File: tr_flares.c

package info (click to toggle)
iortcw 1.51.c%2Bdfsg1-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 25,304 kB
  • sloc: ansic: 457,326; cpp: 6,507; makefile: 4,737; sh: 1,292; asm: 1,176; xml: 31
file content (621 lines) | stat: -rw-r--r-- 18,305 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/*
===========================================================================

Return to Castle Wolfenstein multiplayer GPL Source Code
Copyright (C) 1999-2010 id Software LLC, a ZeniMax Media company. 

This file is part of the Return to Castle Wolfenstein multiplayer GPL Source Code (“RTCW MP Source Code”).  

RTCW MP Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

RTCW MP Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with RTCW MP Source Code.  If not, see <http://www.gnu.org/licenses/>.

In addition, the RTCW MP Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the RTCW MP Source Code.  If not, please request a copy in writing from id Software at the address below.

If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.

===========================================================================
*/

// tr_flares.c

#include "tr_local.h"

/*
=============================================================================

LIGHT FLARES

A light flare is an effect that takes place inside the eye when bright light
sources are visible.  The size of the flare relative to the screen is nearly
constant, irrespective of distance, but the intensity should be proportional to the
projected area of the light source.

A surface that has been flagged as having a light flare will calculate the depth
buffer value that its midpoint should have when the surface is added.

After all opaque surfaces have been rendered, the depth buffer is read back for
each flare in view.  If the point has not been obscured by a closer surface, the
flare should be drawn.

Surfaces that have a repeated texture should never be flagged as flaring, because
there will only be a single flare added at the midpoint of the polygon.

To prevent abrupt popping, the intensity of the flare is interpolated up and
down as it changes visibility.  This involves scene to scene state, unlike almost
all other aspects of the renderer, and is complicated by the fact that a single
frame may have multiple scenes.

RB_RenderFlares() will be called once per view (twice in a mirrored scene, potentially
up to five or more times in a frame with 3D status bar icons).

=============================================================================
*/


// flare states maintain visibility over multiple frames for fading
// layers: view, mirror, menu
typedef struct flare_s {
	struct      flare_s *next;      // for active chain

	int addedFrame;

	qboolean inPortal;                  // true if in a portal view of the scene
	int frameSceneNum;
	void        *surface;
	int fogNum;

	int fadeTime;

	qboolean cgvisible;             // for coronas, the client determines current visibility, but it's still inserted so it will fade out properly
	qboolean visible;               // state of last test
	float drawIntensity;            // may be non 0 even if !visible due to fading

	int windowX, windowY;
	float eyeZ;

	vec3_t origin;
	vec3_t color;
	float scale;

	int id;
} flare_t;

#define     MAX_FLARES      256

flare_t r_flareStructs[MAX_FLARES];
flare_t     *r_activeFlares, *r_inactiveFlares;

int flareCoeff;

/*
==================
R_SetFlareCoeff
==================
*/
static void R_SetFlareCoeff( void ) {

	if(r_flareCoeff->value == 0.0f)
		flareCoeff = atof(FLARE_STDCOEFF);
	else
		flareCoeff = r_flareCoeff->value;
}

/*
==================
R_ClearFlares
==================
*/
void R_ClearFlares( void ) {
	int i;

	memset( r_flareStructs, 0, sizeof( r_flareStructs ) );
	r_activeFlares = NULL;
	r_inactiveFlares = NULL;

	for ( i = 0 ; i < MAX_FLARES ; i++ ) {
		r_flareStructs[i].next = r_inactiveFlares;
		r_inactiveFlares = &r_flareStructs[i];
	}

	R_SetFlareCoeff();
}


/*
==================
RB_AddFlare

This is called at surface tesselation time
==================
*/
void RB_AddFlare( void *surface, int fogNum, vec3_t point, vec3_t color, float scale, vec3_t normal, int id, qboolean cgvisible ) { //----(SA)	added scale. added id.  added visible
	int i;
	flare_t			*f;
	vec3_t local;
	float d = 1;
	vec4_t eye, clip, normalized, window;

	backEnd.pc.c_flareAdds++;

	if(normal && (normal[0] || normal[1] || normal[2]))
	{
		VectorSubtract( backEnd.viewParms.or.origin, point, local );
		VectorNormalizeFast(local);
		d = DotProduct(local, normal);

		// If the viewer is behind the flare don't add it.
		if(d < 0)
			return;
	}

	// if the point is off the screen, don't bother adding it
	// calculate screen coordinates and depth
	R_TransformModelToClip( point, backEnd.or.modelMatrix,
							backEnd.viewParms.projectionMatrix, eye, clip );

	//ri.Printf(PRINT_ALL, "src:  %f  %f  %f  \n", point[0], point[1], point[2]);
	//ri.Printf(PRINT_ALL, "eye:  %f  %f  %f  %f\n", eye[0], eye[1], eye[2], eye[3]);

