	    UX_FLOAT * unpacked_result
** 	    );
** 
** The evaluation routines need not know whether the evaluation is for degrees
** because the appropriate reduction is done based on the value of
** function_code.
*/ 

#if !defined(UX_RADIAN_REDUCE)
#    define UX_RADIAN_REDUCE		__INTERNAL_NAME(ux_radian_reduce__)
#endif

/*
** The radian reduction code is rather large and has a rather detailed
** explanation.  Consequently, its contained in a separate file and is
** included here.
*/

#if !defined(MAKE_INCLUDE)
#   include "dpml_ux_radian_reduce.c"
#endif

/*
** UX_DEGREE_REDUCE performs argument reduction for degree arguments.  The
** reduction is performed in three phases:
**
**	(1) if |x| >= 2^141, reduce modulo 360 to a value less than 2^141
**	    by operating on the exponent field of x
**	(2) if |x| > 2^15, reduce modulo 360 to a value less that 2^15
**	    by operating on the integer portion of x
**	(3) if |x| < 2^15, compute I = nint(x/90) and the reduced argument
**	    as x - I*90
**
** The details of each of these phases is discussed in more detail in the
** code.
*/

#if !defined(UX_DEGREE_REDUCE)
#    define UX_DEGREE_REDUCE		__INTERNAL_NAME(ux_degree_reduce__)
#endif

static U_WORD
UX_DEGREE_REDUCE( UX_FLOAT * argument, WORD octant, UX_FLOAT * reduced_argument)
    {
    WORD cnt, digit_with_binary_pt, digit_num, w_tmp, quadrant;
    UX_SIGN_TYPE     sign;
    UX_EXPONENT_TYPE exponent, k;
    UX_FRACTION_DIGIT_TYPE current_digit, tmp_digit, sum_digit, borrow;


    sign = G_UX_SIGN(argument);
    exponent = G_UX_EXPONENT(argument);

    if (exponent > (UX_PRECISION + 14))
        {
        /*
        ** This is a very large argument.  We make use of the identity
        **
        **	8*(2^12)^(n+1) = 8*(136)^(n+1)	(mod 360)
        **	               = [8*(136)]*(136)^n
        **	               = (1088)*(136)^n
        **	               = 8*(136)^n	(mod 360)
        **
        ** Or employing induction, 8*(2^12)^n = 8 (mod 360)
        **
        ** If p is the precision of the data type, we begin by writing the
        ** input argument x as:
        **
        **	x = 2^n*f
        **	  = 2^(n-p)*(2^p*f)
        **	  = 2^(n-p)*F
        **
        ** where F = 2^p*f is an integer.  Now let k = floor((n - p - 3)/12)
        ** and r = n - p - 3 - 12*k.  Then
        **
        **	x = 2^(n-p)*F
        **	  = 2^(12k + r + 3)*F
        **	  = 8*2^(12k)]*(2^r*F)
        **	  = [8*(2^12)^k]*(2^r*F)
        **	  = 8*(2^r*F)			(mod 360)
        **	  = 2^(3 + r + p)*f
        **	  = 2^(n - 12*k)*f
        **
        ** So the approach is to find k and subtract 12*k from the exponent
        ** field.  This will reduce the input argument to a number less than
        ** 2^(p + 14)
        **
        ** One last note.  We don't actually do an integer divide to get
        ** k.  Rather we multiply n by an integer that is effectively the 
        ** reciprocal of 12.  This is easier to do if the exponent field
        ** is positive so we want to add a bias to the exponent that is
        ** divisible by 12 and that will force the exponent to be positive.
        ** We assume at this point that |exponent| < (1 << F_EXP_WIDTH).
        **
        ** Let the bias = 12*B, then
        **
        **		k = floor((n - p - 3)/12)
        **		  = floor((n - p - 3 + 12*B - 12*B)/12)
        **		  = floor((n - p - 3 + 12*B)/12 - B)
        **		  = floor((n - p - 3 + 12*B)/12) - B
        **		  = floor((n + (12*B - p - 3))/12) - B
        ** 
        ** 	==> n - 12*k = n - 12*[floor((n + (12*B - p - 3))/12) - B]
        ** 	             = n - 12*floor((n + (12*B - p - 3))/12) - 12*B
        */

