1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
/*
ionrestart.c: Stops ION, re-initializes all volatile
databases, then restarts ION. The purpose
of this utility is to wipe out potentially
corrupt volatile database information in the
event that an ION transaction is reversed:
transaction reversal protects non-volatile
database integrity but does not realign the
volatile database with the repaired heap.
*/
/* */
/* Copyright (c) 2012, California Institute of Technology. */
/* All rights reserved. */
/* Author: Scott Burleigh, Jet Propulsion Laboratory */
/* */
#include "platform.h"
#include "sdrP.h"
#include "rfx.h"
#include "ltpP.h"
#include "bpP.h"
#include "cgr.h"
#ifndef NASA_PROTECTED_FLIGHT_CODE
#include "cfdpP.h"
#endif
#ifndef RESTART_GRACE_PERIOD
#define RESTART_GRACE_PERIOD 3
#endif
#define RESTART_LOOP_INTERVAL (RESTART_GRACE_PERIOD * 5)
extern void ionDropVdb();
extern void ionRaiseVdb();
static void restartION(Sdr sdrv, char *utaCmd)
{
int i;
int restart_bp = 1;
int restart_ltp = 1;
#ifndef NASA_PROTECTED_FLIGHT_CODE
int restart_cfdp = 1;
#endif
time_t prevRestartTime;
/* Stop all tasks. */
#ifndef NASA_PROTECTED_FLIGHT_CODE
if (cfdpAttach() < 0)
{
restart_cfdp = 0;
writeMemo("[!] ionrestart can't attach to CFDP.");
}
else
{
cfdpStop();
for (i = 0; i < 5; i++)
{
if (cfdp_entity_is_started())
{
snooze(1);
continue; /* Not stopped. */
}
break;
}
if (i == 5)
{
writeMemo("[!] ionrestart: CFDP not stopped.");
}
else
{
writeMemo("[i] ionrestart: CFDP stopped.");
}
}
#endif
if (bpAttach() < 0)
{
restart_bp = 0;
writeMemo("[!] ionrestart can't attach to BP.");
}
else
{
bpStop();
for (i = 0; i < 5; i++)
{
if (bp_agent_is_started())
{
snooze(1);
continue; /* Not stopped. */
}
break;
}
if (i == 5)
{
writeMemo("[!] ionrestart: BP not stopped.");
}
else
{
writeMemo("[i] ionrestart: BP stopped.");
}
}
if (ltpAttach() < 0)
{
restart_ltp = 0;
writeMemo("[!] ionrestart can't attach to LTP.");
}
else
{
ltpStop();
for (i = 0; i < 5; i++)
{
if (ltp_engine_is_started())
{
snooze(1);
continue; /* Not stopped. */
}
break;
}
if (i == 5)
{
writeMemo("[!] ionrestart: LTP not stopped.");
}
else
{
writeMemo("[i] ionrestart: LTP stopped.");
}
}
rfx_stop();
for (i = 0; i < 5; i++)
{
if (rfx_system_is_started())
{
snooze(1);
continue; /* Not stopped. */
}
break;
}
if (i == 5)
{
writeMemo("[!] ionrestart: rfxclock not stopped.");
}
else
{
writeMemo("[i] ionrestart: rfxclock stopped.");
}
/* Terminate all remaining tasks by ending the
* transaction semaphore. */
sm_SemEnd(sdrv->sdr->sdrSemaphore);
/* Drop all volatile databases. */
#ifndef NASA_PROTECTED_FLIGHT_CODE
if (restart_cfdp)
{
cfdpDropVdb();
writeMemo("[i] ionrestart: CFDP volatile database dropped.");
}
#endif
cgr_stop();
if (restart_bp)
{
bpDropVdb();
writeMemo("[i] ionrestart: BP volatile database dropped.");
}
if (restart_ltp)
{
ltpDropVdb();
writeMemo("[i] ionrestart: LTP volatile database dropped.");
}
ionDropVdb();
writeMemo("[i] ionrestart: ION volatile database dropped.");
/* Un-end the transaction semaphore. */
sm_SemUnend(sdrv->sdr->sdrSemaphore);
/* Now re-create all of the volatile databases. */
ionRaiseVdb();
writeMemo("[i] ionrestart: ION volatile database raised.");
if (restart_ltp)
