File: README.md

package info (click to toggle)
interface99 1.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 324 kB
  • sloc: ansic: 951; sh: 48; makefile: 6
file content (884 lines) | stat: -rw-r--r-- 31,525 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
<div align="center">
<h1>Interface99</h1>
<a href="https://github.com/hirrolot/interface99/actions">
<img src="https://github.com/hirrolot/interface99/workflows/C/C++%20CI/badge.svg">
</a>

Full-featured interfaces inspired by Rust and Golang. Multiple inheritance, superinterfaces, and default implementations supported. No external tools required, pure C99.

<table>
<tr>
<td><div align="center"><b>Shape</b></div></td>
</tr>

<tr>
<td>
<div align="left">

```c
#include <interface99.h>

#include <stdio.h>

#define Shape_IFACE                      \
    vfunc( int, perim, const VSelf)      \
    vfunc(void, scale, VSelf, int factor)

interface(Shape);
```

</div>
</td>
</tr>
</table>

<table>
<tr>
<td><div align="center"><b>Rectangle</b></div></td>
<td><div align="center"><b>Triangle</b></div></td>
</tr>
<tr>
<td>
<div align="left">

```c
typedef struct {
    int a, b;
} Rectangle;

int Rectangle_perim(const VSelf) {
    VSELF(const Rectangle);
    return (self->a + self->b) * 2;
}

void Rectangle_scale(VSelf, int factor) {
    VSELF(Rectangle);
    self->a *= factor;
    self->b *= factor;
}

impl(Shape, Rectangle);
```

</div>
</td>
<td>
<div align="left">

```c
typedef struct {
    int a, b, c;
} Triangle;

int Triangle_perim(const VSelf) {
    VSELF(const Triangle);
    return self->a + self->b + self->c;
}

void Triangle_scale(VSelf, int factor) {
    VSELF(Triangle);
    self->a *= factor;
    self->b *= factor;
    self->c *= factor;
}

impl(Shape, Triangle);
```

</div>
</td>
</tr>
</table>

<table>
<tr>
<td><div align="center"><b>Test</b></div></td>
</tr>
<tr>
<td>
<div align="left">

```c
void test(Shape shape) {
    printf("perim = %d\n", VCALL(shape, perim));
    VCALL(shape, scale, 5);
    printf("perim = %d\n", VCALL(shape, perim));
}

int main(void) {
    Shape r = DYN_LIT(Rectangle, Shape, {5, 7});
    Shape t = DYN_LIT(Triangle, Shape, {10, 20, 30});

    test(r);
    test(t);
}
```

</div>
</td>
</tr>
</table>

</div>

(Based on [`examples/shape.c`](examples/shape.c).)

<details>
  <summary>Output</summary>

```
perim = 24
perim = 120
perim = 60
perim = 300
```

</details>

## Highlights

 - **Minimum boilerplate.** Forget about maintaining virtual tables -- just write `impl(Shape, Rectangle)` and Interface99 will do it for you!

 - **Portable.** Everything you need is a standard-conforming C99 compiler; neither the standard library, nor compiler/platform-specific functionality or VLA are required.

 - **Predictable.** Interface99 comes with formal [code generation semantics], meaning that the generated data layout is guaranteed to always be the same.

 - **Comprehensible errors.** Interface99 is [resilient to bad code].

 - **Battle-tested.** Interface99 is used at [OpenIPC] to develop real-time streaming software for IP cameras; this includes an [RTSP 1.0 implementation] along with ~50k lines of private code.

[code generation semantics]: #semantics
[resilient to bad code]: #q-what-about-compile-time-errors
[OpenIPC]: https://openipc.org/
[RTSP 1.0 implementation]: https://github.com/OpenIPC/smolrtsp/

## Features

| Feature | Status | Description |
|---------|--------|-------------|
| [Multiple interface inheritance](examples/read_write.c) | ✅ | A type can inherit multiple interfaces at the same time. |
| [Superinterfaces](examples/airplane.c) | ✅ | One interface can require a set of other interfaces to be implemented as well. |
| [Marker interfaces](examples/marker.c) | ✅ | An interface with no functions. |
| [Single/Dynamic dispatch](examples/shape.c) | ✅ | Determine a function to be called at runtime based on `self`. |
| Multiple dispatch | ❌ | Determine a function to be called at runtime based on multiple arguments. Likely to never going to be implemented. |
| [Dynamic objects of multiple interfaces](examples/read_write_both.c)  | ✅ | Given interfaces `Foo` and `Bar`, you can construct an object of both interfaces, `FooBar obj`. |
| [Default implementations](examples/default_impl.c)  | ✅ | Some interface functions may be given default implementations. A default function can call other functions and vice versa. |
| Data and implementation separation  | ✅ | New interfaces can be implemented for existing types. |