#       define BIAS	(12*(((1 << F_EXP_WIDTH) + 11)/12))

        exponent += (BIAS - UX_PRECISION - 3);
        UMULH((UX_FRACTION_DIGIT_TYPE) exponent, RECIP_TWELVE, k);
        exponent = (exponent + (UX_PRECISION + 3)) - 12*k;
        P_UX_EXPONENT(argument, exponent);
        }

    if (exponent >= 16)
        {
        /*
        ** For a medium arguments, 2^15 < |x| < 2^142, we consider the fraction
        ** field of x as a sequence of digit.  The digits that are comprised
        ** entirely of "integer" bits are reduced modulo 360 using the 
        ** identity 8*2^12 = 8 (mod 360).
        **
        ** Begin by writing |x| = 2^n*f, with f in the interval [1/2, 1) and
        ** define s = (n - 15) % k, where k is the number of bits per fraction
        ** digit.  If there are 4 digits per UX_FLOAT, then the following
        ** diagram indicates the relationship between n, s and the binary point
        ** of x:
        **
        **                  |<---------- n - 15 -------->| 15 |<--
        **	            +-----------+-----------+-----------+-----------+
        **             f :  |     F1    |     F2    |    F3     |    F4     | 
        **	            +-----------+-----------+-----------+-----------+
        **	                                 -->|  s |<-- ^
        **                                                 binary pt
        **
        ** Suppose we now shift the bits of f, s bits to the left to get f'.
        ** Then the diagram would look like
        **
        **	                                 -->| 15 |<--
        **	+-----------+-----------+-----------+-----------+-----------+
        **  f': |     F0'   |     F1'   |     F2'   |     F3'   |    F4'    | 
        **	+-----------+-----------+-----------+-----------+-----------+
        **	                                         ^
        **                                            binary pt
        **
        ** and if we denote the number of digits per UX_FLOAT by N, then
        **
        **	x = 2^(n-s)*(F0' + F1'/K + F2'/K^2 + ... + F4'/K^N)
        **
        ** Now n - 15 - s is multiple of k, i.e. n - s = j*k + 15, so that
        ** 2^(n-s) = 2^(j*k+15) = 2^15*K^j and
        **
        **	x = 2^(n-s)*(F0' + F1'/K + F2'/K^2 + ... + FN'/K^N)
        **	  = 2^15*(K^j)*(F0' + F1'/K + F2'/K^2 + .... + FN'/K^N)
        **	  = 2^15*[F0'*K^j + F1'*K^(j-1) + ... + FN'/K^(j-N)]
        **	  = 2^15*A + 2^15*b
        **
        **	A = F0'*K^j + F1'*K^(j-1) + ... + Fj
        **	b = Fj+1'/K + ... + FN'/K^(N-j)
        **
        ** If we denote B = trunc(2^12*b) as B and b' = 2^15*b - 2^3*B, then
        **
        **	x = 2^15*A + 2^15*b
        **	  = 2^15*A + 2^3*B + b'
        **	  = 2^15*A + 2^3*B + b'
        **        = 8*(2^12*A + B) + b'
        **	  = 8*C + b'
        **
        ** Now let C_lo be the low 12 bits of C and C_hi be the remaining
        ** bits, then
        **
        **	8*C = 8*(C_lo + 2^12*C_hi)
        **	    = 8*(C_lo + 136*C_hi)	(mod 360)
        **	    = 8*C_lo + 8*136*C_hi)
        **	    = 8*C_lo + 8*C_hi)		(mod 360)
        **	    = 8*(C_lo + C_hi)
        **
        ** Thus we effectively reduced the value of 8*C by (almost) 12 bits
        ** modulo 360.  Obviously, we can iterate on this process until until
        ** we produce a value C' which is less that 2^12 and 8*C' = 8*C modulo
        ** 360.  In order to increase performance (and simplify the
        ** implementation) the actual code below doesn't do the reduction 12
        ** bits at a time initially.  Rather it first does the reduction 24 or
        ** 60 bits bits at a time (depending on the digit size), and then does
        ** 12 bit reduction on that result.
        **
        **	NOTE: In order to avoid copying the input argument to
        **	a work buffer and to simplify the logic, the follow code
        **	overlays the sign and exponent field of a UX_FLOAT type
        **	with an "extra" digit.
        */

#       if BITS_PER_UX_FRACTION_DIGIT_TYPE > (BITS_PER_UX_EXPONENT_TYPE + \
           BITS_PER_UX_SIGN_TYPE)
#           error "Need work buffer for this UX_FLOAT struct"
#       endif

        digit_with_binary_pt = exponent - 15;
        cnt = digit_with_binary_pt & (BITS_PER_UX_FRACTION_DIGIT_TYPE - 1);
        digit_with_binary_pt >>= __LOG2(BITS_PER_UX_FRACTION_DIGIT_TYPE);
        tmp_digit = 0;
        exponent -= cnt;

        if (cnt)
            { /* shift digit right (in memory) */
            w_tmp = BITS_PER_UX_FRACTION_DIGIT_TYPE - cnt;

            current_digit = G_UX_LSD(argument);
            P_UX_LSD(argument, current_digit << cnt);