	// check to see if the point is completely off screen
	for ( i = 0 ; i < 3 ; i++ ) {
		if ( clip[i] >= clip[3] || clip[i] <= -clip[3] ) {
			return;
		}
	}

	R_TransformClipToWindow( clip, &backEnd.viewParms, normalized, window );

	//ri.Printf(PRINT_ALL, "window:  %f  %f  %f  \n", window[0], window[1], window[2]);

	if ( window[0] < 0 || window[0] >= backEnd.viewParms.viewportWidth
		 || window[1] < 0 || window[1] >= backEnd.viewParms.viewportHeight ) {
		return; // shouldn't happen, since we check the clip[] above, except for FP rounding
	}

	// see if a flare with a matching surface, scene, and view exists
	for ( f = r_activeFlares ; f ; f = f->next ) {
//		if ( f->surface == surface && f->frameSceneNum == backEnd.viewParms.frameSceneNum && f->inPortal == backEnd.viewParms.isPortal ) {

		// (SA) added back in more checks for different scenes
		if ( f->id == id && f->frameSceneNum == backEnd.viewParms.frameSceneNum && f->inPortal == backEnd.viewParms.isPortal ) {
			break;
		}
	}

	// allocate a new one
	if ( !f ) {
		if ( !r_inactiveFlares ) {
			// the list is completely full
			return;
		}
		f = r_inactiveFlares;
		r_inactiveFlares = r_inactiveFlares->next;
		f->next = r_activeFlares;
		r_activeFlares = f;

		f->surface = surface;
		f->frameSceneNum = backEnd.viewParms.frameSceneNum;
		f->inPortal = backEnd.viewParms.isPortal;
		f->addedFrame = -1;
		f->id = id;
	}

	f->cgvisible = cgvisible;

	if ( f->addedFrame != backEnd.viewParms.frameCount - 1 ) {
		f->visible = qfalse;
		f->fadeTime = backEnd.refdef.time - 2000;
	}

	f->addedFrame = backEnd.viewParms.frameCount;
	f->fogNum = fogNum;

	VectorCopy(point, f->origin);
	VectorCopy( color, f->color );

	f->scale = scale;   //----(SA)

	// fade the intensity of the flare down as the
	// light surface turns away from the viewer
	VectorScale( f->color, d, f->color );

	// save info needed to test
	f->windowX = backEnd.viewParms.viewportX + window[0];
	f->windowY = backEnd.viewParms.viewportY + window[1];

	f->eyeZ = eye[2];
}

/*
==================
RB_AddDlightFlares
==================
*/
void RB_AddDlightFlares( void ) {
	dlight_t        *l;
	int i, j, k;
	int id = 0;
	fog_t           *fog = NULL;

	if ( r_flares->integer < 2 ) {
		return;
	}

	l = backEnd.refdef.dlights;

	if(tr.world)
		fog = tr.world->fogs;

	for ( i = 0 ; i < backEnd.refdef.num_dlights ; i++, l++ ) {

		// find which fog volume the light is in
		if(fog)
		{
			// find which fog volume the light is in 
			for ( j = 1 ; j < tr.world->numfogs ; j++ ) {
				fog = &tr.world->fogs[j];
				for ( k = 0 ; k < 3 ; k++ ) {
					if ( l->origin[k] < fog->bounds[0][k] || l->origin[k] > fog->bounds[1][k] ) {
						break;
					}
				}
				if ( k == 3 ) {
					break;
				}
			}
			if ( j == tr.world->numfogs ) {
				j = 0;
			}
		}
		else
			j = 0;

		RB_AddFlare( (void *)l, j, l->origin, l->color, 1.0f, NULL, id++, qtrue );  //----(SA)	also set scale
	}
}


/*
==============
RB_AddCoronaFlares
==============
*/
void RB_AddCoronaFlares( void ) {
	corona_t        *cor;
	int i, j, k;
	fog_t           *fog;

	if ( r_flares->integer != 1 && r_flares->integer != 3 ) {
		return;
	}

	if ( !( tr.world ) ) { // (SA) possible currently at the player model selection menu
		return;
	}

	cor = backEnd.refdef.coronas;

	for ( i = 0 ; i < backEnd.refdef.num_coronas ; i++, cor++ ) {

		// find which fog volume the corona is in
		for ( j = 1 ; j < tr.world->numfogs ; j++ ) {
			fog = &tr.world->fogs[j];
			for ( k = 0 ; k < 3 ; k++ ) {
				if ( cor->origin[k] < fog->bounds[0][k] || cor->origin[k] > fog->bounds[1][k] ) {
					break;
				}
			}
			if ( k == 3 ) {
				break;
			}
		}
		if ( j == tr.world->numfogs ) {
			j = 0;
		}
		RB_AddFlare( (void *)cor, j, cor->origin, cor->color, cor->scale, NULL, cor->id, cor->visible );
	}
}

/*
===============================================================================

FLARE BACK END

===============================================================================
*/