## Installation

Interface99 consists of one header file `interface99.h` and one dependency [Metalang99]. To use it in your project, you need to:

[Metalang99]: https://github.com/hirrolot/metalang99

 1. Add `interface99` and `metalang99/include` to your include directories.
 2. Specify [`-ftrack-macro-expansion=0`] (GCC) or [`-fmacro-backtrace-limit=1`] (Clang) to avoid useless macro expansion errors.

[`-ftrack-macro-expansion=0`]: https://gcc.gnu.org/onlinedocs/gcc/Preprocessor-Options.html
[`-fmacro-backtrace-limit=1`]: https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fmacro-backtrace-limit

If you use CMake, the recommended way is [`FetchContent`]:

[`FetchContent`]: https://cmake.org/cmake/help/latest/module/FetchContent.html

```cmake
include(FetchContent)

FetchContent_Declare(
    interface99
    URL https://github.com/hirrolot/interface99/archive/refs/tags/vx.y.z.tar.gz # vx.y.z
)

FetchContent_MakeAvailable(interface99)

target_link_libraries(MyProject interface99)

# Disable full macro expansion backtraces for Metalang99.
if(CMAKE_C_COMPILER_ID STREQUAL "Clang")
  target_compile_options(MyProject PRIVATE -fmacro-backtrace-limit=1)
elseif(CMAKE_C_COMPILER_ID STREQUAL "GNU")
  target_compile_options(MyProject PRIVATE -ftrack-macro-expansion=0)
endif()
```

(By default, `interface99/CMakeLists.txt` downloads Metalang99 [v1.13.5](https://github.com/hirrolot/metalang99/releases/tag/v1.13.5) from the GitHub releases; if you want to override this behaviour, you can do so by invoking [`FetchContent_Declare`] earlier.)

[`FetchContent_Declare`]: https://cmake.org/cmake/help/latest/module/FetchContent.html#command:fetchcontent_declare

Optionally, you can [precompile headers] in your project that rely on Interface99. This will decrease compilation time, because the headers will not be compiled each time they are included.

[precompile headers]: https://en.wikipedia.org/wiki/Precompiled_header

Happy hacking!

## Tutorial

This section is based on a collection of well-documented [examples](examples/), each of which demonstrates one specific aspect of Interface99.

### Basic usage

 1. **Interface definition.**

Syntax: [`interface(Shape);`](#interface)

An interface definition expands to a virtual table structure and a so-called _interface object type_. In the case of [`examples/shape.c`](examples/shape.c):

```c
// interface(Shape);
typedef struct ShapeVTable ShapeVTable;
typedef struct Shape Shape;

struct ShapeVTable {
    int (*perim)(const VSelf);
    void (*scale)(VSelf, int factor);
};

struct Shape {
    void *self;
    const ShapeVTable *vptr;
};
```

Here, `Shape.self` is the pointer to an object whose type implements `Shape`, and `Shape.vptr` points to a corresponding virtual table instance. Inside `ShapeVTable`, you can observe the mysterious [`VSelf`](#vselfvself) bits -- they expand to parameters of type `void * restrict` (with extra `const` for `perim`); when calling these methods, Interface99 will substitute `Shape.self` for these parameters.

Usually, interface definitions go in `*.h` files.

 2. **Implementation definition.**

| Linkage | Syntax |
|---------|--------|
| Internal | [`impl(Shape, Rectangle);`](#impl) |
| External | [`implExtern(Shape, Rectangle);`](#implExtern) |

An implementation definition expands to nothing but a virtual table instance of a particular implementer. In the case of `examples/shape.c`:

```c
// impl(Shape, Rectangle);
static const ShapeVTable Rectangle_Shape_impl = {
    .perim = Rectangle_perim,
    .scale = Rectangle_scale,
};
```

(If you were using [`implExtern`](#implExtern), this definition would be `extern` likewise.)