#           if NUM_UX_FRACTION_DIGITS == 4

                tmp_digit = G_UX_FRACTION_DIGIT(argument, 2);
                P_UX_FRACTION_DIGIT(argument, 2,
                        (tmp_digit << cnt) | ( current_digit >> w_tmp));

                current_digit = G_UX_FRACTION_DIGIT(argument, 1);
                P_UX_FRACTION_DIGIT(argument, 1,
                        (current_digit << cnt) | ( tmpt_digit >> w_tmp));

#           endif

            tmp_digit = G_UX_MSD(argument);
            P_UX_MSD(argument,
                (tmp_digit << cnt) | ( current_digit >> w_tmp));
            tmp_digit >>= w_tmp;
            }
     /*   P_UX_FRACTION_DIGIT(argument, -1, tmp_digit); */
        /*
        ** Because of the compiler warning we are replacing the above
        ** line in the source.
        */

            *(&(((UX_FLOAT*)(argument))->fraction[0])-1) = tmp_digit;

        /*
        ** Extract B from the digit that contains the binary point
        */

        sum_digit = G_UX_FRACTION_DIGIT(argument, digit_with_binary_pt) >>
                      (BITS_PER_UX_FRACTION_DIGIT_TYPE - 12);

        /*
        ** Loop through the remaining integer digits and add them to B
        */

#       define MOD_360_BITS_PER_DIGIT (12*(BITS_PER_UX_FRACTION_DIGIT_TYPE/12))
#       define MOD_360_DIGIT_MASK     MAKE_MASK(MOD_360_BITS_PER_DIGIT, 0)

        digit_num = digit_with_binary_pt;
        cnt = 0;
        while (digit_num >= 0)
            {
            current_digit = G_UX_FRACTION_DIGIT(argument, --digit_num);
            P_UX_FRACTION_DIGIT(argument, digit_num, 0);
            if (cnt)
                {
                sum_digit += ((current_digit << cnt) & 0xfff);
                w_tmp = 12 - cnt;
                current_digit >>= w_tmp;
                cnt = -w_tmp;
                }

            sum_digit = (sum_digit + (current_digit & MOD_360_DIGIT_MASK))
                         + (current_digit >> MOD_360_BITS_PER_DIGIT);
            cnt += (BITS_PER_UX_FRACTION_DIGIT_TYPE - MOD_360_BITS_PER_DIGIT);
            }

        /*
        ** For 64 bit digits, at this point sum_digit can have five 12 bit
        ** "digits" plus a carry "digit" for a total of six.  So it is
        ** more efficient to compress sum_digit 24 bits at a time rather than
        ** 12 bits at a time.
        */

#       if (BITS_PER_UX_FRACTION_DIGIT_TYPE == 64)

            sum_digit = (sum_digit & 0xffffff) + ((sum_digit >> 24) & 0xffffff)
                          + ((sum_digit >> 48) & 0xffffff);

#       endif

        /*
        ** At this point sum_digit may contain two 12 bit "digits" plus a
        ** carry "digit".  So we recurse (at most twice) to reduce it to 12
        ** bits modulo 360.
        */

        while ((tmp_digit = (sum_digit >> 12)))
            sum_digit = (sum_digit & 0xfff) + tmp_digit;

        /*
        ** Now put the reduced integer into the original fraction field,
        ** normalize the result, and calculate the exponent value.
        */

        current_digit = G_UX_FRACTION_DIGIT(argument, digit_with_binary_pt);
        current_digit &= MAKE_MASK(BITS_PER_UX_FRACTION_DIGIT_TYPE - 12, 0);
        current_digit |= (sum_digit << (BITS_PER_UX_FRACTION_DIGIT_TYPE - 12));
        P_UX_FRACTION_DIGIT(argument, digit_with_binary_pt, current_digit);
        P_UX_EXPONENT(argument, exponent);

        exponent -= NORMALIZE(argument);
        }


    /*
    ** At this point |x| < 2^15 so that if I = nint(x/90), I < 2^9 and 
    ** I*90 requires at most 15 significant bits.  This means that we
    ** can reduce x by working only with its most significant digit.
    **
    ** Let F be the high k bits of the fraction of x, where k is the number
    ** of bits per fraction digit and K = 2^k.  Further, let R an k-1 bit
    ** integer such that 1/90 ~ R/(32*K).  (I.e. R is the high bits of 1/90
    ** unnormalized by one bit.)  We can now write x = 2^n*(F + e)/K and 
    ** 1/90 = (R + d)/(32*K), where |e| < 1 and |d| < 1/2.  Consequently
    ** we have:
    **
    **		x/90 = (2^n*f)*(1/90)
    **		     = 2^n*[(F + e)/K]*[(R + d)/(32*K)]
    **		     = 2^(n-5)*(F*R + e*R + d*F + e*d)/K^2
    **		     = 2^(n-5)*(K*hi(F*R) + lo(F*R) + e*R + d*F + e*d)/K^2
    **
    ** Now K*hi(F*R) > K^2/8 and | lo(F*R) + e*R + d*F + e*d | < 2K and
    ** so the relative error in neglecting lo(F*R) + e*R + d*F + e*d is less
    ** that one part in 2^(k-4).  Since k is at least 32, the relative error
    ** is very small.  We have then
    **
    **		x/90 = 2^(n-5)*[K*hi(F*R) + lo(F*R) + e*R + d*F + e*d]/K^2
    **		     ~ 2^(n-5)*hi(F*R)/K
    */

