1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
|
/******************************************************************************
Copyright (c) 2007-2024, Intel Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
#define BASE_NAME trig
#include "dpml_ux.h"
#if !defined(MAKE_INCLUDE)
# include STR(BUILD_FILE_NAME)
#endif
/*
** OVERVIEW
** --------
**
** The implementation of the trig functions is based on four support routines:
** two common evaluation routine (one for sin/cos/sind/cosd and one for
** tan/cot/tand/cotd) together with two argument reduction routines, one for
** radian arguments and one for degree arguments.
**
** There are various reduction schemes that can be used for trigonometric
** functions. The polynomial evaluation routines require that the terms in
** the series decrease in magnitude. For the trig functions, this implies
** that an argument reduction scheme should return a reduce argument with
** magnitude less than or equal to pi/4 is an appropriate choice. In
** particular, we assume that for a given value, x, the argument reduction
** scheme (for both radian and degrees) produces two integers, I1 and I and an
** unpacked floating point result, z, such that
**
** x = (2*pi)*I1 + I*(pi/2) + z, |z| <= pi/4
**
** NOTE: having the degree reduction return the reduced
** argument in radian permits the use of only one set
** of polynomial coefficient and simplifies the evaluation
** logic.
**
** The value of I we will refer to as the quadrant bits and z as the reduced
** argument. We assume also that argument reduction routines returns both I
** and z to its caller. (I1 is never needed in the subsequent computations,
** so it is not returned.)
**
** The following table gives an estimate of the number of terms in a polynomial
** and rational approximation for each of the basic trig functions. For
** rational approximations the degree of the numerator and denominator are
** presented as an ordered pair. The approximation is assumed to be good to
** 128 bits for |x| <= pi/4. The values in this table were extrapolated from
** the tables given in Hart et. al.
**
** approximation form
** ------------------------
** function polynomial rational
** -------- ---------- --------
** sin 12 (6, 6)
** cos 12 (6, 6)
** tan 29 (7, 7)
**
** So from the above table, it seems most efficient to evaluate sin and cos via
** polynomials and evaluate tangent via a rational approximation. So we assume
** that for |x| <= pi/4, we have polynomials, S, C, P and Q such that
**
** sin(x) ~ x*S(x^2)
** cos(x) ~ C(x^2)
** tan(x) ~ x*P(x^2) / Q(x^2)
** cot(x) ~ Q(x^2) / *[x*P(x^2)]
**
** Now, for any argument, x, given its reduced argument, z, and its quadrant
** bits, I, we can evaluate sin, cos, tan and cot of x according to Table 1.
** ( For brevity we denote z*P(z^2) by p, Q(z^2) by q, etc):
**
** Quadrant bits, I
** ----------------------------
** function 0 1 2 3
** -------- ----- ----- ----- -----
** sin s c -s -c
** cos c -s -c s
** tan p/q -q/p p/q -q/p
** cot q/p -p/q q/p -p/q
**
** Table 1
** -------
**
**
** REDUCTION INTERFACE:
** --------------------
**
** As mentioned earlier, the overall design of the the trig routines is
** dependent on two routines to do argument reduction. The prototype for
** these functions is;
**
** WORD
** __reduce(
** _UX_FLOAT * unpacked_argument,
** INT_64 octant,
** _UX_FLOAT * reduced_argument
** )
**
** Assuming that 'unpacked_argument' points to a _UX_FLOAT data item with value
** x, then the semantics of the reduction routines are to compute integers I1
** and I, and a floating point value, z, such that
**
** x + octant*(CYCLE/4) = (2*CYCLE)*I1 + (CYCLE/2) + z, |z| < CYCLE/4
**
** Note that performing the reduction on x + octant*(CYCLE/4), rather than x,
** not only allows us to deal with the <name>_vo entry points easily, it also
** permits easy use of the identities cos(x) = sin(x + CYCLE/2) and cot(x) =
** tan(CYCLE/2) to consolidate the overall processing.
**
**
**
** EVALUATION INTERFACE:
** ---------------------
**
** The prototypes for each of the two evaluation routines is;
**
** void
** __trig_evaluate(
** UX_FLOAT * unpacked_argument,
** WORD octant,
** U_WORD function_code,
** UX_FLOAT * unpacked_result
** );
**
** The evaluation routines need not know whether the evaluation is for degrees
** because the appropriate reduction is done based on the value of
** function_code.
*/
#if !defined(UX_RADIAN_REDUCE)
