File: tr_altivec.c

package info (click to toggle)
iortcw 1.51.c%2Bdfsg1-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 25,304 kB
  • sloc: ansic: 457,326; cpp: 6,507; makefile: 4,737; sh: 1,292; asm: 1,176; xml: 31
file content (441 lines) | stat: -rw-r--r-- 15,232 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.

This file is part of Quake III Arena source code.

Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
===========================================================================
*/

/* This file is only compiled for PowerPC builds with Altivec support.
   Altivec intrinsics need to be in a separate file, so GCC's -maltivec
   command line can enable them, but give us the option to _not_ use that
   on other files, where the compiler might then generate Altivec
   instructions for normal floating point, crashing on G3 (etc) processors. */

#include "tr_local.h" 

#if idppc_altivec

#if !defined(__APPLE__)
#include <altivec.h>
#endif

void ProjectDlightTexture_altivec( void ) {
	int		i, l;
	vec_t	origin0, origin1, origin2;
	float   texCoords0, texCoords1;
	vector float floatColorVec0, floatColorVec1;
	vector float modulateVec, colorVec, zero;
	vector short colorShort;
	vector signed int colorInt;
	vector unsigned char floatColorVecPerm, modulatePerm, colorChar;
	vector unsigned char vSel = VECCONST_UINT8(0x00, 0x00, 0x00, 0xff,
                                               0x00, 0x00, 0x00, 0xff,
                                               0x00, 0x00, 0x00, 0xff,
                                               0x00, 0x00, 0x00, 0xff);
	float	*texCoords;
	byte	*colors;
	byte	clipBits[SHADER_MAX_VERTEXES];
	float	texCoordsArray[SHADER_MAX_VERTEXES][2];
	byte	colorArray[SHADER_MAX_VERTEXES][4];
	glIndex_t	hitIndexes[SHADER_MAX_INDEXES];
	int		numIndexes;
	float	scale;
	float	radius;
	vec3_t	floatColor;
	float	modulate = 0.0f;

	if ( !backEnd.refdef.num_dlights ) {
		return;
	}

	if ( backEnd.refdef.rdflags & RDF_SNOOPERVIEW ) {  // no dlights for snooper
		return;
	}

	// There has to be a better way to do this so that floatColor
	// and/or modulate are already 16-byte aligned.
	floatColorVecPerm = vec_lvsl(0,(float *)floatColor);
	modulatePerm = vec_lvsl(0,(float *)&modulate);
	modulatePerm = (vector unsigned char)vec_splat((vector unsigned int)modulatePerm,0);
	zero = (vector float)vec_splat_s8(0);

	for ( l = 0 ; l < backEnd.refdef.num_dlights ; l++ ) {
		dlight_t	*dl;

		if ( !( tess.dlightBits & ( 1 << l ) ) ) {
			continue;	// this surface definately doesn't have any of this light
		}
		texCoords = texCoordsArray[0];
		colors = colorArray[0];

		dl = &backEnd.refdef.dlights[l];
		origin0 = dl->transformed[0];
		origin1 = dl->transformed[1];
		origin2 = dl->transformed[2];
		radius = dl->radius;
		scale = 1.0f / radius;

		if(r_greyscale->integer)
		{
			float luminance;
			
			luminance = LUMA(dl->color[0], dl->color[1], dl->color[2]) * 255.0f;
			floatColor[0] = floatColor[1] = floatColor[2] = luminance;
		}
		else if(r_greyscale->value)
		{
			float luminance;
			
			luminance = LUMA(dl->color[0], dl->color[1], dl->color[2]) * 255.0f;
			floatColor[0] = LERP(dl->color[0] * 255.0f, luminance, r_greyscale->value);
			floatColor[1] = LERP(dl->color[1] * 255.0f, luminance, r_greyscale->value);
			floatColor[2] = LERP(dl->color[2] * 255.0f, luminance, r_greyscale->value);
		}
		else
		{
			floatColor[0] = dl->color[0] * 255.0f;
			floatColor[1] = dl->color[1] * 255.0f;
			floatColor[2] = dl->color[2] * 255.0f;
		}
		floatColorVec0 = vec_ld(0, floatColor);
		floatColorVec1 = vec_ld(11, floatColor);
		floatColorVec0 = vec_perm(floatColorVec0,floatColorVec0,floatColorVecPerm);
		for ( i = 0 ; i < tess.numVertexes ; i++, texCoords += 2, colors += 4 ) {
			int		clip = 0;
			vec_t dist0, dist1, dist2;
			