    w_tmp = exponent - 5;
    P_UX_SIGN(argument, 0);
    current_digit = G_UX_MSD(argument);

    if (w_tmp > 0)
        { UMULH( current_digit, MSD_OF_RECIP_90, tmp_digit); }
    else
        { /* I = 0 */
        w_tmp = 1;
        tmp_digit = 0;
        }

    /* I ~ x/90, "add in octant" and round to nearest integer */

    cnt = BITS_PER_UX_FRACTION_DIGIT_TYPE - w_tmp;
    tmp_digit = (tmp_digit + ((octant & 1) << (cnt - 1)) +
                        SET_BIT(cnt - 1)) & ~MAKE_MASK(cnt, 0);

    /* Get quadrant bits and adjust for sign of the argument */

    quadrant = (tmp_digit >> cnt);
    quadrant = (sign) ? -quadrant : quadrant;
    quadrant += (octant >> 1);

    /* now subtract I*90 from x */

#   define MSD_OF_NINETY	(((UX_FRACTION_DIGIT_TYPE) 45) << \
				(BITS_PER_UX_FRACTION_DIGIT_TYPE - 6))

    UMULH(tmp_digit, MSD_OF_NINETY, tmp_digit);
    tmp_digit = (current_digit >> 2) - tmp_digit;
    current_digit = (current_digit & 3) | (4*tmp_digit);
    if (((UX_SIGNED_FRACTION_DIGIT_TYPE) tmp_digit) < 0)
        {
        sign ^= UX_SIGN_BIT;

        sum_digit = G_UX_LSD(argument);
        tmp_digit = -sum_digit;
        borrow = (sum_digit != 0);
        P_UX_LSD(argument, tmp_digit);

#       if ( NUM_UX_FRACTION_DIGITS == 4)

            sum_digit = G_UX_FRACTION_DIGIT(argument, 2);
            tmp_digit = - (sum_digit + borrow);
            borrow = (sum_digit != 0) | borrow;
            P_UX_FRACTION_DIGIT(argument, 2, tmp_digit);

            sum_digit = G_UX_FRACTION_DIGIT(argument, 1);
            tmp_digit = - (sum_digit + borrow);
            borrow = (sum_digit != 0) | borrow;
            P_UX_FRACTION_DIGIT(argument, 1, tmp_digit);

#       endif

        current_digit = - (current_digit + borrow);
        }
    P_UX_MSD(argument, current_digit);
    NORMALIZE(argument);

    /* Last by not least, convert to radians */

    MULTIPLY(argument, UX_PI_OVER_180, reduced_argument);
    UX_TOGGLE_SIGN(reduced_argument, sign);

    return quadrant;
    }

/*
** UX_SINCOS is the common evaluation routine for all of the sin/cos and
** sind/cosd entry points.  UX_SINCOS invokes the appropriate reduction
** routine (radian or degrees) and then performs 1 or 2 polynomial evaluation
** on the reduced argument to get the result (or results, for sincos and
** sincosd)
*/

#define ODD_POLY_FLAGS		SQUARE_TERM | ALTERNATE_SIGN | POST_MULTIPLY
#define EVEN_POLY_FLAGS		SQUARE_TERM | ALTERNATE_SIGN

#define SIN_POLY_FLAGS		NUMERATOR_FLAGS( ODD_POLY_FLAGS )
#define COS_POLY_FLAGS		DENOMINATOR_FLAGS( EVEN_POLY_FLAGS )

WORD
UX_SINCOS(
  UX_FLOAT * unpacked_argument,
  WORD       octant,
  WORD       function_code,
  UX_FLOAT * unpacked_result)
    {
    WORD quadrant, poly_type;
    UX_FLOAT reduced_argument;
    U_WORD (* reduce)( UX_FLOAT *, WORD, UX_FLOAT *);

    /* Get the quadrant bits and the reduced argument */

    reduce = (function_code & DEGREE) ? UX_DEGREE_REDUCE : UX_RADIAN_REDUCE;
    quadrant = reduce( unpacked_argument, octant, &reduced_argument );
    function_code &= ~DEGREE;