# define UX_RADIAN_REDUCE __INTERNAL_NAME(ux_radian_reduce__)
#endif
/*
** The radian reduction code is rather large and has a rather detailed
** explanation. Consequently, its contained in a separate file and is
** included here.
*/
#if !defined(MAKE_INCLUDE)
# include "dpml_ux_radian_reduce.c"
#endif
/*
** UX_DEGREE_REDUCE performs argument reduction for degree arguments. The
** reduction is performed in three phases:
**
** (1) if |x| >= 2^141, reduce modulo 360 to a value less than 2^141
** by operating on the exponent field of x
** (2) if |x| > 2^15, reduce modulo 360 to a value less that 2^15
** by operating on the integer portion of x
** (3) if |x| < 2^15, compute I = nint(x/90) and the reduced argument
** as x - I*90
**
** The details of each of these phases is discussed in more detail in the
** code.
*/
#if !defined(UX_DEGREE_REDUCE)
# define UX_DEGREE_REDUCE __INTERNAL_NAME(ux_degree_reduce__)
#endif
static U_WORD
UX_DEGREE_REDUCE( UX_FLOAT * argument, WORD octant, UX_FLOAT * reduced_argument)
{
WORD cnt, digit_with_binary_pt, digit_num, w_tmp, quadrant;
UX_SIGN_TYPE sign;
UX_EXPONENT_TYPE exponent, k;
UX_FRACTION_DIGIT_TYPE current_digit, tmp_digit, sum_digit, borrow;
sign = G_UX_SIGN(argument);
exponent = G_UX_EXPONENT(argument);
if (exponent > (UX_PRECISION + 14))
{
/*
** This is a very large argument. We make use of the identity
**
** 8*(2^12)^(n+1) = 8*(136)^(n+1) (mod 360)
** = [8*(136)]*(136)^n
** = (1088)*(136)^n
** = 8*(136)^n (mod 360)
**
** Or employing induction, 8*(2^12)^n = 8 (mod 360)
**
** If p is the precision of the data type, we begin by writing the
** input argument x as:
**
** x = 2^n*f
** = 2^(n-p)*(2^p*f)
** = 2^(n-p)*F
**
** where F = 2^p*f is an integer. Now let k = floor((n - p - 3)/12)
** and r = n - p - 3 - 12*k. Then
**
** x = 2^(n-p)*F
** = 2^(12k + r + 3)*F
** = 8*2^(12k)]*(2^r*F)
** = [8*(2^12)^k]*(2^r*F)
** = 8*(2^r*F) (mod 360)
** = 2^(3 + r + p)*f
** = 2^(n - 12*k)*f
**
** So the approach is to find k and subtract 12*k from the exponent
** field. This will reduce the input argument to a number less than
** 2^(p + 14)
**
** One last note. We don't actually do an integer divide to get
** k. Rather we multiply n by an integer that is effectively the
** reciprocal of 12. This is easier to do if the exponent field
** is positive so we want to add a bias to the exponent that is
** divisible by 12 and that will force the exponent to be positive.
** We assume at this point that |exponent| < (1 << F_EXP_WIDTH).
**
** Let the bias = 12*B, then
**
** k = floor((n - p - 3)/12)
** = floor((n - p - 3 + 12*B - 12*B)/12)
** = floor((n - p - 3 + 12*B)/12 - B)
** = floor((n - p - 3 + 12*B)/12) - B
** = floor((n + (12*B - p - 3))/12) - B
**
** ==> n - 12*k = n - 12*[floor((n + (12*B - p - 3))/12) - B]
** = n - 12*floor((n + (12*B - p - 3))/12) - 12*B
*/
# define BIAS (12*(((1 << F_EXP_WIDTH) + 11)/12))
exponent += (BIAS - UX_PRECISION - 3);
UMULH((UX_FRACTION_DIGIT_TYPE) exponent, RECIP_TWELVE, k);
exponent = (exponent + (UX_PRECISION + 3)) - 12*k;
P_UX_EXPONENT(argument, exponent);
}
if (exponent >= 16)
