File: ix86_macros.h

package info (click to toggle)
intelrdfpmath 2.0u3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,088 kB
  • sloc: ansic: 310,558; makefile: 446; sh: 3
file content (541 lines) | stat: -rw-r--r-- 19,229 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
/******************************************************************************
  Copyright (c) 2007-2024, Intel Corp.
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of Intel Corporation nor the names of its contributors
      may be used to endorse or promote products derived from this software
      without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/

#include <float.h>


#if (BITS_PER_WORD != 64)
#   define EXT_MULH_32(i,j,hi) EXT_MULH((i),(j),(hi))
#else
#   define EXT_MULH_32(i,j,hi) (hi) =  (INT_32) ((((WORD) (i)) * ((WORD) (j))) >> 32)
#endif

#define ARITH_SHIFT_WORD_RIGHT(i,j) (i) = (WORD)(i) >> (j);



#if (COMPILER == msc_cc)
#  if BITS_PER_WORD == 32

#    define EXT_UMUL(i,j,lo,hi) { \
	int tmp_i = (i); \
	int tmp_j = (j); \
	int tmp_lo, tmp_hi; \
	{ \
		__asm mov eax, tmp_i \
		__asm mul tmp_j \
		__asm mov tmp_lo, eax \
		__asm mov tmp_hi, edx \
	} \
	(lo) = tmp_lo; \
	(hi) = tmp_hi; \
}


#    define EXT_UMULH(i,j,hi) { \
	int tmp_i = (i); \
	int tmp_j = (j); \
	int tmp_hi; \
	{ \
		__asm mov eax, tmp_i \
		__asm mul tmp_j \
		__asm mov tmp_hi, edx \
	} \
	(hi) = tmp_hi; \
}


#    define EXT_MULH(i,j,hi) { \
	int tmp_i = (i); \
	int tmp_j = (j); \
	int tmp_hi; \
	{ \
		__asm mov eax, tmp_i \
		__asm imul tmp_j \
		__asm mov tmp_hi, edx \
	} \
	(hi) = tmp_hi; \
}


#    define F_RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT (BITS_PER_WORD - 1)
#    define F_RINT_TO_FLOATING_AND_WORD(x, flt_int_x, int_x) { \
	{ \
		__asm fld x \
		__asm frndint \
		__asm fstp flt_int_x \
	} \
	int_x = (WORD)flt_int_x; \
}

#    define B_RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT (BITS_PER_WORD - 1)
#    define B_RINT_TO_FLOATING_AND_WORD(x, flt_int_x, int_x) \
	F_RINT_TO_FLOATING_AND_WORD(x, flt_int_x, int_x) 

#endif

#define FPU_STATUS_WORD_TYPE unsigned short


#if (USE_CONTROL87)

#define INIT_FPU_STATE_AND_ROUND_TO_NEAREST(status_word) { \
	status_word = _control87(0,0); \
	_control87(MCW_RC, _RC_NEAR); \
}

#define INIT_FPU_STATE_AND_ROUND_TO_ZERO(status_word) { \
	status_word = _control87(0,0); \
	_control87(RC_CHOP, MCW_RC); \
}

#define RESTORE_FPU_STATE(status_word) { \
	_control87((INT_16)status_word, 0xffff); \
}

#else

#define INIT_FPU_STATE_AND_ROUND_TO_NEAREST(status_word) { \
	FPU_STATUS_WORD_TYPE tmp = 0x037f; \
	{ \
		__asm fstcw status_word \
		__asm fldcw tmp \
	} \
}

#define INIT_FPU_STATE_AND_ROUND_TO_ZERO(status_word) { \
	FPU_STATUS_WORD_TYPE tmp = 0x0f7f; \
	{ \
		__asm fstcw status_word \
		__asm fldcw tmp \
	} \
}

#define RESTORE_FPU_STATE(status_word) { \
	FPU_STATUS_WORD_TYPE tmp = (FPU_STATUS_WORD_TYPE)(status_word); \
	{ \
		__asm fldcw tmp \
	} \
}