    /*
    ** Select the polynomial coefficients and the form of the 
    ** polynomial based on the quadrant the reduced argument
    ** lies in.  NOTE: the difference between the sin and cos
    ** has been accounted for in the value of octant.
    */

    if ( SINCOS_FUNC == function_code )
        {
        poly_type = SIN_POLY_FLAGS | COS_POLY_FLAGS | NO_DIVIDE;

        /* Adjust location of sin/cos polynomials */
        poly_type |= ( (quadrant & 1) ? SWAP : NULL );
        }
    else if (quadrant & 1)
        /* We need to evaluate C(x^2) */
        poly_type = SKIP | COS_POLY_FLAGS;
    else 
        /* We need to evaluate x*S(x^2) */
        poly_type = SKIP | SIN_POLY_FLAGS;

    /*
    ** Evaluate the polynomial and set the sign based on the quadrant
    */

    EVALUATE_RATIONAL(
        &reduced_argument,
        SINCOS_COEF_ARRAY,
        SINCOS_COEF_ARRAY_DEGREE,
        poly_type,
        unpacked_result);

    if (quadrant & 2)
        UX_TOGGLE_SIGN(&unpacked_result[0], UX_SIGN_BIT);

    /*
    ** If this is a sincos entry point, set the sign on the second
    ** result
    */

    if ((SINCOS_FUNC == function_code) && ((quadrant + 1) & 2))
        UX_TOGGLE_SIGN(&unpacked_result[1], UX_SIGN_BIT);
  
    return 0; /* No error conditions for sin/cos */
    }


/*
** UX_TANCOT is the common evaluation routine fo tan, cot, tand and cotd.
** UX_TANCOT invokes the appropriate reduction routine (radian or degrees) and
** then computes tan or cot as the ratio of two polynomials
**
** An important difference between UX_TANCOT and UX_SINCOS is that for the
** tand/cotd routines, the reduced argument may be zero.  Depending on the
** quadrant bits, the correct result would then be either 0 or +/- Inf.   The
** common tan/cot evaluation routine detects the +/- Inf case and returns an
** unpacked result with its exponent field set to a large positive value,
** denoted by UX_INFINITY_EXPONENT.
*/

#if !defined(UX_TANCOT)
#   define UX_TANCOT		__INTERNAL_NAME(ux_tancot__)
#endif

static WORD
UX_TANCOT(
  UX_FLOAT * unpacked_argument,
  WORD       octant,
  WORD       function_code,
  UX_FLOAT * unpacked_result)
    {
    WORD quadrant, div_flag;
    UX_FLOAT reduced_argument;
    U_WORD (* reduce)(UX_FLOAT *, WORD, UX_FLOAT *);

    /*
    ** Get the quadrant bits and the reduced argument, check for
    ** zero and process accordingly.
    */

    reduce = (function_code & DEGREE) ? UX_DEGREE_REDUCE : UX_RADIAN_REDUCE;
    quadrant = reduce( unpacked_argument, octant, &reduced_argument );
    div_flag = ((quadrant + (function_code >> 3)) & 1) ? SWAP : 0;

    if (0 == G_UX_MSD(&reduced_argument))
        { /* reduced argument is zero */
        UX_SET_SIGN_EXP_MSD(unpacked_result, 0, UX_ZERO_EXPONENT, 0);
	if ( div_flag /* == SWAP */ )
            {
            P_UX_EXPONENT(unpacked_result, UX_INFINITY_EXPONENT);
            P_UX_MSD(unpacked_result, UX_MSB);
            }
        return (function_code & TAN_FUNC) ?
           TAND_ODD_MULTIPLE_OF_90 : COTD_MULTIPLE_OF_180;
        }

    /*
    ** Evaluate z*P(z^2) and and Q(z^2) and perform the appropriate
    ** division.  Set the sign bit according to the quadrant.
    */

    EVALUATE_RATIONAL(
        &reduced_argument,
        TANCOT_COEF_ARRAY,
        TANCOT_COEF_ARRAY_DEGREE,
        NUMERATOR_FLAGS( SQUARE_TERM | ALTERNATE_SIGN | POST_MULTIPLY) |
          DENOMINATOR_FLAGS( SQUARE_TERM | ALTERNATE_SIGN) | div_flag,
        unpacked_result);

    if (quadrant & 1)
        UX_TOGGLE_SIGN(unpacked_result, UX_SIGN_BIT);

    return G_UX_SIGN(unpacked_result) ? COTD_NEG_OVERFLOW : COTD_POS_OVERFLOW;
    }

/*
** Each of the of trig routines call a common routine C_UX_TRIG, to unpack the
** input argument and then dispatch the result to UX_SINCOS or UX_TANCOT
** evaluation routine. For sincos and sincosd entry points, if the return
** value is written by the unpack routine, the common routine must take care
** to write the second result.
*/