Note that inside function implementations, we use [`VSELF`](#vselfvself), which simply casts the parameter introduced by `VSelf` to a user-defined type (`const Rectangle` or `Rectangle` in our case):

```c
int Rectangle_perim(const VSelf) {
    VSELF(const Rectangle);
    return (self->a + self->b) * 2;
}

void Rectangle_scale(VSelf, int factor) {
    VSELF(Rectangle);
    self->a *= factor;
    self->b *= factor;
}
```

 3. **Dynamic dispatch.**

Once an interface and its implementations are both generated, it is time to instantiate an interface object and invoke some functions upon it.

First of all, to instantiate `Shape`, use the [`DYN_LIT`](#DYN_LIT) macro:

```с
Shape r = DYN_LIT(Rectangle, Shape, {5, 7});
test(r);
```

Here, `DYN_LIT(Rectangle, Shape, {5, 7})` creates `Shape` by assigning `Shape.self` to `&(Rectangle){5, 7}` and `Shape.vptr` to the aforementioned `&Rectangle_Shape_impl`. Eventually, you can accept `Shape` as a function parameter and perform dynamic dispatch through the [`VCALL`](#vcall_) macro:

```c
void test(Shape shape) {
    printf("perim = %d\n", VCALL(shape, perim));
    VCALL(shape, scale, 5);
    printf("perim = %d\n", VCALL(shape, perim));
}
```

Finally, just a few brief notes:

 - Besides `VCALL`, you also have `VCALL_OBJ`, `VCALL_SUPER`, and `VCALL_SUPER_OBJ`. They all serve a different purpose; for more information, please refer to [their documentation](#vcall_).
 - In practice, [`DYN`](#DYN) is used more often than [`DYN_LIT`](#DYN_LIT); it just accepts an ordinary pointer instead of an initialiser list, which means that you can `malloc` it beforehand.
 - If your virtual function does not accept `self`, you can invoke it as `obj.vptr->foo(...)`.
 - If you want to call an interface function on some concrete type, just write `VTABLE(T, Iface).foo(...)`.

Congratulations, this is all you need to know to write most of the stuff!

### Superinterfaces

Interface99 has the feature called superinterfaces, or interface requirements. [`examples/airplane.c`](examples/airplane.c) demonstrates how to extend interfaces with new functionality:

```c
#define Vehicle_IFACE                              \
    vfunc(void, move_forward, VSelf, int distance) \
    vfunc(void,    move_back, VSelf, int distance)

interface(Vehicle);

#define Airplane_IFACE                          \
    vfunc(void,   move_up, VSelf, int distance) \
    vfunc(void, move_down, VSelf, int distance)

#define Airplane_EXTENDS (Vehicle)

interface(Airplane);
```

(Note that `#define Airplane_EXTENDS` must appear prior to `interface(Airplane);`.)

Here, `Airplane` extends `Vehicle` with the new functions `move_up` and `move_down`. Everywhere you have `Airplane`, you can also operate `Vehicle`:

```c
Airplane my_airplane = DYN_LIT(MyAirplane, Airplane, {.x = 0, .y = 0});

VCALL_SUPER(my_airplane, Vehicle, move_forward, 10);
VCALL_SUPER(my_airplane, Vehicle, move_back, 3);
```

Internally, Interface99 embeds superinterfaces' virtual tables into those of subinterfaces, thereby forming a _virtual table hierarchy_. For example, you can specify `Repairable` and `Armoured` along with `Vehicle`, and they all will be included into `AirplaneVTable` like so:

```c
// #define Airplane_EXTENDS (Vehicle, Repairable, Armoured)
typedef struct AirplaneVTable {
    void (*move_up)(VSelf, int distance);
    void (*move_down)(VSelf, int distance);
    const VehicleVTable *Vehicle;
    const RepairableVTable *Repairable;
    const ArmouredVTable *Armoured;
} AirplaneVTable;
```

### Default implementations

Sometimes we wish to define default behaviour for several implementers; this is supported by _default implementations_.