#endif



/* The following several macros are intended to be used as a set.  It is
the combination of F_SAVE_SIGN_AND_GET_ABS and F_RESTORE_SIGN (or
F_NEGATE_IF_SIGN_NEG) that should be efficient (i.e. if slowing one of them
down will make the combination faster, go ahead and do it.  */

#ifndef F_SIGN_TYPE

#	define F_SIGN_TYPE U_WORD

#	define F_SAVE_SIGN_AND_GET_ABS(x, sign, abs_x) { \
		F_UNION u; \
		u.f = (x); \
		F_ABS((x), (abs_x)); \
		(sign) = u.F_HI_WORD; \
	}

#	define F_CHANGE_SIGN(sign) \
		(sign) = ~(sign)

#	define F_RESTORE_SIGN(sign, x) \
		ASSERT((x) >= 0.0); \
		if ((WORD)sign < 0) F_NEGATE(x);

#	define F_NEGATE_IF_SIGN_NEG(sign, x) \
		if ((WORD)sign < 0) F_NEGATE(x);

#endif



#elif (COMPILER == gnu_cc)



#define __ABS(x,abs_x) { \
	abs_x = x; \
	__asm__ __volatile__ ("fabs" :"=t" (abs_x) : "0" (abs_x)); \
}

#define __CLEAR_NEG_BIT(x) { \
	__asm__ __volatile__ ("fabs" :"=t" (x) : "0" (x)); \
}

#define __NEGATE(x) { \
	__asm__ __volatile__ ("fchs" :"=t" (x) : "0" (x)); \
}

#define __SET_NEG_BIT(x) { \
	__asm__ __volatile__ ("fabs" :"=t" (x) : "0" (x)); \
	__asm__ __volatile__ ("fchs" :"=t" (x) : "0" (x)); \
}

#define __RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT (BITS_PER_WORD - 1)
#define __RINT_TO_FLOATING_AND_WORD(x, f_int_x, int_x) { \
	f_int_x = x; \
	__asm__ __volatile__ ("frndint" :"=t" (f_int_x) : "0" (f_int_x)); \
	int_x = (WORD) f_int_x;  \
}


#define F_ABS(x,abs_x) __ABS(x,abs_x)
#define F_CLEAR_NEG_BIT(x) __CLEAR_NEG_BIT(x)
#define F_NEGATE(x) __NEGATE(x)
#define F_SET_NEG_BIT(x) __SET_NEG_BIT(x)

#define F_RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT \
	__RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT
#define F_RINT_TO_FLOATING_AND_WORD(x, flt_int_x, int_x) \
	__RINT_TO_FLOATING_AND_WORD((x), (flt_int_x), (int_x))

#if (F_FORMAT == s_floating)

#define B_ABS(x,abs_x) __ABS(x,abs_x)
#define B_CLEAR_NEG_BIT(x) __CLEAR_NEG_BIT(x)
#define B_NEGATE(x) __NEGATE(x)
#define B_SET_NEG_BIT(x) __SET_NEG_BIT(x)

#define B_RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT \
	__RINT_TO_FLOATING_AND_WORD_PRECISION_LIMIT
#define B_RINT_TO_FLOATING_AND_WORD(x, flt_int_x, int_x) \
	__RINT_TO_FLOATING_AND_WORD((x), (flt_int_x), (int_x))

#endif  /* F_FORMAT */


#define INIT_FPU_STATE_AND_ROUND_TO_NEAREST(status_word) { \
	volatile unsigned short tmp; \
	__asm__ volatile ("fstcw %0" : "=m" (tmp) : ); \
	status_word = tmp; \
	tmp &= 0xf2ff; \
	__asm__ volatile ("fldcw %0" : : "m" (tmp)); \
}

#define INIT_FPU_STATE_AND_ROUND_TO_ZERO(status_word) { \
	volatile unsigned short tmp; \
	__asm__ volatile ("fstcw %0" : "=m" (tmp) : ); \
	status_word = tmp; \
	tmp &= 0xf2ff; \
	tmp |= 0x0c00; \
	__asm__ volatile ("fldcw %0" : : "m" (tmp)); \
}

#define RESTORE_FPU_STATE(status_word) { \
	volatile unsigned short tmp = status_word; \
	__asm__ volatile ("fldcw %0" : : "m" (tmp)); \
}