{
/*
** For a medium arguments, 2^15 < |x| < 2^142, we consider the fraction
** field of x as a sequence of digit. The digits that are comprised
** entirely of "integer" bits are reduced modulo 360 using the
** identity 8*2^12 = 8 (mod 360).
**
** Begin by writing |x| = 2^n*f, with f in the interval [1/2, 1) and
** define s = (n - 15) % k, where k is the number of bits per fraction
** digit. If there are 4 digits per UX_FLOAT, then the following
** diagram indicates the relationship between n, s and the binary point
** of x:
**
** |<---------- n - 15 -------->| 15 |<--
** +-----------+-----------+-----------+-----------+
** f : | F1 | F2 | F3 | F4 |
** +-----------+-----------+-----------+-----------+
** -->| s |<-- ^
** binary pt
**
** Suppose we now shift the bits of f, s bits to the left to get f'.
** Then the diagram would look like
**
** -->| 15 |<--
** +-----------+-----------+-----------+-----------+-----------+
** f': | F0' | F1' | F2' | F3' | F4' |
** +-----------+-----------+-----------+-----------+-----------+
** ^
** binary pt
**
** and if we denote the number of digits per UX_FLOAT by N, then
**
** x = 2^(n-s)*(F0' + F1'/K + F2'/K^2 + ... + F4'/K^N)
**
** Now n - 15 - s is multiple of k, i.e. n - s = j*k + 15, so that
** 2^(n-s) = 2^(j*k+15) = 2^15*K^j and
**
** x = 2^(n-s)*(F0' + F1'/K + F2'/K^2 + ... + FN'/K^N)
** = 2^15*(K^j)*(F0' + F1'/K + F2'/K^2 + .... + FN'/K^N)
** = 2^15*[F0'*K^j + F1'*K^(j-1) + ... + FN'/K^(j-N)]
** = 2^15*A + 2^15*b
**
** A = F0'*K^j + F1'*K^(j-1) + ... + Fj
** b = Fj+1'/K + ... + FN'/K^(N-j)
**
** If we denote B = trunc(2^12*b) as B and b' = 2^15*b - 2^3*B, then
**
** x = 2^15*A + 2^15*b
** = 2^15*A + 2^3*B + b'
** = 2^15*A + 2^3*B + b'
** = 8*(2^12*A + B) + b'
** = 8*C + b'
**
** Now let C_lo be the low 12 bits of C and C_hi be the remaining
** bits, then
**
** 8*C = 8*(C_lo + 2^12*C_hi)
** = 8*(C_lo + 136*C_hi) (mod 360)
** = 8*C_lo + 8*136*C_hi)
** = 8*C_lo + 8*C_hi) (mod 360)
** = 8*(C_lo + C_hi)
**
** Thus we effectively reduced the value of 8*C by (almost) 12 bits
** modulo 360. Obviously, we can iterate on this process until until
** we produce a value C' which is less that 2^12 and 8*C' = 8*C modulo
** 360. In order to increase performance (and simplify the
** implementation) the actual code below doesn't do the reduction 12
** bits at a time initially. Rather it first does the reduction 24 or
** 60 bits bits at a time (depending on the digit size), and then does
** 12 bit reduction on that result.
**
** NOTE: In order to avoid copying the input argument to
** a work buffer and to simplify the logic, the follow code
** overlays the sign and exponent field of a UX_FLOAT type
** with an "extra" digit.
*/
# if BITS_PER_UX_FRACTION_DIGIT_TYPE > (BITS_PER_UX_EXPONENT_TYPE + \
BITS_PER_UX_SIGN_TYPE)
# error "Need work buffer for this UX_FLOAT struct"
# endif
digit_with_binary_pt = exponent - 15;
cnt = digit_with_binary_pt & (BITS_PER_UX_FRACTION_DIGIT_TYPE - 1);
digit_with_binary_pt >>= __LOG2(BITS_PER_UX_FRACTION_DIGIT_TYPE);
tmp_digit = 0;
exponent -= cnt;
if (cnt)
{ /* shift digit right (in memory) */
w_tmp = BITS_PER_UX_FRACTION_DIGIT_TYPE - cnt;
current_digit = G_UX_LSD(argument);
P_UX_LSD(argument, current_digit << cnt);
# if NUM_UX_FRACTION_DIGITS == 4
tmp_digit = G_UX_FRACTION_DIGIT(argument, 2);
P_UX_FRACTION_DIGIT(argument, 2,
(tmp_digit << cnt) | ( current_digit >> w_tmp));
current_digit = G_UX_FRACTION_DIGIT(argument, 1);
P_UX_FRACTION_DIGIT(argument, 1,
(current_digit << cnt) | ( tmpt_digit >> w_tmp));
# endif
tmp_digit = G_UX_MSD(argument);
P_UX_MSD(argument,
(tmp_digit << cnt) | ( current_digit >> w_tmp));
tmp_digit >>= w_tmp;
}
/* P_UX_FRACTION_DIGIT(argument, -1, tmp_digit); */
/*
** Because of the compiler warning we are replacing the above
** line in the source.
*/
*(&(((UX_FLOAT*)(argument))->fraction[0])-1) = tmp_digit;
/*
** Extract B from the digit that contains the binary point
*/
sum_digit = G_UX_FRACTION_DIGIT(argument, digit_with_binary_pt) >>
(BITS_PER_UX_FRACTION_DIGIT_TYPE - 12);
/*
** Loop through the remaining integer digits and add them to B
*/
# define MOD_360_BITS_PER_DIGIT (12*(BITS_PER_UX_FRACTION_DIGIT_TYPE/12))
# define MOD_360_DIGIT_MASK MAKE_MASK(MOD_360_BITS_PER_DIGIT, 0)
digit_num = digit_with_binary_pt;
cnt = 0;
while (digit_num >= 0)
{
current_digit = G_UX_FRACTION_DIGIT(argument, --digit_num);
P_UX_FRACTION_DIGIT(argument, digit_num, 0);
if (cnt)
{
sum_digit += ((current_digit << cnt) & 0xfff);
w_tmp = 12 - cnt;
current_digit >>= w_tmp;
cnt = -w_tmp;
}
sum_digit = (sum_digit + (current_digit & MOD_360_DIGIT_MASK))
+ (current_digit >> MOD_360_BITS_PER_DIGIT);
cnt += (BITS_PER_UX_FRACTION_DIGIT_TYPE - MOD_360_BITS_PER_DIGIT);