{
ltpRaiseVdb();
writeMemo("[i] ionrestart: LTP volatile database raised.");
}
if (restart_bp)
{
bpRaiseVdb();
writeMemo("[i] ionrestart: BP volatile database raised.");
}
cgr_start();
#ifndef NASA_PROTECTED_FLIGHT_CODE
if (restart_cfdp)
{
cfdpRaiseVdb();
writeMemo("[i] ionrestart: CFDP volatile database raised.");
}
#endif
/* If it's safe, restart all ION tasks. */
prevRestartTime = sdrv->sdr->restartTime;
sdrv->sdr->restartTime = getUTCTime();
if ((sdrv->sdr->restartTime - prevRestartTime) < RESTART_LOOP_INTERVAL)
{
writeMemo("[!] Inferred restart loop. Tasks not restarted.");
return;
}
rfx_start();
for (i = 0; i < 5; i++)
{
if (!rfx_system_is_started())
{
snooze(1);
continue; /* Not started. */
}
break;
}
if (i == 5)
{
writeMemo("[!] ionrestart: rfxclock not restarted.");
}
else
{
writeMemo("[i] ionrestart: rfxclock restarted.");
}
if (restart_ltp)
{
ltpStart();
for (i = 0; i < 5; i++)
{
if (!ltp_engine_is_started())
{
snooze(1);
continue; /* Not started. */
}
break;
}
if (i == 5)
{
writeMemo("[!] ionrestart: LTP not restarted.");
}
else
{
writeMemo("[i] ionrestart: LTP restarted.");
}
}
if (restart_bp)
{
bpStart();
for (i = 0; i < 5; i++)
{
if (!bp_agent_is_started())
{
snooze(1);
continue; /* Not started. */
}
break;
}
if (i == 5)
{
writeMemo("[!] ionrestart: BP not restarted.");
}
else
{
writeMemo("[i] ionrestart: BP restarted.");
}
}
#ifndef NASA_PROTECTED_FLIGHT_CODE
if (restart_cfdp)
{
cfdpStart(utaCmd);
for (i = 0; i < 5; i++)
{
if (!cfdp_entity_is_started())
{
snooze(1);
continue; /* Not started. */
}
break;
}
if (i == 5)
{
writeMemo("[!] ionrestart: CFDP not restarted.");
}
else
{
writeMemo("[i] ionrestart: CFDP restarted.");
}
}
#endif
}
#if defined (VXWORKS) || defined (RTEMS) || defined (bionic)
int ionrestart(int a1, int a2, int a3, int a4, int a5,
int a6, int a7, int a8, int a9, int a10)
{
char *utaCmd = a1 ? (char *) a1 : "bputa";
#else
int main(int argc, char **argv)
{
char *utaCmd = argc > 1 ? argv[1] : "bputa";
#endif
Sdr sdrv;
sm_SemId sdrSemaphore;
if (ionAttach() < 0)
{
putErrmsg("ionrestart can't attach to ION.", NULL);
return 1;
}
/* Hijack the current transaction, i.e., impersonate
* the current owner of the ION mutex.
*
* ionAttach() entails calling sdr_start_using, which
* gives the SDR semaphore and thereby would enable the
* failing task to begin new transactions before exiting.
* These new transactions would interfere with recovery
* from the current failed transaction, so they must be
* prevented. For this purpose, we must temporarily set
* the SDR semaphore to -1, restoring it when we are
* confident that the failing task has terminated. */
sdrv = getIonsdr();
sdrv->sdr->sdrOwnerTask = sm_TaskIdSelf();
sdrv->sdr->sdrOwnerThread = pthread_self();
sdrSemaphore = sdrv->sdr->sdrSemaphore;
sdrv->sdr->sdrSemaphore = -1;
/* Wait for the failing task to terminate, then re-enable
* transactions and perform the restart. */
snooze(RESTART_GRACE_PERIOD);
sdrv->sdr->sdrSemaphore = sdrSemaphore;
restartION(sdrv, utaCmd);
/* Close out the hijacked transaction. */
sdrv->sdr->xnDepth = 1;
sdrv->modified = 0;
sdr_exit_xn(sdrv);
/* Terminate. */
ionDetach();
writeMemo("[i] ionrestart: finished restarting ION.");
return 0;
}
|