#if !defined(C_UX_TRIG)
#   define C_UX_TRIG		__INTERNAL_NAME(C_ux_trig__)
#endif

#define F_C_NAN_OR_INF_MASK	(SET_BIT(F_C_INF) | SET_BIT(F_C_NAN))

static void
C_UX_TRIG(
  _X_FLOAT * packed_argument,
  WORD octant,
  WORD function_code,
  U_WORD const * class_to_action_map,
  WORD underflow_error,
  _X_FLOAT * packed_result
  OPT_EXCEPTION_INFO_DECLARATION )
    {
    _X_FLOAT *second_value;
    WORD fp_class, overflow_error;
    UX_FLOAT unpacked_result[3], unpacked_argument;
    WORD (* trig_eval)( UX_FLOAT *, WORD, WORD, UX_FLOAT *);

    trig_eval = (SINCOS_FUNC & function_code) ? UX_SINCOS : UX_TANCOT;

    fp_class = UNPACK(
        packed_argument,
        &unpacked_argument,
        class_to_action_map,
        packed_result
        OPT_EXCEPTION_INFO_ARGUMENT );

   if (0 > fp_class)
        { /* If this is a SINCOS evaluation, write second result */

        if (SINCOS_FUNC == (function_code & ~DEGREE))
            {
            second_value =
                ((1 << F_C_BASE_CLASS(fp_class)) & F_C_NAN_OR_INF_MASK) ?
                &packed_result[0] : (_X_FLOAT *) _X_ONE;
            _X_COPY(second_value, &packed_result[1]);
            }
        return;
        }

    overflow_error = trig_eval(
        &unpacked_argument,
        octant,
	function_code,
        unpacked_result);

    PACK(
        unpacked_result,
        packed_result,
        underflow_error,
        overflow_error
        OPT_EXCEPTION_INFO_ARGUMENT );

    if (SINCOS_FUNC == (function_code & ~DEGREE))
        { /* pack second result for sincos evaluations */
        PACK(
            unpacked_result + 1,
            packed_result + 1,
            NOT_USED,
            NOT_USED
            OPT_EXCEPTION_INFO_ARGUMENT );
        }
    }

/*
** The following 6 entry points implement the user level x-float sin/cos and
** sind/cosd functions
*/

#define TRIG_ENTRY(oct, code, map, under)				 \
        X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument)          \
	    {								 \
	    EXCEPTION_INFO_DECL				                 \
            DECLARE_X_FLOAT(packed_result)                               \
									 \
	    INIT_EXCEPTION_INFO;					 \
	    C_UX_TRIG(							 \
            PASS_ARG_X_FLOAT(packed_argument),               \
	        oct, code, map, under,					 \
            PASS_RET_X_FLOAT(packed_result)              \
	        OPT_EXCEPTION_INFO);					 \
            RETURN_X_FLOAT(packed_result);                               \
	    }

#
#define TRIG_ENTRY_RR(oct, code, map, under)                 \
        RR_X_PROTO(F_ENTRY_NAME, packed_result1, packed_result2, packed_argument)          \
        {                                \
        EXCEPTION_INFO_DECL                              \
        _X_FLOAT packed_result[2];                               \
                                     \
        INIT_EXCEPTION_INFO;                     \
        C_UX_TRIG(                           \
            PASS_ARG_X_FLOAT(packed_argument),               \
            oct, code, map, under,                   \
            packed_result /*PASS_RET_X_FLOAT(packed_result)*/                \
            OPT_EXCEPTION_INFO);                     \
        *packed_result1 = packed_result[0];                              \
        *packed_result2 = packed_result[1];                              \
        }


#undef  F_ENTRY_NAME
#define F_ENTRY_NAME F_SIN_NAME
	TRIG_ENTRY(0, SIN_FUNC, SIN_CLASS_TO_ACTION_MAP, NOT_USED)

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME F_COS_NAME
	TRIG_ENTRY(2, COS_FUNC, COS_CLASS_TO_ACTION_MAP, NOT_USED)

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME F_SINCOS_NAME
    TRIG_ENTRY_RR(0, SINCOS_FUNC, SINCOS_CLASS_TO_ACTION_MAP, NOT_USED)


#undef  F_ENTRY_NAME
#define F_ENTRY_NAME F_SIND_NAME
	TRIG_ENTRY(0, SIND_FUNC, SIND_CLASS_TO_ACTION_MAP, SIND_UNDERFLOW)