}
/*
** For 64 bit digits, at this point sum_digit can have five 12 bit
** "digits" plus a carry "digit" for a total of six. So it is
** more efficient to compress sum_digit 24 bits at a time rather than
** 12 bits at a time.
*/
# if (BITS_PER_UX_FRACTION_DIGIT_TYPE == 64)
sum_digit = (sum_digit & 0xffffff) + ((sum_digit >> 24) & 0xffffff)
+ ((sum_digit >> 48) & 0xffffff);
# endif
/*
** At this point sum_digit may contain two 12 bit "digits" plus a
** carry "digit". So we recurse (at most twice) to reduce it to 12
** bits modulo 360.
*/
while ((tmp_digit = (sum_digit >> 12)))
sum_digit = (sum_digit & 0xfff) + tmp_digit;
/*
** Now put the reduced integer into the original fraction field,
** normalize the result, and calculate the exponent value.
*/
current_digit = G_UX_FRACTION_DIGIT(argument, digit_with_binary_pt);
current_digit &= MAKE_MASK(BITS_PER_UX_FRACTION_DIGIT_TYPE - 12, 0);
current_digit |= (sum_digit << (BITS_PER_UX_FRACTION_DIGIT_TYPE - 12));
P_UX_FRACTION_DIGIT(argument, digit_with_binary_pt, current_digit);
P_UX_EXPONENT(argument, exponent);
exponent -= NORMALIZE(argument);
}
/*
** At this point |x| < 2^15 so that if I = nint(x/90), I < 2^9 and
** I*90 requires at most 15 significant bits. This means that we
** can reduce x by working only with its most significant digit.
**
** Let F be the high k bits of the fraction of x, where k is the number
** of bits per fraction digit and K = 2^k. Further, let R an k-1 bit
** integer such that 1/90 ~ R/(32*K). (I.e. R is the high bits of 1/90
** unnormalized by one bit.) We can now write x = 2^n*(F + e)/K and
** 1/90 = (R + d)/(32*K), where |e| < 1 and |d| < 1/2. Consequently
** we have:
**
** x/90 = (2^n*f)*(1/90)
** = 2^n*[(F + e)/K]*[(R + d)/(32*K)]
** = 2^(n-5)*(F*R + e*R + d*F + e*d)/K^2
** = 2^(n-5)*(K*hi(F*R) + lo(F*R) + e*R + d*F + e*d)/K^2
**
** Now K*hi(F*R) > K^2/8 and | lo(F*R) + e*R + d*F + e*d | < 2K and
** so the relative error in neglecting lo(F*R) + e*R + d*F + e*d is less
** that one part in 2^(k-4). Since k is at least 32, the relative error
** is very small. We have then
**
** x/90 = 2^(n-5)*[K*hi(F*R) + lo(F*R) + e*R + d*F + e*d]/K^2
** ~ 2^(n-5)*hi(F*R)/K
*/
w_tmp = exponent - 5;
P_UX_SIGN(argument, 0);
current_digit = G_UX_MSD(argument);
if (w_tmp > 0)
{ UMULH( current_digit, MSD_OF_RECIP_90, tmp_digit); }
else
{ /* I = 0 */
w_tmp = 1;
tmp_digit = 0;
}
/* I ~ x/90, "add in octant" and round to nearest integer */
cnt = BITS_PER_UX_FRACTION_DIGIT_TYPE - w_tmp;
tmp_digit = (tmp_digit + ((octant & 1) << (cnt - 1)) +
SET_BIT(cnt - 1)) & ~MAKE_MASK(cnt, 0);
/* Get quadrant bits and adjust for sign of the argument */
quadrant = (tmp_digit >> cnt);
quadrant = (sign) ? -quadrant : quadrant;
quadrant += (octant >> 1);
/* now subtract I*90 from x */
# define MSD_OF_NINETY (((UX_FRACTION_DIGIT_TYPE) 45) << \
(BITS_PER_UX_FRACTION_DIGIT_TYPE - 6))
UMULH(tmp_digit, MSD_OF_NINETY, tmp_digit);
tmp_digit = (current_digit >> 2) - tmp_digit;
current_digit = (current_digit & 3) | (4*tmp_digit);
if (((UX_SIGNED_FRACTION_DIGIT_TYPE) tmp_digit) < 0)
{
sign ^= UX_SIGN_BIT;
sum_digit = G_UX_LSD(argument);
tmp_digit = -sum_digit;
borrow = (sum_digit != 0);
P_UX_LSD(argument, tmp_digit);
# if ( NUM_UX_FRACTION_DIGITS == 4)
sum_digit = G_UX_FRACTION_DIGIT(argument, 2);
tmp_digit = - (sum_digit + borrow);
borrow = (sum_digit != 0) | borrow;
P_UX_FRACTION_DIGIT(argument, 2, tmp_digit);
sum_digit = G_UX_FRACTION_DIGIT(argument, 1);
tmp_digit = - (sum_digit + borrow);
borrow = (sum_digit != 0) | borrow;
P_UX_FRACTION_DIGIT(argument, 1, tmp_digit);
# endif
current_digit = - (current_digit + borrow);
}
P_UX_MSD(argument, current_digit);
NORMALIZE(argument);
/* Last by not least, convert to radians */