Take a look at [`examples/default_impl.c`](examples/default_impl.c). In this example, we define the interface `Droid`:

```c
#define Droid_IFACE                         \
    vfunc(const char *, name, void)         \
    vfuncDefault(void, turn_on, Droid droid)

interface(Droid);
```

The macro `vfuncDefault` tells Interface99 to use the default implementation for `turn_on` automatically. But where is it located? Here:

```c
void Droid_turn_on(Droid droid) {
    printf("Turning on %s...\n", droid.vptr->name());
}
```

As you can see, default implementations follow a strict naming convention, `<iface>_<default-func-name>` , which provides Interface99 with sufficient information to generate a virtual table. Additionally, as a developer, you can also rely on this convention and call a default function of a third-party interface. For `C_3PO`, we use the default implementation of `turn_on`, and the resulting virtual table would look like this:

```c
static const DroidVTable C_3PO_Droid_impl = {
    .name = C_3PO_name,
    .turn_on = Droid_turn_on,
};
```

But for `R2_D2`, we use a custom implementation `R2_D2_turn_on`:

```c
void R2_D2_turn_on(Droid droid) {
    Droid_turn_on(droid);
    puts("Waaaaoow!");
}

#define R2_D2_turn_on_CUSTOM ()
impl(Droid, R2_D2);
```

(`R2_D2_turn_on_CUSTOM` tells Interface99 to use the custom implementation instead of the default one; this is because it is impossible to detect at compile-time whether a specific function is defined or not.)

And the virtual table would be:

```c
static const DroidVTable R2_D2_Droid_impl = {
    .name = R2_D2_name,
    .turn_on = R2_D2_turn_on,
};
```

Please, note that you have to specify `()` for the `*_CUSTOM` attribute; do not leave it empty.

## Syntax and semantics

Having a well-defined semantics of the macros, you can write an FFI which is quite common in C.

### EBNF syntax

```ebnf
<iface-def>       ::= "interface(" <iface> ")" ;
<iface>           ::= <ident> ;

<func>            ::= <regular-func> | <default-func> ;
<regular-func>    ::= "vfunc("        <func-ret-ty> "," <func-name> "," <func-params> ")" ;
<default-func>    ::= "vfuncDefault(" <func-ret-ty> "," <func-name> "," <func-params> ")" ;
<func-ret-ty>     ::= <type> ;
<func-name>       ::= <ident> ;
<func-params>     ::= <parameter-type-list> ;

<impl>            ::= "impl("           <iface> "," <implementer> ")" ;
<implExtern>      ::= "implExtern("     <iface> "," <implementer> ")" ;
<declImpl>        ::= "declImpl("       <iface> "," <implementer> ")" ;
<declImplExtern>  ::= "declImplExtern(" <iface> "," <implementer> ")" ;
<implementer>     ::= <ident> ;

<dyn>             ::= "DYN("     <implementer> "," <iface> "," <ptr> ")" ;
<dyn-lit>         ::= "DYN_LIT(" <implementer> "," <iface> "," "{" <initializer-list> "}" ")" ;
<vtable>          ::= "VTABLE("  <implementer> "," <iface> ")" ;

<vself-params>    ::= "VSelf" ;
<vself-cast>      ::= "VSELF(" <type> ")" ;

(* <expr> must be an expression of an interface object type. *)
<vcall>           ::= "VCALL("           <expr> "," <func-name> <vcall-args> ")" ;
<vcall-obj>       ::= "VCALL_OBJ("       <expr> "," <func-name> <vcall-args> ")" ;
<vcall-super>     ::= "VCALL_SUPER("     <expr> "," <iface> "," <func-name> <vcall-args> ")" ;
<vcall-super-obj> ::= "VCALL_SUPER_OBJ(" <expr> "," <iface> "," <func-name> <vcall-args> ")" ;
<vcall-args>      ::= [ "," <argument-expression-list> ] ;

<requirement>     ::= <iface> ;
```

<details>
  <summary>Note: shortened vs. postfixed versions</summary>

  Each listed identifier in the above grammar corresponds to a macro name defined by default -- these are called _shortened versions_. On the other hand, there are also _postfixed versions_ (`interface99`, `impl99`, `vfunc99`, etc.), which are defined unconditionally. If you want to avoid name clashes caused by shortened versions, define `IFACE99_NO_ALIASES` before including `interface99.h`. Library headers are strongly advised to use the postfixed macros, but without resorting to `IFACE99_NO_ALIASES`.
</details>

Notes:

 - For every interface `<iface>`, the macro `<iface>_IFACE` must expand to `{ <func> }*`.
 - For any interface, a macro `<iface>_EXTENDS` can be defined, which must expand to `"(" <requirement> { "," <requirement> }* ")"`.
 - For any interface function implementation, a macro `<implementer>_<func-name>_CUSTOM` can be defined, which must expand to `"()"`.