/* The following several macros are intended to be used as a set.  It is
the combination of F_SAVE_SIGN_AND_GET_ABS and F_RESTORE_SIGN (or
F_NEGATE_IF_SIGN_NEG) that should be efficient (i.e. if slowing one of them
down will make the combination faster, go ahead and do it.  */

#ifndef F_SIGN_TYPE

#    define	F_SIGN_TYPE F_TYPE

#    define	F_SAVE_SIGN_AND_GET_ABS(x, sign, abs_x) \
		(sign) = x; \
		F_ABS((x), (abs_x))

#    define	F_CHANGE_SIGN(sign) \
		F_NEGATE(sign)

#    define	F_RESTORE_SIGN(sign, x) \
		ASSERT((x) >= 0.0); \
		if ((sign) < 0.0) F_NEGATE(x)

#    define	F_NEGATE_IF_SIGN_NEG(sign, x) \
		if ((sign) < 0.0) F_NEGATE(x)

#endif



#endif  /* COMPILER */




#define F_ADD_ROUNDED(x,y,z) \
{   volatile F_TYPE vv; \
    vv = (F_TYPE) (x) + (y); \
    z = vv; }

#define B_ADD_ROUNDED(x,y,z) \
{   volatile B_TYPE vv; \
    vv = (B_TYPE) (x) + (y); \
    z = vv; }

#define F_ADD_CHOPPED(x,y,z) \
{   volatile F_TYPE vv; \
    vv = (F_TYPE) (x) + (y); \
    z = vv; }

#define B_ADD_CHOPPED(x,y,z) \
{   volatile B_TYPE vv; \
    vv = (B_TYPE) (x) + (y); \
    z = vv; }

#define F_MUL_CHOPPED(x,y,z) \
{   volatile F_TYPE vv; \
    vv = (F_TYPE) (x) * (y); \
    z = vv; }

#define ADD_SUB_BIG(z, big) \
{ volatile F_TYPE vv; \
    vv = z + big; \
    z = vv - big; }

#define ADD_SUB_BIG_CHOPPED(z, big) \
{ volatile F_TYPE vv; \
    ADD(z, big, vv); \
    z = vv - big; }

#define SHORTEN_VIA_CASTS(in, out) \
{ volatile S_TYPE vv; \
    vv = (S_TYPE) in; \
    out = (D_TYPE) vv; }


#define ASSIGN_WITH_F_TYPE_PRECISION(y, truncated_y) \
{ volatile F_TYPE vv; \
    vv = (F_TYPE) y; \
    truncated_y = vv; }

#define CHOP_TO_S_TYPE(y, truncated_y) \
{ volatile F_TYPE vv; \
    vv = (F_TYPE) y; \
    truncated_y = vv; }





/*  The macro X_SQR_TO_HI_LO is used to produce high and low parts of x^2;  */
/*  see the comments in DPML_ERF.C for details.  The macros are defined	    */
/*  here specifically for the Intel platform to avoid a problem with the    */
/*  CL386 compiler.  Given the sequence					    */
/*									    */
/*		a = ( B_TYPE ) ( ( F_TYPE ) b )				    */
/*									    */
/*  where a and b are of type B_TYPE, the compiler simple moves b into a    */
/*  rather than first shortening it and then lengthening it.  These macros  */
/*  have been hand-crafted to work around this problem.			    */

#if PRECISION_BACKUP_AVAILABLE
#   define X_SQR_TO_HI_LO(x, t, hi, lo) { \
	volatile B_TYPE tv ; \
	volatile F_TYPE hiv, lov ; \
	tv = ( B_TYPE ) x ; \
	tv = tv * tv ; \
	hiv = ( F_TYPE ) tv ; \
	lov = ( F_TYPE ) ( tv - ( B_TYPE ) hiv ) ; \
	t = tv ; \
	hi = hiv ; \
	lo = lov ; \
	}
#else
#   define X_SQR_TO_HI_LO(x, t, hi, lo) { \
	volatile F_TYPE hiv, lov ; \
	volatile R_TYPE xv ; \
	xv = ( R_TYPE ) x ; \
	hiv = ( F_TYPE ) xv ; \
	lov = x - hiv ; \
	lov = lov * ( hiv + x ) ; \
	hiv = hiv * hiv ; \
	hi = hiv ; \
	lo = lov ; \
	}
#endif





