| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 
 | /*
===========================================================================
Return to Castle Wolfenstein single player GPL Source Code
Copyright (C) 1999-2010 id Software LLC, a ZeniMax Media company. 
This file is part of the Return to Castle Wolfenstein single player GPL Source Code (RTCW SP Source Code).  
RTCW SP Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RTCW SP Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RTCW SP Source Code.  If not, see <http://www.gnu.org/licenses/>.
In addition, the RTCW SP Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the RTCW SP Source Code.  If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#ifndef __MATH_MATRIX_H__
#define __MATH_MATRIX_H__
#include <string.h>
#include "math_vector.h"
#ifndef ID_INLINE
#ifdef _WIN32
#define ID_INLINE __inline
#else
#define ID_INLINE inline
#endif
#endif
class quat_t;
class angles_t;
class mat3_t {
public:
idVec3 mat[ 3 ];
mat3_t();
mat3_t( float src[ 3 ][ 3 ] );
mat3_t( idVec3 const &x, idVec3 const &y, idVec3 const &z );
mat3_t( const float xx, const float xy, const float xz, const float yx, const float yy, const float yz, const float zx, const float zy, const float zz );
friend void     toMatrix( quat_t const &src, mat3_t &dst );
friend void     toMatrix( angles_t const &src, mat3_t &dst );
friend void     toMatrix( idVec3 const &src, mat3_t &dst );
idVec3 operator[]( int index ) const;
idVec3          &operator[]( int index );
idVec3 operator*( const idVec3 &vec ) const;
mat3_t operator*( const mat3_t &a ) const;
mat3_t operator*( float a ) const;
mat3_t operator+( mat3_t const &a ) const;
mat3_t operator-( mat3_t const &a ) const;
friend idVec3 operator*( const idVec3 &vec, const mat3_t &mat );
friend mat3_t operator*( float a, mat3_t const &b );
mat3_t          &operator*=( float a );
mat3_t          &operator+=( mat3_t const &a );
mat3_t          &operator-=( mat3_t const &a );
void            Clear( void );
void            ProjectVector( const idVec3 &src, idVec3 &dst ) const;
void            UnprojectVector( const idVec3 &src, idVec3 &dst ) const;
void            OrthoNormalize( void );
void            Transpose( mat3_t &matrix );
void            Transpose( void );
mat3_t          Inverse( void ) const;
void            Identity( void );
friend void     InverseMultiply( const mat3_t &inv, const mat3_t &b, mat3_t &dst );
friend mat3_t   SkewSymmetric( idVec3 const &src );
};
ID_INLINE mat3_t::mat3_t() {
}
ID_INLINE mat3_t::mat3_t( float src[ 3 ][ 3 ] ) {
	memcpy( mat, src, sizeof( *src ) );
}
ID_INLINE mat3_t::mat3_t( idVec3 const &x, idVec3 const &y, idVec3 const &z ) {
	mat[ 0 ].x = x.x; mat[ 0 ].y = x.y; mat[ 0 ].z = x.z;
	mat[ 1 ].x = y.x; mat[ 1 ].y = y.y; mat[ 1 ].z = y.z;
	mat[ 2 ].x = z.x; mat[ 2 ].y = z.y; mat[ 2 ].z = z.z;
}
ID_INLINE mat3_t::mat3_t( const float xx, const float xy, const float xz, const float yx, const float yy, const float yz, const float zx, const float zy, const float zz ) {
	mat[ 0 ].x = xx; mat[ 0 ].y = xy; mat[ 0 ].z = xz;
	mat[ 1 ].x = yx; mat[ 1 ].y = yy; mat[ 1 ].z = yz;
	mat[ 2 ].x = zx; mat[ 2 ].y = zy; mat[ 2 ].z = zz;
}
ID_INLINE idVec3 mat3_t::operator[]( int index ) const {
	assert( ( index >= 0 ) && ( index < 3 ) );
	return mat[ index ];
}
ID_INLINE idVec3& mat3_t::operator[]( int index ) {
	assert( ( index >= 0 ) && ( index < 3 ) );
	return mat[ index ];
}
ID_INLINE idVec3 mat3_t::operator*( const idVec3 &vec ) const {
	return idVec3(
			   mat[ 0 ].x * vec.x + mat[ 1 ].x * vec.y + mat[ 2 ].x * vec.z,
			   mat[ 0 ].y * vec.x + mat[ 1 ].y * vec.y + mat[ 2 ].y * vec.z,
			   mat[ 0 ].z * vec.x + mat[ 1 ].z * vec.y + mat[ 2 ].z * vec.z );
}
ID_INLINE mat3_t mat3_t::operator*( const mat3_t &a ) const {
	return mat3_t(
			   mat[0].x * a[0].x + mat[0].y * a[1].x + mat[0].z * a[2].x,