[Clang-Format]: https://clang.llvm.org/docs/ClangFormatStyleOptions.html

### Semantics

(It might be helpful to look at the [generated output](https://godbolt.org/z/Gr6f7TM83) of [`examples/shape.c`](examples/shape.c).)

#### `interface`

Expands to

```
typedef struct <iface>VTable <iface>VTable;
typedef struct <iface> <iface>;

struct <iface>VTable {
    // Only if <iface> is a marker interface without superinterfaces:
    char dummy;

    <func-ret-ty>0 (*<func-name>0)(<func-params>0);
    ...
    <func-ret-ty>N (*<func-name>N)(<func-params>N);

    const <requirement>0VTable *<requirement>;
    ...
    const <requirement>NVTable *<requirement>;
};

struct <iface> {
    void *self;
    const <iface>VTable *vptr;
}
```

(`char dummy;` is needed for an empty `<iface>VTable` because a structure must have at least one member, according to C99.)

I.e., this macro defines a virtual table structure for `<iface>`, as well as the structure `<iface>` that is polymorphic over `<iface>` implementers. This is generated in two steps:

 - **Function pointers**. For each `<func-name>I` specified in the macro `<iface>_IFACE`, the corresponding function pointer is generated.
 - **Requirements obligation.** If the macro `<iface>_EXTENDS` is defined, then the listed requirements are generated to obligate `<iface>` implementers to satisfy them.

#### `impl`

Expands to

```
static const <iface>VTable VTABLE(<implementer>, <iface>) = {
    // Only if <iface> is a marker interface without superinterfaces:
    .dummy = '\0',

    <func-name>0 = either <implementer>_<func-name>0 or <iface>_<func-name>0,
    ...
    <func-name>N = either <implementer>_<func-name>N or <iface>_<func-name>N,

    <requirement>0 = &VTABLE(<implementer>, <requirement>0),
    ...
    <requirement>N = &VTABLE(<implementer>, <requirement>N),
}
```

I.e., this macro defines a virtual table instance of type `<iface>VTable` for `<implementer>`. It is generated in two steps:

 - **Function implementations.** If `<func-name>I` is defined via `vfuncDefault` and `<implementer>_<func-name>I_CUSTOM` is **not** defined, `<iface>_<func-name>I` is generated (default implementation). Otherwise, `<implementer>_<func-name>I` is generated (custom implementation).
 - **Requirements satisfaction.** If the macro `<iface>_EXTENDS` is defined, then the listed requirements are generated to satisfy `<iface>`.

#### `implExtern`

The same as [`impl`](#impl) but generates an `extern` definition instead of `static`.

#### `declImpl`

Expands to `static const <iface>VTable VTABLE(<implementer>, <iface>)`, i.e., it declares a virtual table instance of `<implementer>` of type `<iface>VTable`.

#### `declImplExtern`

The same as [`declImpl`](#declImpl) but generates an `extern` declaration instead of `static`.

#### `DYN`

Expands to an expression of type `<iface>`, with `.self` initialised to `<ptr>` and `.vptr` initialised to `&VTABLE(<implementer>, <iface>)`.

`<ptr>` is guaranteed to be evaluated only once.

#### `DYN_LIT`

`DYN_LIT(<implementer>, <iface>, ...)` expands to `DYN(<implementer>, <iface>, &(<implementer>)...)`. The `...` must take the form of an initialiser list in [compound literals].

[compound literals]: https://en.cppreference.com/w/c/language/compound_literal

#### `VTABLE`

Expands to `<implementer>_<iface>_impl`, i.e., a virtual table instance of `<implementer>` of type `<iface>VTable`.

#### `VSelf`/`VSELF`

`VSelf` is an object-like macro that expands to a function parameter of type `void * restrict`, with an implementation-defined name. In order to downcast this parameter to an implementer type, there exists a function-like macro `VSELF`. `VSELF(T)` which brings a variable `self` of type `T * restrict` into the scope, and initialises it to the `VSelf`-produced parameter name casted to `T * restrict`.