/*  The following macros support extended precision multiplication of a	    */
/*  sequence of unsigned WORDs.  The basic operation is an extended integer */
/*  multiply and add with four inputs and three results.  The inputs are an */
/*  addend, in high and low parts (w_hi, w_lo), the carry in from a	    */
/*  previous operation, c_in, and the multiplier and multiplicand F and g.  */
/*  The three outputs are the carry out, c_out, and the high and low digits */
/*  of the sum, z_hi and z_lo.  The basic operation is			    */
/*									    */
/*	F * g + w_lo + w_hi * BITS_PER_WORD + c_in ->			    */
/*		    z_lo + z_hi * BITS_PER_WORD + c_out * BITS_PER_WORD^2   */
/*									    */
/*  There are six different macros:  one for the basic operation and five   */
/*  special cases (e.g. to ignore the carry out or when the carry in is	    */
/*  zero).								    */
/*									    */

#define BITS_PER_DIGIT       64

#define __LO(x)	((x) & MAKE_MASK( BITS_PER_DIGIT / 2, 0 ))
#define __HI(x)	(((x)) >> ( BITS_PER_DIGIT / 2 ))


#define UMULH(i, j, k) {						\
	U_INT_64 _ii, _iLo, _iHi, _jj, _jLo, _jHi, _p0, _p1, _p2; 	\
        _ii = i; _iLo = __LO(_ii); _iHi = __HI(_ii);			\
        _jj = j; _jLo = __LO(_jj); _jHi = __HI(_jj);			\
	_p0  = _iLo * _jLo;						\
	_p1  = (_iLo * _jHi);						\
	_p2  = (_iHi * _jLo) + __HI(_p0) + __LO(_p1);			\
        k   = (_iHi * _jHi) + __HI(_p1) + __HI(_p2);			\
	}


/*  a * b + add_low -> low						    */
#define MUL_ADD( a, b, add_low, low ) { \
    ( low ) = ( a ) * ( b ) + ( add_low ) ; \
    }

/*  a * b -> low + high * 2^BITS_PER_WORD				    */
#define XMUL( a, b, high, low ) { \
    U_WORD p0, p1, p2, p3, s ; \
    p0 = ( ( a ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) * ( ( b ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    p1 = ( ( a ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) * ( ( b ) >> ( BITS_PER_DIGIT / 2 ) ) ; \
    p2 = ( ( a ) >> ( BITS_PER_DIGIT / 2 ) ) * ( ( b ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    p3 = ( ( a ) >> ( BITS_PER_DIGIT / 2 ) ) * ( ( b ) >> ( BITS_PER_DIGIT / 2 ) ) ; \
    s = ( p0 >> ( BITS_PER_DIGIT / 2 ) ) + ( p1 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + \
	( p2 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    ( low ) = ( p0 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( s << ( BITS_PER_DIGIT / 2 ) ) ; \
    ( high ) = ( p1 >> ( BITS_PER_DIGIT / 2 ) ) + ( p2 >> ( BITS_PER_DIGIT / 2 ) ) + p3 + \
	( s >> ( BITS_PER_DIGIT / 2 ) ) ; \
    }