MULTIPLY(argument, UX_PI_OVER_180, reduced_argument);
UX_TOGGLE_SIGN(reduced_argument, sign);
return quadrant;
}
/*
** UX_SINCOS is the common evaluation routine for all of the sin/cos and
** sind/cosd entry points. UX_SINCOS invokes the appropriate reduction
** routine (radian or degrees) and then performs 1 or 2 polynomial evaluation
** on the reduced argument to get the result (or results, for sincos and
** sincosd)
*/
#define ODD_POLY_FLAGS SQUARE_TERM | ALTERNATE_SIGN | POST_MULTIPLY
#define EVEN_POLY_FLAGS SQUARE_TERM | ALTERNATE_SIGN
#define SIN_POLY_FLAGS NUMERATOR_FLAGS( ODD_POLY_FLAGS )
#define COS_POLY_FLAGS DENOMINATOR_FLAGS( EVEN_POLY_FLAGS )
WORD
UX_SINCOS(
UX_FLOAT * unpacked_argument,
WORD octant,
WORD function_code,
UX_FLOAT * unpacked_result)
{
WORD quadrant, poly_type;
UX_FLOAT reduced_argument;
U_WORD (* reduce)( UX_FLOAT *, WORD, UX_FLOAT *);
/* Get the quadrant bits and the reduced argument */
reduce = (function_code & DEGREE) ? UX_DEGREE_REDUCE : UX_RADIAN_REDUCE;
quadrant = reduce( unpacked_argument, octant, &reduced_argument );
function_code &= ~DEGREE;
/*
** Select the polynomial coefficients and the form of the
** polynomial based on the quadrant the reduced argument
** lies in. NOTE: the difference between the sin and cos
** has been accounted for in the value of octant.
*/
if ( SINCOS_FUNC == function_code )
{
poly_type = SIN_POLY_FLAGS | COS_POLY_FLAGS | NO_DIVIDE;
/* Adjust location of sin/cos polynomials */
poly_type |= ( (quadrant & 1) ? SWAP : NULL );
}
else if (quadrant & 1)
/* We need to evaluate C(x^2) */
poly_type = SKIP | COS_POLY_FLAGS;
else
/* We need to evaluate x*S(x^2) */
poly_type = SKIP | SIN_POLY_FLAGS;
/*
** Evaluate the polynomial and set the sign based on the quadrant
*/
EVALUATE_RATIONAL(
&reduced_argument,
SINCOS_COEF_ARRAY,
SINCOS_COEF_ARRAY_DEGREE,
poly_type,
unpacked_result);
if (quadrant & 2)
UX_TOGGLE_SIGN(&unpacked_result[0], UX_SIGN_BIT);
/*
** If this is a sincos entry point, set the sign on the second
** result
*/
if ((SINCOS_FUNC == function_code) && ((quadrant + 1) & 2))
UX_TOGGLE_SIGN(&unpacked_result[1], UX_SIGN_BIT);
return 0; /* No error conditions for sin/cos */
}
/*
** UX_TANCOT is the common evaluation routine fo tan, cot, tand and cotd.
** UX_TANCOT invokes the appropriate reduction routine (radian or degrees) and
** then computes tan or cot as the ratio of two polynomials
**
** An important difference between UX_TANCOT and UX_SINCOS is that for the
** tand/cotd routines, the reduced argument may be zero. Depending on the
** quadrant bits, the correct result would then be either 0 or +/- Inf. The
** common tan/cot evaluation routine detects the +/- Inf case and returns an
** unpacked result with its exponent field set to a large positive value,
** denoted by UX_INFINITY_EXPONENT.
*/
#if !defined(UX_TANCOT)
# define UX_TANCOT __INTERNAL_NAME(ux_tancot__)
#endif
static WORD
UX_TANCOT(
UX_FLOAT * unpacked_argument,
WORD octant,
WORD function_code,
UX_FLOAT * unpacked_result)
{
WORD quadrant, div_flag;
UX_FLOAT reduced_argument;
U_WORD (* reduce)(UX_FLOAT *, WORD, UX_FLOAT *);
/*
** Get the quadrant bits and the reduced argument, check for
** zero and process accordingly.
*/
reduce = (function_code & DEGREE) ? UX_DEGREE_REDUCE : UX_RADIAN_REDUCE;
quadrant = reduce( unpacked_argument, octant, &reduced_argument );
div_flag = ((quadrant + (function_code >> 3)) & 1) ? SWAP : 0;
if (0 == G_UX_MSD(&reduced_argument))
{ /* reduced argument is zero */
UX_SET_SIGN_EXP_MSD(unpacked_result, 0, UX_ZERO_EXPONENT, 0);
if ( div_flag /* == SWAP */ )
{
P_UX_EXPONENT(unpacked_result, UX_INFINITY_EXPONENT);
P_UX_MSD(unpacked_result, UX_MSB);
}
return (function_code & TAN_FUNC) ?