`VSelf` can be used on any position for any virtual function, however, it only makes sense to use it as a first parameter. `VSELF(T)` can be used everywhere inside a function with the `VSelf` parameter.

#### `VCALL_*`

The `VCALL_*` macros are meant to **call** a **v**irtual method, which is a `vfunc`/`vfuncDefault` that accepts either `VSelf` or an interface object (of a containing interface type) as a first parameter.

For methods accepting `VSelf`, there exist `VCALL` and `VCALL_SUPER`:

 - `VCALL(obj, func)` => `obj.vptr->func(obj.self)`.
 - `VCALL(obj, func, args...)` => `obj.vptr->func(obj.self, args...)`.
 - `VCALL_SUPER(obj, superiface, func)` => `obj.vptr->superiface->func(obj.self)`.
 - `VCALL_SUPER(obj, superiface, func, args...)` => `obj.vptr->superiface->func(obj.self, args...)`.

For methods accepting an interface object, there are `VCALL_OBJ` and `VCALL_SUPER_OBJ`:

 - `VCALL_OBJ` is the same as `VCALL` except that it passes `obj` to `func` instead of `obj.self`.
 - `VCALL_SUPER_OBJ` is the same as `VCALL_SUPER` except that it passes `(superiface){obj.self, obj.vptr->superiface}` to `func` instead of `obj.self`.

## Miscellaneous

 - The macros `IFACE99_MAJOR`, `IFACE99_MINOR`, `IFACE99_PATCH`, `IFACE99_VERSION_COMPATIBLE(x, y, z)`, and `IFACE99_VERSION_EQ(x, y, z)` have the [same semantics as of Metalang99](https://metalang99.readthedocs.io/en/latest/#version-manipulation-macros).

 - For each macro using `ML99_EVAL`, Interface99 provides its [Metalang99-compliant](https://metalang99.readthedocs.io/en/latest/#definitions) counterpart which can be used inside derivers and other Metalang99-compliant macros:

| Macro | Metalang99-compliant counterpart |
|----------|----------|
| `interface` | `IFACE99_interface` |
| `impl` | `IFACE99_impl` |
| `implExtern` | `IFACE99_implExtern` |

(An [arity specifier] and [desugaring macro] are provided for each of the above macros.)

[arity specifier]: https://hirrolot.gitbook.io/metalang99/partial-application
[desugaring macro]: https://metalang99.readthedocs.io/en/latest/#definitions

## Guidelines

 - Write `impl(...)`/`implExtern(...)` right after all functions are implemented; do not gather all implementation definitions in a single place.
 - If you use [Clang-Format], it can be helpful to add `vfunc` and `vfuncDefault` to the `StatementMacros` vector (see [our `.clang-format`](.clang-format)). It will instruct the formatter to place them onto different lines.

## Pitfalls

 - Both interfaces that you implement for a single type can have a function with the same name, thus resulting in a name collision. However, you can elegantly workaround like this:

```c
// `MyType_Iface1_foo` function definition here...

#define Iface1_foo MyType_Iface1_foo
impl(Iface1, MyType);
#undef Iface1_foo

// `MyType_Iface2_foo` function definition here...

#define Iface2_foo MyType_Iface2_foo
impl(Iface2, MyType);
#undef Iface2_foo
```

The same holds for custom implementations:

```c
// Use a custom implementation for `Iface1::bar`.
#define MyType_bar_CUSTOM ()
impl(Iface1, MyType);
#undef MyType_bar_CUSTOM

// Use the default `Iface2::bar`.
impl(Iface2, MyType);
```

## Design choices

The design of Interface99 may raise some questions. In this section, you may find answers why it was designed in this way.

### `VCALL_*`

Instead of using the `VCALL_*` macros, we could instead generate functions that accept an interface object as a first parameter, with the rest of parameters being arguments to a particular method:

```c
void Shape_scale(Shape shape, int factor) {
    shape.vptr->scale(shape.self, factor);
}
```

But this approach does not work for superinterfaces' methods, as well as for methods accepting an interface object instead of `VSelf` or a combination thereof. For this reason, I decided to stick to more expressive `VCALL_*` macros, although at the cost of some IDE support.