/*  a * b + add_low + add_high * 2^BITS_PER_WORD -> low +		    */
/*						    high * 2^BITS_PER_WORD  */
#define XMUL_ADD( a, b, add_low, high, low ) { \
    U_WORD p0, p1, p2, p3, s, t ; \
    p0 = ( ( a ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) * ( ( b ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    p1 = ( ( a ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) * ( ( b ) >> ( BITS_PER_DIGIT / 2 ) ) ; \
    p2 = ( ( a ) >> ( BITS_PER_DIGIT / 2 ) ) * ( ( b ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    p3 = ( ( a ) >> ( BITS_PER_DIGIT / 2 ) ) * ( ( b ) >> ( BITS_PER_DIGIT / 2 ) ) ; \
    s = ( p0 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( ( add_low ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    t = ( p0 >> ( BITS_PER_DIGIT / 2 ) ) + ( p1 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + \
        ( p2 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( ( add_low ) >> ( BITS_PER_DIGIT / 2 ) ) + \
	( s >> ( BITS_PER_DIGIT / 2 ) ) ; \
    ( low ) = ( s & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( t << ( BITS_PER_DIGIT / 2 ) ) ; \
    ( high ) = ( p1 >> ( BITS_PER_DIGIT / 2 ) ) + ( p2 >> ( BITS_PER_DIGIT / 2 ) ) + p3 + \
	( t >> ( BITS_PER_DIGIT / 2 ) ) ; \
    }
    
/*  a * b + add_low + add_high * 2^BITS_PER_WORD -> low +		    */
/*						    high * 2^BITS_PER_WORD  */
#define XMUL_XADD( a, b, add_high, add_low, high, low ) { \
    U_WORD p0, p1, p2, p3, s, t ; \
    p0 = ( ( a ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) * ( ( b ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    p1 = ( ( a ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) * ( ( b ) >> ( BITS_PER_DIGIT / 2 ) ) ; \
    p2 = ( ( a ) >> ( BITS_PER_DIGIT / 2 ) ) * ( ( b ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    p3 = ( ( a ) >> ( BITS_PER_DIGIT / 2 ) ) * ( ( b ) >> ( BITS_PER_DIGIT / 2 ) ) ; \
    s = ( p0 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( ( add_low ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    t = ( p0 >> ( BITS_PER_DIGIT / 2 ) ) + ( p1 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + \
        ( p2 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( ( add_low ) >> ( BITS_PER_DIGIT / 2 ) ) + \
	( s >> ( BITS_PER_DIGIT / 2 ) ) ; \
    ( low ) = ( s & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( t << ( BITS_PER_DIGIT / 2 ) ) ; \
    ( high ) = ( p1 >> ( BITS_PER_DIGIT / 2 ) ) + ( p2 >> ( BITS_PER_DIGIT / 2 ) ) + p3 + ( add_high ) + \
	( t >> ( BITS_PER_DIGIT / 2 ) ) ; \
    }

/*  a * b + add_low + add_high * 2^BITS_PER_WORD ->			    */
/*					low +				    */
/*					high * 2^BITS_PER_WORD +	    */
/*					carry_out * 2^(2 * BITS_PER_WORD)   */
#define XMUL_XADDC( a, b, add_high, add_low, carry_out, high, low ) { \
    U_WORD p0, p1, p2, p3, s, t, u, v ; \
    p0 = ( ( a ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) * ( ( b ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    p1 = ( ( a ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) * ( ( b ) >> ( BITS_PER_DIGIT / 2 ) ) ; \
    p2 = ( ( a ) >> ( BITS_PER_DIGIT / 2 ) ) * ( ( b ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    p3 = ( ( a ) >> ( BITS_PER_DIGIT / 2 ) ) * ( ( b ) >> ( BITS_PER_DIGIT / 2 ) ) ; \
    s = ( p0 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( ( add_low ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    t = ( p0 >> ( BITS_PER_DIGIT / 2 ) ) + ( p1 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + \
        ( p2 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( ( add_low ) >> ( BITS_PER_DIGIT / 2 ) ) + \
	( s >> ( BITS_PER_DIGIT / 2 ) ) ; \
    u = ( p1 >> ( BITS_PER_DIGIT / 2 ) ) + ( p2 >> ( BITS_PER_DIGIT / 2 ) ) + \
	( p3 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( ( add_high ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + \
	( t >> ( BITS_PER_DIGIT / 2 ) ) ; \
    v = ( p3 >> ( BITS_PER_DIGIT / 2 ) ) + ( ( add_high ) >> ( BITS_PER_DIGIT / 2 ) ) + \
	( u >> ( BITS_PER_DIGIT / 2 ) ) ; \
    ( low ) = ( s & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( t << ( BITS_PER_DIGIT / 2 ) ) ; \
    ( high ) = ( u & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( v << ( BITS_PER_DIGIT / 2 ) ) ; \
    ( carry_out ) = v >> ( BITS_PER_DIGIT / 2 ) ; \
    }