TAND_ODD_MULTIPLE_OF_90 : COTD_MULTIPLE_OF_180;
}
/*
** Evaluate z*P(z^2) and and Q(z^2) and perform the appropriate
** division. Set the sign bit according to the quadrant.
*/
EVALUATE_RATIONAL(
&reduced_argument,
TANCOT_COEF_ARRAY,
TANCOT_COEF_ARRAY_DEGREE,
NUMERATOR_FLAGS( SQUARE_TERM | ALTERNATE_SIGN | POST_MULTIPLY) |
DENOMINATOR_FLAGS( SQUARE_TERM | ALTERNATE_SIGN) | div_flag,
unpacked_result);
if (quadrant & 1)
UX_TOGGLE_SIGN(unpacked_result, UX_SIGN_BIT);
return G_UX_SIGN(unpacked_result) ? COTD_NEG_OVERFLOW : COTD_POS_OVERFLOW;
}
/*
** Each of the of trig routines call a common routine C_UX_TRIG, to unpack the
** input argument and then dispatch the result to UX_SINCOS or UX_TANCOT
** evaluation routine. For sincos and sincosd entry points, if the return
** value is written by the unpack routine, the common routine must take care
** to write the second result.
*/
#if !defined(C_UX_TRIG)
# define C_UX_TRIG __INTERNAL_NAME(C_ux_trig__)
#endif
#define F_C_NAN_OR_INF_MASK (SET_BIT(F_C_INF) | SET_BIT(F_C_NAN))
static void
C_UX_TRIG(
_X_FLOAT * packed_argument,
WORD octant,
WORD function_code,
U_WORD const * class_to_action_map,
WORD underflow_error,
_X_FLOAT * packed_result
OPT_EXCEPTION_INFO_DECLARATION )
{
_X_FLOAT *second_value;
WORD fp_class, overflow_error;
UX_FLOAT unpacked_result[3], unpacked_argument;
WORD (* trig_eval)( UX_FLOAT *, WORD, WORD, UX_FLOAT *);
trig_eval = (SINCOS_FUNC & function_code) ? UX_SINCOS : UX_TANCOT;
fp_class = UNPACK(
packed_argument,
&unpacked_argument,
class_to_action_map,
packed_result
OPT_EXCEPTION_INFO_ARGUMENT );
if (0 > fp_class)
{ /* If this is a SINCOS evaluation, write second result */
if (SINCOS_FUNC == (function_code & ~DEGREE))
{
second_value =
((1 << F_C_BASE_CLASS(fp_class)) & F_C_NAN_OR_INF_MASK) ?
&packed_result[0] : (_X_FLOAT *) _X_ONE;
_X_COPY(second_value, &packed_result[1]);
}
return;
}
overflow_error = trig_eval(
&unpacked_argument,
octant,
function_code,
unpacked_result);
PACK(
unpacked_result,
packed_result,
underflow_error,
overflow_error
OPT_EXCEPTION_INFO_ARGUMENT );
if (SINCOS_FUNC == (function_code & ~DEGREE))
{ /* pack second result for sincos evaluations */
PACK(
unpacked_result + 1,
packed_result + 1,
NOT_USED,
NOT_USED
OPT_EXCEPTION_INFO_ARGUMENT );
}
}
/*
** The following 6 entry points implement the user level x-float sin/cos and
** sind/cosd functions
*/
#define TRIG_ENTRY(oct, code, map, under) \
X_X_PROTO(F_ENTRY_NAME, packed_result, packed_argument) \
{ \
EXCEPTION_INFO_DECL \
DECLARE_X_FLOAT(packed_result) \
\
INIT_EXCEPTION_INFO; \
C_UX_TRIG( \
PASS_ARG_X_FLOAT(packed_argument), \
oct, code, map, under, \
PASS_RET_X_FLOAT(packed_result) \
OPT_EXCEPTION_INFO); \
RETURN_X_FLOAT(packed_result); \
}
#
#define TRIG_ENTRY_RR(oct, code, map, under) \
RR_X_PROTO(F_ENTRY_NAME, packed_result1, packed_result2, packed_argument) \
{ \
EXCEPTION_INFO_DECL \
_X_FLOAT packed_result[2]; \
\
INIT_EXCEPTION_INFO; \
C_UX_TRIG( \
PASS_ARG_X_FLOAT(packed_argument), \
oct, code, map, under, \
packed_result /*PASS_RET_X_FLOAT(packed_result)*/ \
OPT_EXCEPTION_INFO); \
*packed_result1 = packed_result[0]; \
*packed_result2 = packed_result[1]; \
}
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_SIN_NAME
TRIG_ENTRY(0, SIN_FUNC, SIN_CLASS_TO_ACTION_MAP, NOT_USED)
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_COS_NAME
TRIG_ENTRY(2, COS_FUNC, COS_CLASS_TO_ACTION_MAP, NOT_USED)
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_SINCOS_NAME
TRIG_ENTRY_RR(0, SINCOS_FUNC, SINCOS_CLASS_TO_ACTION_MAP, NOT_USED)
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_SIND_NAME
TRIG_ENTRY(0, SIND_FUNC, SIND_CLASS_TO_ACTION_MAP, SIND_UNDERFLOW)
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_COSD_NAME
TRIG_ENTRY(2, COSD_FUNC, COSD_CLASS_TO_ACTION_MAP, NOT_USED)
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_SINCOSD_NAME
TRIG_ENTRY_RR(0, SINCOSD_FUNC, SINCOSD_CLASS_TO_ACTION_MAP, SIND_UNDERFLOW)