### `self` type safety

Since there can be many specific implementations of a virtual method (like `Rectangle_scale` or `Triangle_scale`), `self` **must** be of type `void *`. But the problem is that in concrete implementations, we still want `self` to be of some concrete type; and since `void *` and `T *` may be incompatible types, assigning a concrete method accepting `T *` to a virtual method field [results in UB](https://stackoverflow.com/questions/559581/casting-a-function-pointer-to-another-type).

To solve the problem, we may want to generate untyped wrapper functions that accept `void *restrict self` and pass the downcasted version to the underlying method:

```c
void Rectangle_scale_wrapper(void *restrict self, int factor) {
    Rectangle_scale((Rectangle * restrict)self, factor);
}
```

But the reason we do **not** do this is that in C99, it is impossible to differentiate `void` from other types; if the return type is `void`, we must not emit `return` with an expression, otherwise, we **must**. We could come up with something like `vfuncVoid` and `vfuncDefaultVoid` but this would increase the learning curve and complicate the design and implementation of Interface99.

However, casting untyped `self` to a particular type is still quite unpleasant. The best thing I came up with is the `VSelf` and `VSELF(T)` mechanism, which nonetheless works quite well.

## Credits

Thanks to Rust and Golang for their implementations of traits/interfaces.

## Blog posts

 - [_Comparing Golang and Interface99_](https://www.reddit.com/r/C_Programming/comments/tgm5ft/comparing_golang_and_interface99/)
 - [_What’s the Point of the C Preprocessor, Actually?_](https://hirrolot.github.io/posts/whats-the-point-of-the-c-preprocessor-actually.html)
 - [_Macros on Steroids, Or: How Can Pure C Benefit From Metaprogramming_](https://hirrolot.github.io/posts/macros-on-steroids-or-how-can-pure-c-benefit-from-metaprogramming.html)
 - [_Extend Your Language, Don’t Alter It_](https://hirrolot.github.io/posts/extend-your-language-dont-alter-it.html)

## Release procedure

 1. Update `IFACE99_MAJOR`, `IFACE99_MINOR`, and `IFACE99_PATCH` in `interface99.h`.
 2. Update `CHANGELOG.md`.
 3. Release the project in [GitHub Releases].

[GitHub Releases]: https://github.com/hirrolot/interface99/releases

## FAQ

### Q: Why use C instead of Rust/Zig/whatever else?

A: See [Datatype99's README >>](https://github.com/hirrolot/datatype99#q-why-use-c-instead-of-rustzigwhatever-else).

### Q: Why not third-party code generators?

A: See [Metalang99's README >>](https://github.com/hirrolot/metalang99#q-why-not-third-party-code-generators).

### Q: How does it work?

A: Interface99 is implemented upon [Metalang99], a preprocessor metaprogramming library that allows enriching pure C with some custom syntax sugar.

### Q: Does it work on C++?

A: Yes, C++11 and onwards is supported.

### Q: How Interface99 differs from similar projects?

A:

 - **Less boilerplate.** In particular, Interface99 deduces function implementations from the context, thus improving code maintenance. To my knowledge, no other alternative can do this.

 - **Small.** Interface99 only features the software interface concept, no less and no more -- it does not bring all the other fancy OOP stuff, unlike [GObject] or [COS].

 - **Depends on Metalang99.** Interface99 is built upon [Metalang99], the underlying metaprogramming framework. With Metalang99, you can also use [Datatype99].

Other worth-mentioning projects:

 - [typeclass-interface-pattern], though it is rather a general idea than a ready-to-use implementation.
 - [OOC] -- a book about OO programming in ANSI C.

[`obj.h`]: https://github.com/small-c/obj.h
[GObject]: https://developer.gnome.org/gobject/stable/
[COS]: http://ldeniau.web.cern.ch/ldeniau/cos.html
[Datatype99]: https://github.com/hirrolot/datatype99
[typeclass-interface-pattern]: https://github.com/TotallyNotChase/typeclass-interface-pattern
[OOC]: https://www.cs.rit.edu/~ats/books/ooc.pdf

### Q: What about compile-time errors?

#### Error: missing interface implementation

[`playground.c`]
```c
#define Foo_IFACE vfunc(void, foo, int x, int y)
interface(Foo);

typedef struct {
    char dummy;
} MyFoo;

// Missing `void MyFoo_foo(int x, int y)`.

impl(Foo, MyFoo);
```