/*  a * b + add_low + add_high * 2^BITS_PER_WORD + carry_in ->		    */
/*						    low +		    */
/*						    high * 2^BITS_PER_WORD  */
#define XMUL_XADD_W_C_IN( a, b, add_high, add_low, carry_in, high, low ) { \
    U_WORD p0, p1, p2, p3, s, t ; \
    p0 = ( ( a ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) * ( ( b ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    p1 = ( ( a ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) * ( ( b ) >> ( BITS_PER_DIGIT / 2 ) ) ; \
    p2 = ( ( a ) >> ( BITS_PER_DIGIT / 2 ) ) * ( ( b ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    p3 = ( ( a ) >> ( BITS_PER_DIGIT / 2 ) ) * ( ( b ) >> ( BITS_PER_DIGIT / 2 ) ) ; \
    s = ( p0 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( ( add_low ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + \
	( ( carry_in ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    t = ( p0 >> ( BITS_PER_DIGIT / 2 ) ) + ( p1 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + \
        ( p2 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( ( add_low ) >> ( BITS_PER_DIGIT / 2 ) ) + \
	( ( carry_in ) >> ( BITS_PER_DIGIT / 2 ) ) + ( s >> ( BITS_PER_DIGIT / 2 ) ) ; \
    ( low ) = ( s & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( t << ( BITS_PER_DIGIT / 2 ) ) ; \
    ( high ) = ( p1 >> ( BITS_PER_DIGIT / 2 ) ) + ( p2 >> ( BITS_PER_DIGIT / 2 ) ) + p3 + ( add_high ) + \
	( t >> ( BITS_PER_DIGIT / 2 ) ) ; \
    }

/*  a * b + add_low + add_high * 2^BITS_PER_WORD + carry_in ->		    */
/*					low +				    */
/*					high * 2^BITS_PER_WORD +	    */
/*					carry_out * 2^(2 * BITS_PER_WORD)   */
#define XMUL_XADDC_W_C_IN( a, b, add_high, add_low, carry_in, carry_out, high, low ) { \
    U_WORD p0, p1, p2, p3, s, t, u, v ; \
    p0 = ( ( a ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) * ( ( b ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    p1 = ( ( a ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) * ( ( b ) >> ( BITS_PER_DIGIT / 2 ) ) ; \
    p2 = ( ( a ) >> ( BITS_PER_DIGIT / 2 ) ) * ( ( b ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    p3 = ( ( a ) >> ( BITS_PER_DIGIT / 2 ) ) * ( ( b ) >> ( BITS_PER_DIGIT / 2 ) ) ; \
    s = ( p0 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( ( add_low ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + \
	( ( carry_in ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) ; \
    t = ( p0 >> ( BITS_PER_DIGIT / 2 ) ) + ( p1 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + \
        ( p2 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( ( add_low ) >> ( BITS_PER_DIGIT / 2 ) ) + \
	( ( carry_in ) >> ( BITS_PER_DIGIT / 2 ) ) + ( s >> ( BITS_PER_DIGIT / 2 ) ) ; \
    u = ( p1 >> ( BITS_PER_DIGIT / 2 ) ) + ( p2 >> ( BITS_PER_DIGIT / 2 ) ) + \
	( p3 & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( ( add_high ) & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + \
	( t >> ( BITS_PER_DIGIT / 2 ) ) ; \
    v = ( p3 >> ( BITS_PER_DIGIT / 2 ) ) + ( ( add_high ) >> ( BITS_PER_DIGIT / 2 ) ) + \
	( u >> ( BITS_PER_DIGIT / 2 ) ) ; \
    ( low ) = ( s & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( t << ( BITS_PER_DIGIT / 2 ) ) ; \
    ( high ) = ( u & MAKE_MASK ( BITS_PER_DIGIT / 2, 0 ) ) + ( v << ( BITS_PER_DIGIT / 2 ) ) ; \
    ( carry_out )= v >> ( BITS_PER_DIGIT / 2 ) ; \
    }