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME F_COSD_NAME
	TRIG_ENTRY(2, COSD_FUNC, COSD_CLASS_TO_ACTION_MAP, NOT_USED)

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME F_SINCOSD_NAME
    TRIG_ENTRY_RR(0, SINCOSD_FUNC, SINCOSD_CLASS_TO_ACTION_MAP, SIND_UNDERFLOW)


/*
** The following 4 entry points implement the user level x-float tan/cot and
** tand/cotd functions
*/

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME F_TAN_NAME
	TRIG_ENTRY(0, TAN_FUNC, TAN_CLASS_TO_ACTION_MAP, NOT_USED)

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME F_COT_NAME
	TRIG_ENTRY(0, COT_FUNC, COT_CLASS_TO_ACTION_MAP, NOT_USED)

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME F_TAND_NAME
	TRIG_ENTRY(0, TAND_FUNC, TAND_CLASS_TO_ACTION_MAP, TAND_UNDERFLOW)

#undef  F_ENTRY_NAME
#define F_ENTRY_NAME F_COTD_NAME
	TRIG_ENTRY(0, COTD_FUNC, COTD_CLASS_TO_ACTION_MAP, NOT_USED)


#if defined(MAKE_INCLUDE)

    @divert -append divertText

    precision = ceil(UX_PRECISION/8) + 4;

#   undef TABLE_NAME

    START_TABLE;

    TABLE_COMMENT("sin class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "SIN_CLASS_TO_ACTION_MAP\t");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(6) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ERROR,     2) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ERROR,     2) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     0) );

    TABLE_COMMENT("cos class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "COS_CLASS_TO_ACTION_MAP\t");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(5) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ERROR,     3) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ERROR,     3) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     1) );

    TABLE_COMMENT("sincos class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "SINCOS_CLASS_TO_ACTION_MAP");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(4) +
              CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ERROR,     4) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ERROR,     4) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     0) );

    TABLE_COMMENT("sind class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "SIND_CLASS_TO_ACTION_MAP");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(3) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ERROR,     5) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ERROR,     5) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     0) );

    TABLE_COMMENT("cosd class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "COSD_CLASS_TO_ACTION_MAP");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(2) +
	      CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ERROR,     6) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ERROR,     6) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     1) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     1) );

    TABLE_COMMENT("sincosd class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "SINCOSD_CLASS_TO_ACTION_MAP");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
              CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ERROR,     7) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ERROR,     7) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     0) );

    TABLE_COMMENT("Data for the above mappings");

        PRINT_U_TBL_ITEM( /* data 1 */                 ONE);
        PRINT_U_TBL_ITEM( /* data 2 */     SIN_OF_INFINITY);
        PRINT_U_TBL_ITEM( /* data 3 */     COS_OF_INFINITY);
        PRINT_U_TBL_ITEM( /* data 4 */  SINCOS_OF_INFINITY);
        PRINT_U_TBL_ITEM( /* data 5 */    SIND_OF_INFINITY);
        PRINT_U_TBL_ITEM( /* data 6 */    COSD_OF_INFINITY);
        PRINT_U_TBL_ITEM( /* data 7 */ SINCOSD_OF_INFINITY);

    TABLE_COMMENT("tan class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "TAN_CLASS_TO_ACTION_MAP\t");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
              CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     0) );
        PRINT_U_TBL_ITEM( /* data 1 */ TAN_OF_INFINITY);

    TABLE_COMMENT("tand class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "TAND_CLASS_TO_ACTION_MAP");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
              CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_VALUE,     0) );
        PRINT_U_TBL_ITEM( /* data 1 */ TAND_OF_INFINITY);


    TABLE_COMMENT("cot class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "COT_CLASS_TO_ACTION_MAP\t");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
              CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_UNPACKED,  0) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_ERROR,     2) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_ERROR,     3) );
        PRINT_U_TBL_ITEM( /* data 1 */ COT_OF_INFINITY);
        PRINT_U_TBL_ITEM( /* data 2 */     COT_OF_ZERO);
        PRINT_U_TBL_ITEM( /* data 3 */ COT_OF_NEG_ZERO);

    TABLE_COMMENT("cotd class-to-action-mapping");
    PRINT_CLASS_TO_ACTION_TBL_DEF( "COTD_CLASS_TO_ACTION_MAP");
    PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
              CLASS_TO_ACTION( F_C_SIG_NAN,    RETURN_QUIET_NAN, 0) +
              CLASS_TO_ACTION( F_C_QUIET_NAN,  RETURN_VALUE,     0) +
              CLASS_TO_ACTION( F_C_POS_INF,    RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_NEG_INF,    RETURN_ERROR,     1) +
              CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_ERROR,     2) +
              CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_ERROR,     3) +
              CLASS_TO_ACTION( F_C_POS_ZERO,   RETURN_ERROR,     4) +
              CLASS_TO_ACTION( F_C_NEG_ZERO ,  RETURN_ERROR,     5) );
        PRINT_U_TBL_ITEM( /* data 1 */  COTD_OF_INFINITY);
        PRINT_U_TBL_ITEM( /* data 2 */ COTD_POS_OVERFLOW);
        PRINT_U_TBL_ITEM( /* data 3 */ COTD_NEG_OVERFLOW);
        PRINT_U_TBL_ITEM( /* data 4 */      COTD_OF_ZERO);
        PRINT_U_TBL_ITEM( /* data 5 */  COTD_OF_NEG_ZERO);