			dist0 = origin0 - tess.xyz[i][0];
			dist1 = origin1 - tess.xyz[i][1];
			dist2 = origin2 - tess.xyz[i][2];

			backEnd.pc.c_dlightVertexes++;

			texCoords0 = 0.5f + dist0 * scale;
			texCoords1 = 0.5f + dist1 * scale;

			if( !r_dlightBacks->integer &&
					// dist . tess.normal[i]
					( dist0 * tess.normal[i][0] +
					dist1 * tess.normal[i][1] +
					dist2 * tess.normal[i][2] ) < 0.0f ) {
				clip = 63;
			} else {
				if ( texCoords0 < 0.0f ) {
					clip |= 1;
				} else if ( texCoords0 > 1.0f ) {
					clip |= 2;
				}
				if ( texCoords1 < 0.0f ) {
					clip |= 4;
				} else if ( texCoords1 > 1.0f ) {
					clip |= 8;
				}
				texCoords[0] = texCoords0;
				texCoords[1] = texCoords1;

				// modulate the strength based on the height and color
				if ( dist2 > radius ) {
					clip |= 16;
					modulate = 0.0f;
				} else if ( dist2 < -radius ) {
					clip |= 32;
					modulate = 0.0f;
				} else {
					dist2 = Q_fabs(dist2);
					if ( dist2 < radius * 0.5f ) {
						modulate = 1.0f;
					} else {
						modulate = 2.0f * (radius - dist2) * scale;
					}
				}
			}
			clipBits[i] = clip;

			modulateVec = vec_ld(0,(float *)&modulate);
			modulateVec = vec_perm(modulateVec,modulateVec,modulatePerm);
			colorVec = vec_madd(floatColorVec0,modulateVec,zero);
			colorInt = vec_cts(colorVec,0);	// RGBx
			colorShort = vec_pack(colorInt,colorInt);		// RGBxRGBx
			colorChar = vec_packsu(colorShort,colorShort);	// RGBxRGBxRGBxRGBx
			colorChar = vec_sel(colorChar,vSel,vSel);		// RGBARGBARGBARGBA replace alpha with 255
			vec_ste((vector unsigned int)colorChar,0,(unsigned int *)colors);	// store color
		}

		// build a list of triangles that need light
		numIndexes = 0;
		for ( i = 0 ; i < tess.numIndexes ; i += 3 ) {
			int		a, b, c;

			a = tess.indexes[i];
			b = tess.indexes[i+1];
			c = tess.indexes[i+2];
			if ( clipBits[a] & clipBits[b] & clipBits[c] ) {
				continue;	// not lighted
			}
			hitIndexes[numIndexes] = a;
			hitIndexes[numIndexes+1] = b;
			hitIndexes[numIndexes+2] = c;
			numIndexes += 3;
		}

		if ( !numIndexes ) {
			continue;
		}

		qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
		qglTexCoordPointer( 2, GL_FLOAT, 0, texCoordsArray[0] );

		qglEnableClientState( GL_COLOR_ARRAY );
		qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, colorArray );

		//----(SA) creating dlight shader to allow for special blends or alternate dlight texture
		{
			shader_t *dls = dl->dlshader;
			if ( dls ) {
				for ( i = 0; i < dls->numUnfoggedPasses; i++ )
				{
					shaderStage_t *stage = dls->stages[i];
					R_BindAnimatedImage( &dls->stages[i]->bundle[0] );
					GL_State( stage->stateBits | GLS_DEPTHFUNC_EQUAL );
					R_DrawElements( numIndexes, hitIndexes );
					backEnd.pc.c_totalIndexes += numIndexes;
					backEnd.pc.c_dlightIndexes += numIndexes;
				}

			} else
			{
				R_FogOff();

				GL_Bind( tr.dlightImage );
				// include GLS_DEPTHFUNC_EQUAL so alpha tested surfaces don't add light
				// where they aren't rendered
				GL_State( GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL );
				R_DrawElements( numIndexes, hitIndexes );
				backEnd.pc.c_totalIndexes += numIndexes;
				backEnd.pc.c_dlightIndexes += numIndexes;

				// Ridah, overdraw lights several times, rather than sending
				//	multiple lights through
				for ( i = 0; i < dl->overdraw; i++ ) {
					R_DrawElements( numIndexes, hitIndexes );
					backEnd.pc.c_totalIndexes += numIndexes;
					backEnd.pc.c_dlightIndexes += numIndexes;
				}