/*
** The following 4 entry points implement the user level x-float tan/cot and
** tand/cotd functions
*/
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_TAN_NAME
TRIG_ENTRY(0, TAN_FUNC, TAN_CLASS_TO_ACTION_MAP, NOT_USED)
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_COT_NAME
TRIG_ENTRY(0, COT_FUNC, COT_CLASS_TO_ACTION_MAP, NOT_USED)
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_TAND_NAME
TRIG_ENTRY(0, TAND_FUNC, TAND_CLASS_TO_ACTION_MAP, TAND_UNDERFLOW)
#undef F_ENTRY_NAME
#define F_ENTRY_NAME F_COTD_NAME
TRIG_ENTRY(0, COTD_FUNC, COTD_CLASS_TO_ACTION_MAP, NOT_USED)
#if defined(MAKE_INCLUDE)
@divert -append divertText
precision = ceil(UX_PRECISION/8) + 4;
# undef TABLE_NAME
START_TABLE;
TABLE_COMMENT("sin class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "SIN_CLASS_TO_ACTION_MAP\t");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(6) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
TABLE_COMMENT("cos class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "COS_CLASS_TO_ACTION_MAP\t");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(5) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_ERROR, 3) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 3) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 1) );
TABLE_COMMENT("sincos class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "SINCOS_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(4) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_ERROR, 4) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 4) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
TABLE_COMMENT("sind class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "SIND_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(3) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_ERROR, 5) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 5) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
TABLE_COMMENT("cosd class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "COSD_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(2) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_ERROR, 6) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 6) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 1) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 1) );
TABLE_COMMENT("sincosd class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "SINCOSD_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_ERROR, 7) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 7) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
TABLE_COMMENT("Data for the above mappings");
PRINT_U_TBL_ITEM( /* data 1 */ ONE);
PRINT_U_TBL_ITEM( /* data 2 */ SIN_OF_INFINITY);
PRINT_U_TBL_ITEM( /* data 3 */ COS_OF_INFINITY);
PRINT_U_TBL_ITEM( /* data 4 */ SINCOS_OF_INFINITY);
PRINT_U_TBL_ITEM( /* data 5 */ SIND_OF_INFINITY);
PRINT_U_TBL_ITEM( /* data 6 */ COSD_OF_INFINITY);
PRINT_U_TBL_ITEM( /* data 7 */ SINCOSD_OF_INFINITY);
TABLE_COMMENT("tan class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "TAN_CLASS_TO_ACTION_MAP\t");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_ERROR, 1) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 1) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
PRINT_U_TBL_ITEM( /* data 1 */ TAN_OF_INFINITY);
TABLE_COMMENT("tand class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "TAND_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_ERROR, 1) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 1) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_VALUE, 0) );
PRINT_U_TBL_ITEM( /* data 1 */ TAND_OF_INFINITY);
TABLE_COMMENT("cot class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "COT_CLASS_TO_ACTION_MAP\t");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_ERROR, 1) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 1) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_UNPACKED, 0) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_ERROR, 3) );