			   mat[0].x * a[0].y + mat[0].y * a[1].y + mat[0].z * a[2].y,
			   mat[0].x * a[0].z + mat[0].y * a[1].z + mat[0].z * a[2].z,
			   mat[1].x * a[0].x + mat[1].y * a[1].x + mat[1].z * a[2].x,
			   mat[1].x * a[0].y + mat[1].y * a[1].y + mat[1].z * a[2].y,
			   mat[1].x * a[0].z + mat[1].y * a[1].z + mat[1].z * a[2].z,
			   mat[2].x * a[0].x + mat[2].y * a[1].x + mat[2].z * a[2].x,
			   mat[2].x * a[0].y + mat[2].y * a[1].y + mat[2].z * a[2].y,
			   mat[2].x * a[0].z + mat[2].y * a[1].z + mat[2].z * a[2].z );
}
ID_INLINE mat3_t mat3_t::operator*( float a ) const {
	return mat3_t(
			   mat[0].x * a, mat[0].y * a, mat[0].z * a,
			   mat[1].x * a, mat[1].y * a, mat[1].z * a,
			   mat[2].x * a, mat[2].y * a, mat[2].z * a );
}
ID_INLINE mat3_t mat3_t::operator+( mat3_t const &a ) const {
	return mat3_t(
			   mat[0].x + a[0].x, mat[0].y + a[0].y, mat[0].z + a[0].z,
			   mat[1].x + a[1].x, mat[1].y + a[1].y, mat[1].z + a[1].z,
			   mat[2].x + a[2].x, mat[2].y + a[2].y, mat[2].z + a[2].z );
}
ID_INLINE mat3_t mat3_t::operator-( mat3_t const &a ) const {
	return mat3_t(
			   mat[0].x - a[0].x, mat[0].y - a[0].y, mat[0].z - a[0].z,
			   mat[1].x - a[1].x, mat[1].y - a[1].y, mat[1].z - a[1].z,
			   mat[2].x - a[2].x, mat[2].y - a[2].y, mat[2].z - a[2].z );
}
ID_INLINE idVec3 operator*( const idVec3 &vec, const mat3_t &mat ) {
	return idVec3(
			   mat[ 0 ].x * vec.x + mat[ 1 ].x * vec.y + mat[ 2 ].x * vec.z,
			   mat[ 0 ].y * vec.x + mat[ 1 ].y * vec.y + mat[ 2 ].y * vec.z,
			   mat[ 0 ].z * vec.x + mat[ 1 ].z * vec.y + mat[ 2 ].z * vec.z );
}
ID_INLINE mat3_t operator*( float a, mat3_t const &b ) {
	return mat3_t(
			   b[0].x * a, b[0].y * a, b[0].z * a,
			   b[1].x * a, b[1].y * a, b[1].z * a,
			   b[2].x * a, b[2].y * a, b[2].z * a );
}
ID_INLINE mat3_t &mat3_t::operator*=( float a ) {
	mat[0].x *= a; mat[0].y *= a; mat[0].z *= a;
	mat[1].x *= a; mat[1].y *= a; mat[1].z *= a;
	mat[2].x *= a; mat[2].y *= a; mat[2].z *= a;
	return *this;
}
ID_INLINE mat3_t &mat3_t::operator+=( mat3_t const &a ) {
	mat[0].x += a[0].x; mat[0].y += a[0].y; mat[0].z += a[0].z;
	mat[1].x += a[1].x; mat[1].y += a[1].y; mat[1].z += a[1].z;
	mat[2].x += a[2].x; mat[2].y += a[2].y; mat[2].z += a[2].z;
	return *this;
}
ID_INLINE mat3_t &mat3_t::operator-=( mat3_t const &a ) {
	mat[0].x -= a[0].x; mat[0].y -= a[0].y; mat[0].z -= a[0].z;
	mat[1].x -= a[1].x; mat[1].y -= a[1].y; mat[1].z -= a[1].z;
	mat[2].x -= a[2].x; mat[2].y -= a[2].y; mat[2].z -= a[2].z;
	return *this;
}
ID_INLINE void mat3_t::OrthoNormalize( void ) {
	mat[ 0 ].Normalize();
	mat[ 2 ].Cross( mat[ 0 ], mat[ 1 ] );
	mat[ 2 ].Normalize();
	mat[ 1 ].Cross( mat[ 2 ], mat[ 0 ] );
	mat[ 1 ].Normalize();
}
ID_INLINE void mat3_t::Identity( void ) {
	mat[ 0 ].x = 1.f; mat[ 0 ].y = 0.f; mat[ 0 ].z = 0.f;
	mat[ 1 ].x = 0.f; mat[ 1 ].y = 1.f; mat[ 1 ].z = 0.f;
	mat[ 2 ].x = 0.f; mat[ 2 ].y = 0.f; mat[ 2 ].z = 1.f;
}
ID_INLINE void InverseMultiply( const mat3_t &inv, const mat3_t &b, mat3_t &dst ) {
	dst[0].x = inv[0].x * b[0].x + inv[1].x * b[1].x + inv[2].x * b[2].x;
	dst[0].y = inv[0].x * b[0].y + inv[1].x * b[1].y + inv[2].x * b[2].y;
	dst[0].z = inv[0].x * b[0].z + inv[1].x * b[1].z + inv[2].x * b[2].z;
	dst[1].x = inv[0].y * b[0].x + inv[1].y * b[1].x + inv[2].y * b[2].x;
	dst[1].y = inv[0].y * b[0].y + inv[1].y * b[1].y + inv[2].y * b[2].y;
	dst[1].z = inv[0].y * b[0].z + inv[1].y * b[1].z + inv[2].y * b[2].z;
	dst[2].x = inv[0].z * b[0].x + inv[1].z * b[1].x + inv[2].z * b[2].x;
	dst[2].y = inv[0].z * b[0].y + inv[1].z * b[1].y + inv[2].z * b[2].y;
	dst[2].z = inv[0].z * b[0].z + inv[1].z * b[1].z + inv[2].z * b[2].z;
}
ID_INLINE mat3_t SkewSymmetric( idVec3 const &src ) {
	return mat3_t( 0.0f, -src.z,  src.y, src.z,   0.0f, -src.x, -src.y,  src.x,   0.0f );
}
extern mat3_t mat3_default;
#endif /* !__MATH_MATRIX_H__ */
 |