				R_FogOn();
			}
		}
	}
}

void RB_CalcDiffuseColor_altivec( unsigned char *colors )
{
	int				i;
	float			*v, *normal;
	trRefEntity_t	*ent;
	vec3_t			lightDir;
	int				numVertexes;
	vector unsigned char vSel = VECCONST_UINT8(0x00, 0x00, 0x00, 0xff,
                                               0x00, 0x00, 0x00, 0xff,
                                               0x00, 0x00, 0x00, 0xff,
                                               0x00, 0x00, 0x00, 0xff);
	vector float ambientLightVec;
	vector float directedLightVec;
	vector float lightDirVec;
	vector float normalVec0, normalVec1;
	vector float incomingVec0, incomingVec1, incomingVec2;
	vector float zero, jVec;
	vector signed int jVecInt;
	vector signed short jVecShort;
	vector unsigned char jVecChar, normalPerm;
	ent = backEnd.currentEntity;
	// A lot of this could be simplified if we made sure
	// entities light info was 16-byte aligned.
	jVecChar = vec_lvsl(0, ent->ambientLight);
	ambientLightVec = vec_ld(0, (vector float *)ent->ambientLight);
	jVec = vec_ld(11, (vector float *)ent->ambientLight);
	ambientLightVec = vec_perm(ambientLightVec,jVec,jVecChar);

	jVecChar = vec_lvsl(0, ent->directedLight);
	directedLightVec = vec_ld(0,(vector float *)ent->directedLight);
	jVec = vec_ld(11,(vector float *)ent->directedLight);
	directedLightVec = vec_perm(directedLightVec,jVec,jVecChar);	 

	jVecChar = vec_lvsl(0, ent->lightDir);
	lightDirVec = vec_ld(0,(vector float *)ent->lightDir);
	jVec = vec_ld(11,(vector float *)ent->lightDir);
	lightDirVec = vec_perm(lightDirVec,jVec,jVecChar);	 

	zero = (vector float)vec_splat_s8(0);
	VectorCopy( ent->lightDir, lightDir );

	v = tess.xyz[0];
	normal = tess.normal[0];

	normalPerm = vec_lvsl(0,normal);
	numVertexes = tess.numVertexes;
	for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
		normalVec0 = vec_ld(0,(vector float *)normal);
		normalVec1 = vec_ld(11,(vector float *)normal);
		normalVec0 = vec_perm(normalVec0,normalVec1,normalPerm);
		incomingVec0 = vec_madd(normalVec0, lightDirVec, zero);
		incomingVec1 = vec_sld(incomingVec0,incomingVec0,4);
		incomingVec2 = vec_add(incomingVec0,incomingVec1);
		incomingVec1 = vec_sld(incomingVec1,incomingVec1,4);
		incomingVec2 = vec_add(incomingVec2,incomingVec1);
		incomingVec0 = vec_splat(incomingVec2,0);
		incomingVec0 = vec_max(incomingVec0,zero);
		normalPerm = vec_lvsl(12,normal);
		jVec = vec_madd(incomingVec0, directedLightVec, ambientLightVec);
		jVecInt = vec_cts(jVec,0);	// RGBx
		jVecShort = vec_pack(jVecInt,jVecInt);		// RGBxRGBx
		jVecChar = vec_packsu(jVecShort,jVecShort);	// RGBxRGBxRGBxRGBx
		jVecChar = vec_sel(jVecChar,vSel,vSel);		// RGBARGBARGBARGBA replace alpha with 255
		vec_ste((vector unsigned int)jVecChar,0,(unsigned int *)&colors[i*4]);	// store color
	}
}

void LerpMeshVertexes_altivec(md3Surface_t *surf, float backlerp)
{
	short	*oldXyz, *newXyz, *oldNormals, *newNormals;
	float	*outXyz, *outNormal;
	float	oldXyzScale QALIGN(16);
	float   newXyzScale QALIGN(16);
	float	oldNormalScale QALIGN(16);
	float newNormalScale QALIGN(16);
	int		vertNum;
	unsigned lat, lng;
	int		numVerts;

	outXyz = tess.xyz[tess.numVertexes];
	outNormal = tess.normal[tess.numVertexes];

	newXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
		+ (backEnd.currentEntity->e.frame * surf->numVerts * 4);
	newNormals = newXyz + 3;

	newXyzScale = MD3_XYZ_SCALE * (1.0 - backlerp);
	newNormalScale = 1.0 - backlerp;

	numVerts = surf->numVerts;

	if ( backlerp == 0 ) {
		vector signed short newNormalsVec0;
		vector signed short newNormalsVec1;
		vector signed int newNormalsIntVec;
		vector float newNormalsFloatVec;
		vector float newXyzScaleVec;
		vector unsigned char newNormalsLoadPermute;
		vector unsigned char newNormalsStorePermute;
		vector float zero;
		