    TABLE_COMMENT("Unpacked constants pi/180");
    PRINT_UX_TBL_ADEF_ITEM( "UX_PI_OVER_180\t\t",  pi/180);

    TABLE_COMMENT("Packed constants 1");
    PRINT_F_TBL_ADEF_ITEM( "_X_ONE\t\t\t",  1);

    /*
    ** Now we compute the "high" digit of 1/90 and 1/12.  For 1/12, we would
    ** to compute and integer R, such that trunc(E/12) = UMULH(R*E).  We
    ** state without proof here that if the number of bits per digit is
    ** 2*k + d, where d = 0 or 1, then N = 2^(2*k+d) + 2^(3-d) is divisible
    ** by 12 and taking R = N/12 gives the appropriate result.
    */

    PRINT_UX_FRACTION_DIGIT_TBL_VDEF_ITEM( "MSD_OF_RECIP_90\t\t", 
        nint(bldexp(1/90, BITS_PER_UX_FRACTION_DIGIT_TYPE + 5)));

    PRINT_UX_FRACTION_DIGIT_TBL_VDEF_ITEM( "RECIP_TWELVE\t\t", 
        ceil(bldexp(1/12, BITS_PER_UX_FRACTION_DIGIT_TYPE)));

    /*
    ** Now generate coefficients for computing sin.
    */

    function __sin(x)
        {
        if (x == 0)
            return 1;
        else
            return sin(x)/x;
        }

    save_precision = precision;
    precision = ceil(UX_PRECISION/8) + 8;

    max_arg = pi/4;

    remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
           0, max_arg, __sin, UX_PRECISION, &sin_degree, &ux_rational_coefs);

    /*
    ** Now generate coefficients for computing cos and add them to the
    ** ux_rational coefficient array so that they can be accessed by the
    ** rational evaluation routine.
    */

    function __cos(x) { return cos(x); }

    remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
           0, max_arg, __cos, UX_PRECISION, &cos_degree, &dummy_coefs);

    precision = save_precision;

    k = sin_degree + 1;
    for (i = 0; i <= cos_degree; i++)
        ux_rational_coefs[k++] = dummy_coefs[i];

    TABLE_COMMENT("Fixed point coefficients for sin and cos evaluation");
    PRINT_FIXED_128_TBL_ADEF("SINCOS_COEF_ARRAY\t");
    degree = print_ux_rational_coefs(sin_degree, cos_degree, 0);
    PRINT_WORD_DEF("SINCOS_COEF_ARRAY_DEGREE", degree );

    /*
    ** Last but not least, get the rational coefficients for tan/cot
    */

    function __tan(x)
        {
        if (x == 0)
            return 1;
        else
            return tan(x)/x;
        }

    save_precision = precision;
    precision = ceil(UX_PRECISION/8) + 8;

    max_arg = pi/4;

    remes(REMES_FIND_RATIONAL + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
        0, max_arg, __tan, UX_PRECISION, &num_degree, &den_degree,
        &ux_rational_coefs);

    precision = save_precision;

    TABLE_COMMENT("Fixed point coefficients for tan and cot evaluation");
    PRINT_FIXED_128_TBL_ADEF("TANCOT_COEF_ARRAY\t");
    degree = print_ux_rational_coefs(num_degree, den_degree, 0);
    PRINT_WORD_DEF("TANCOT_COEF_ARRAY_DEGREE", degree );

    TABLE_COMMENT("Unpacked value of pi/4");
    PRINT_UX_TBL_ADEF_ITEM( "UX_PI_OVER_FOUR", pi/4);

    END_TABLE;

    @end_divert
    @eval my $tableText;						\
          my $outText    = MphocEval( GetStream( "divertText" ) );	\
          my $defineText = Egrep( "#define", $outText, \$tableText );	\
             $outText    = "$tableText\n\n$defineText";			\
          my $headerText = GetHeaderText( STR(BUILD_FILE_NAME),         \
                           "Definitions and constants trigonometric " .	\
                              "routines", __FILE__ );			\
             print "$headerText\n\n$outText\n";
#endif