[`/bin/sh`]
```
playground.c:12:1: error: ‘MyFoo_foo’ undeclared here (not in a function)
   12 | impl(Foo, MyFoo);
      | ^~~~
```

----------

#### Error: improperly typed interface implementation

[`playground.c`]
```c
#define Foo_IFACE vfunc(void, foo, int x, int y)
interface(Foo);

typedef struct {
    char dummy;
} MyFoo;

void MyFoo_foo(const char *str) {}

impl(Foo, MyFoo);
```

[`/bin/sh`]
```
playground.c:12:1: warning: initialization of ‘void (*)(int,  int)’ from incompatible pointer type ‘void (*)(const char *)’ [-Wincompatible-pointer-types]
   12 | impl(Foo, MyFoo);
      | ^~~~
playground.c:12:1: note: (near initialization for ‘MyFoo_Foo_impl.foo’)
```

----------

#### Error: unsatisfied interface requirement

[`playground.c`]
```c
#define Foo_IFACE vfunc(void, foo, int x, int y)
interface(Foo);

#define Bar_IFACE   vfunc(void, bar, void)
#define Bar_EXTENDS (Foo)

interface(Bar);

typedef struct {
    char dummy;
} MyBar;

void MyBar_bar(void) {}

// Missing `impl(Foo, MyBar)`.

impl(Bar, MyBar);
```

[`/bin/sh`]
```
playground.c:19:1: error: ‘MyBar_Foo_impl’ undeclared here (not in a function); did you mean ‘MyBar_Bar_impl’?
   19 | impl(Bar, MyBar);
      | ^~~~
      | MyBar_Bar_impl
```

----------

#### Error: typo in `DYN`

[`playground.c`]
```c
#define Foo_IFACE vfunc(void, foo, void)
interface(Foo);

typedef struct {
    char dummy;
} MyFoo;

void MyFoo_foo(void) {}

impl(Foo, MyFoo);

int main(void) { Foo foo = DYN(MyFoo, /* Foo */ Bar, &(MyFoo){0}); }
```

[`/bin/sh`]
```
playground.c: In function ‘main’:
playground.c:14:28: error: ‘Bar’ undeclared (first use in this function)
   14 | int main(void) { Foo foo = DYN(MyFoo, /* Foo */ Bar, &(MyFoo){0}); }
      |                            ^~~
playground.c:14:28: note: each undeclared identifier is reported only once for each function it appears in
playground.c:14:31: error: expected ‘)’ before ‘{’ token
   14 | int main(void) { Foo foo = DYN(MyFoo, /* Foo */ Bar, &(MyFoo){0}); }
      |                            ~~~^
      |                               )
```

----------

#### Error: typo in `VTABLE`

[`playground.c`]
```c
#define Foo_IFACE vfunc(void, foo, void)
interface(Foo);

typedef struct {
    char dummy;
} MyFoo;

void MyFoo_foo(void) {}

impl(Foo, MyFoo);

int main(void) { FooVTable foo = VTABLE(/* MyFoo */ MyBar, Foo); }
```

[`/bin/sh`]
```
playground.c: In function ‘main’:
playground.c:14:34: error: ‘MyBar_Foo_impl’ undeclared (first use in this function); did you mean ‘MyFoo_Foo_impl’?
   14 | int main(void) { FooVTable foo = VTABLE(/* MyFoo */ MyBar, Foo); }
      |                                  ^~~~~~
      |                                  MyFoo_Foo_impl
```

----------

From my experience, nearly 95% of errors make sense.

If an error is not comprehensible at all, try to look at generated code (`-E`). Hopefully, the [code generation semantics] is formally defined so normally you will not see something unexpected.

### Q: What about IDE support?

![Suggestion](images/suggestion.png)

A: VS Code automatically enables suggestions of generated types but, of course, it does not support macro syntax highlighting. The sad part is that `VCALL` and its friends break go-to definitions and do not highlight function signatures, so we do intentionally [trade some IDE support for syntax conciseness](#vcall_-1).

### Q: Which compilers are tested?

A: Interface99 is known to work on these compilers:

 - GCC
 - Clang
 - MSVC
 - TCC