PRINT_U_TBL_ITEM( /* data 1 */ COT_OF_INFINITY);
PRINT_U_TBL_ITEM( /* data 2 */ COT_OF_ZERO);
PRINT_U_TBL_ITEM( /* data 3 */ COT_OF_NEG_ZERO);
TABLE_COMMENT("cotd class-to-action-mapping");
PRINT_CLASS_TO_ACTION_TBL_DEF( "COTD_CLASS_TO_ACTION_MAP");
PRINT_64_TBL_ITEM( CLASS_TO_ACTION_DISP(1) +
CLASS_TO_ACTION( F_C_SIG_NAN, RETURN_QUIET_NAN, 0) +
CLASS_TO_ACTION( F_C_QUIET_NAN, RETURN_VALUE, 0) +
CLASS_TO_ACTION( F_C_POS_INF, RETURN_ERROR, 1) +
CLASS_TO_ACTION( F_C_NEG_INF, RETURN_ERROR, 1) +
CLASS_TO_ACTION( F_C_POS_DENORM, RETURN_ERROR, 2) +
CLASS_TO_ACTION( F_C_NEG_DENORM, RETURN_ERROR, 3) +
CLASS_TO_ACTION( F_C_POS_ZERO, RETURN_ERROR, 4) +
CLASS_TO_ACTION( F_C_NEG_ZERO , RETURN_ERROR, 5) );
PRINT_U_TBL_ITEM( /* data 1 */ COTD_OF_INFINITY);
PRINT_U_TBL_ITEM( /* data 2 */ COTD_POS_OVERFLOW);
PRINT_U_TBL_ITEM( /* data 3 */ COTD_NEG_OVERFLOW);
PRINT_U_TBL_ITEM( /* data 4 */ COTD_OF_ZERO);
PRINT_U_TBL_ITEM( /* data 5 */ COTD_OF_NEG_ZERO);
TABLE_COMMENT("Unpacked constants pi/180");
PRINT_UX_TBL_ADEF_ITEM( "UX_PI_OVER_180\t\t", pi/180);
TABLE_COMMENT("Packed constants 1");
PRINT_F_TBL_ADEF_ITEM( "_X_ONE\t\t\t", 1);
/*
** Now we compute the "high" digit of 1/90 and 1/12. For 1/12, we would
** to compute and integer R, such that trunc(E/12) = UMULH(R*E). We
** state without proof here that if the number of bits per digit is
** 2*k + d, where d = 0 or 1, then N = 2^(2*k+d) + 2^(3-d) is divisible
** by 12 and taking R = N/12 gives the appropriate result.
*/
PRINT_UX_FRACTION_DIGIT_TBL_VDEF_ITEM( "MSD_OF_RECIP_90\t\t",
nint(bldexp(1/90, BITS_PER_UX_FRACTION_DIGIT_TYPE + 5)));
PRINT_UX_FRACTION_DIGIT_TBL_VDEF_ITEM( "RECIP_TWELVE\t\t",
ceil(bldexp(1/12, BITS_PER_UX_FRACTION_DIGIT_TYPE)));
/*
** Now generate coefficients for computing sin.
*/
function __sin(x)
{
if (x == 0)
return 1;
else
return sin(x)/x;
}
save_precision = precision;
precision = ceil(UX_PRECISION/8) + 8;
max_arg = pi/4;
remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
0, max_arg, __sin, UX_PRECISION, &sin_degree, &ux_rational_coefs);
/*
** Now generate coefficients for computing cos and add them to the
** ux_rational coefficient array so that they can be accessed by the
** rational evaluation routine.
*/
function __cos(x) { return cos(x); }
remes(REMES_FIND_POLYNOMIAL + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
0, max_arg, __cos, UX_PRECISION, &cos_degree, &dummy_coefs);
precision = save_precision;
k = sin_degree + 1;
for (i = 0; i <= cos_degree; i++)
ux_rational_coefs[k++] = dummy_coefs[i];
TABLE_COMMENT("Fixed point coefficients for sin and cos evaluation");
PRINT_FIXED_128_TBL_ADEF("SINCOS_COEF_ARRAY\t");
degree = print_ux_rational_coefs(sin_degree, cos_degree, 0);
PRINT_WORD_DEF("SINCOS_COEF_ARRAY_DEGREE", degree );
/*
** Last but not least, get the rational coefficients for tan/cot
*/
function __tan(x)
{
if (x == 0)
return 1;
else
return tan(x)/x;
}
save_precision = precision;
precision = ceil(UX_PRECISION/8) + 8;
max_arg = pi/4;
remes(REMES_FIND_RATIONAL + REMES_RELATIVE_WEIGHT + REMES_SQUARE_ARG,
0, max_arg, __tan, UX_PRECISION, &num_degree, &den_degree,
&ux_rational_coefs);
precision = save_precision;
TABLE_COMMENT("Fixed point coefficients for tan and cot evaluation");
PRINT_FIXED_128_TBL_ADEF("TANCOT_COEF_ARRAY\t");
degree = print_ux_rational_coefs(num_degree, den_degree, 0);
PRINT_WORD_DEF("TANCOT_COEF_ARRAY_DEGREE", degree );
TABLE_COMMENT("Unpacked value of pi/4");
PRINT_UX_TBL_ADEF_ITEM( "UX_PI_OVER_FOUR", pi/4);
END_TABLE;
@end_divert
@eval my $tableText; \
my $outText = MphocEval( GetStream( "divertText" ) ); \
my $defineText = Egrep( "#define", $outText, \$tableText ); \
$outText = "$tableText\n\n$defineText"; \
my $headerText = GetHeaderText( STR(BUILD_FILE_NAME), \
"Definitions and constants trigonometric " . \
"routines", __FILE__ ); \
print "$headerText\n\n$outText\n";
#endif
|