		newNormalsStorePermute = vec_lvsl(0,(float *)&newXyzScaleVec);
		newXyzScaleVec = *(vector float *)&newXyzScale;
		newXyzScaleVec = vec_perm(newXyzScaleVec,newXyzScaleVec,newNormalsStorePermute);
		newXyzScaleVec = vec_splat(newXyzScaleVec,0);		
		newNormalsLoadPermute = vec_lvsl(0,newXyz);
		newNormalsStorePermute = vec_lvsr(0,outXyz);
		zero = (vector float)vec_splat_s8(0);
		//
		// just copy the vertexes
		//
		for (vertNum=0 ; vertNum < numVerts ; vertNum++,
			newXyz += 4, newNormals += 4,
			outXyz += 4, outNormal += 4) 
		{
			newNormalsLoadPermute = vec_lvsl(0,newXyz);
			newNormalsStorePermute = vec_lvsr(0,outXyz);
			newNormalsVec0 = vec_ld(0,newXyz);
			newNormalsVec1 = vec_ld(16,newXyz);
			newNormalsVec0 = vec_perm(newNormalsVec0,newNormalsVec1,newNormalsLoadPermute);
			newNormalsIntVec = vec_unpackh(newNormalsVec0);
			newNormalsFloatVec = vec_ctf(newNormalsIntVec,0);
			newNormalsFloatVec = vec_madd(newNormalsFloatVec,newXyzScaleVec,zero);
			newNormalsFloatVec = vec_perm(newNormalsFloatVec,newNormalsFloatVec,newNormalsStorePermute);
			//outXyz[0] = newXyz[0] * newXyzScale;
			//outXyz[1] = newXyz[1] * newXyzScale;
			//outXyz[2] = newXyz[2] * newXyzScale;

			lat = ( newNormals[0] >> 8 ) & 0xff;
			lng = ( newNormals[0] & 0xff );
			lat *= (FUNCTABLE_SIZE/256);
			lng *= (FUNCTABLE_SIZE/256);

			// decode X as cos( lat ) * sin( long )
			// decode Y as sin( lat ) * sin( long )
			// decode Z as cos( long )

			outNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
			outNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
			outNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];

			vec_ste(newNormalsFloatVec,0,outXyz);
			vec_ste(newNormalsFloatVec,4,outXyz);
			vec_ste(newNormalsFloatVec,8,outXyz);
		}
	} else {
		//
		// interpolate and copy the vertex and normal
		//
		oldXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
			+ (backEnd.currentEntity->e.oldframe * surf->numVerts * 4);
		oldNormals = oldXyz + 3;

		oldXyzScale = MD3_XYZ_SCALE * backlerp;
		oldNormalScale = backlerp;

		for (vertNum=0 ; vertNum < numVerts ; vertNum++,
			oldXyz += 4, newXyz += 4, oldNormals += 4, newNormals += 4,
			outXyz += 4, outNormal += 4) 
		{
			vec3_t uncompressedOldNormal, uncompressedNewNormal;

			// interpolate the xyz
			outXyz[0] = oldXyz[0] * oldXyzScale + newXyz[0] * newXyzScale;
			outXyz[1] = oldXyz[1] * oldXyzScale + newXyz[1] * newXyzScale;
			outXyz[2] = oldXyz[2] * oldXyzScale + newXyz[2] * newXyzScale;

			// FIXME: interpolate lat/long instead?
			lat = ( newNormals[0] >> 8 ) & 0xff;
			lng = ( newNormals[0] & 0xff );
			lat *= 4;
			lng *= 4;
			uncompressedNewNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
			uncompressedNewNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
			uncompressedNewNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];

			lat = ( oldNormals[0] >> 8 ) & 0xff;
			lng = ( oldNormals[0] & 0xff );
			lat *= 4;
			lng *= 4;

			uncompressedOldNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
			uncompressedOldNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
			uncompressedOldNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];

			outNormal[0] = uncompressedOldNormal[0] * oldNormalScale + uncompressedNewNormal[0] * newNormalScale;
			outNormal[1] = uncompressedOldNormal[1] * oldNormalScale + uncompressedNewNormal[1] * newNormalScale;
			outNormal[2] = uncompressedOldNormal[2] * oldNormalScale + uncompressedNewNormal[2] * newNormalScale;

//			VectorNormalize (outNormal);
		}
    	VectorArrayNormalize((vec4_t *)tess.normal[tess.numVertexes], numVerts);
   	}
}

#endif