/*
==================
RB_TestFlare
==================
*/
void RB_TestFlare( flare_t *f ) {
#ifndef USE_OPENGLES
	float			depth;
#endif
	qboolean		visible;
	float			fade;
	float			screenZ;

	backEnd.pc.c_flareTests++;

	// doing a readpixels is as good as doing a glFinish(), so
	// don't bother with another sync
	glState.finishCalled = qfalse;

	// read back the z buffer contents
#ifdef USE_OPENGLES
	screenZ = 0;
#else
	qglReadPixels( f->windowX, f->windowY, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &depth );

	screenZ = backEnd.viewParms.projectionMatrix[14] / 
		( ( 2*depth - 1 ) * backEnd.viewParms.projectionMatrix[11] - backEnd.viewParms.projectionMatrix[10] );
#endif

	visible = f->cgvisible;

	if ( -f->eyeZ - -screenZ  > 24 )
		visible = qfalse;

	if ( visible ) {
		if ( !f->visible ) {
			f->visible = qtrue;
			f->fadeTime = backEnd.refdef.time - 1;
		}
		fade = ( ( backEnd.refdef.time - f->fadeTime ) /1000.0f ) * r_flareFade->value;
	} else {
		if ( f->visible ) {
			f->visible = qfalse;
			f->fadeTime = backEnd.refdef.time - 1;
		}
		fade = 1.0f - ( ( backEnd.refdef.time - f->fadeTime ) / 1000.0f ) * r_flareFade->value;
	}

	if ( fade < 0 ) {
		fade = 0;
	}
	if ( fade > 1 ) {
		fade = 1;
	}

	f->drawIntensity = fade;
}


/*
==================
RB_RenderFlare
==================
*/
void RB_RenderFlare( flare_t *f ) {
	float size;
	vec3_t color;
	int iColor[3];
	float distance, intensity, factor;
	byte fogFactors[3] = {255, 255, 255};

	backEnd.pc.c_flareRenders++;

	// We don't want too big values anyways when dividing by distance.
	if(f->eyeZ > -1.0f)
		distance = 1.0f;
	else
		distance = -f->eyeZ;

	// calculate the flare size..
	size = backEnd.viewParms.viewportWidth * ( r_flareSize->value/640.0f + 8 / distance );

/*
 * This is an alternative to intensity scaling. It changes the size of the flare on screen instead
 * with growing distance. See in the description at the top why this is not the way to go.
	// size will change ~ 1/r.
	size = backEnd.viewParms.viewportWidth * (r_flareSize->value / (distance * -2.0f));
*/

/*
 * As flare sizes stay nearly constant with increasing distance we must decrease the intensity
 * to achieve a reasonable visual result. The intensity is ~ (size^2 / distance^2) which can be
 * got by considering the ratio of
 * (flaresurface on screen) : (Surface of sphere defined by flare origin and distance from flare)
 * An important requirement is:
 * intensity <= 1 for all distances.
 *
 * The formula used here to compute the intensity is as follows:
 * intensity = flareCoeff * size^2 / (distance + size*sqrt(flareCoeff))^2
 * As you can see, the intensity will have a max. of 1 when the distance is 0.
 * The coefficient flareCoeff will determine the falloff speed with increasing distance.
 */

	factor = distance + size * sqrt(flareCoeff);
	
	intensity = flareCoeff * size * size / (factor * factor);

	VectorScale(f->color, f->drawIntensity * intensity, color);

	// Calculations for fogging
	if(tr.world && f->fogNum > 0 && f->fogNum < tr.world->numfogs)
	{
		tess.numVertexes = 1;
		VectorCopy(f->origin, tess.xyz[0]);
		tess.fogNum = f->fogNum;
	
		RB_CalcModulateColorsByFog(fogFactors);
		
		// We don't need to render the flare if colors are 0 anyways.
		if(!(fogFactors[0] || fogFactors[1] || fogFactors[2]))
			return;
	}

	iColor[0] = color[0] * fogFactors[0];
	iColor[1] = color[1] * fogFactors[1];
	iColor[2] = color[2] * fogFactors[2];

	RB_BeginSurface( tr.flareShader, f->fogNum );

	// FIXME: use quadstamp?
	tess.xyz[tess.numVertexes][0] = f->windowX - size;
	tess.xyz[tess.numVertexes][1] = f->windowY - size;
	tess.texCoords[tess.numVertexes][0][0] = 0;
	tess.texCoords[tess.numVertexes][0][1] = 0;
	tess.vertexColors[tess.numVertexes][0] = iColor[0];
	tess.vertexColors[tess.numVertexes][1] = iColor[1];
	tess.vertexColors[tess.numVertexes][2] = iColor[2];
	tess.vertexColors[tess.numVertexes][3] = f->drawIntensity * 255;      //----(SA)	mod for alpha blend rather than additive
//	tess.vertexColors[tess.numVertexes][3] = 255;		//----(SA)	mod for alpha blend rather than additive
	tess.numVertexes++;

	tess.xyz[tess.numVertexes][0] = f->windowX - size;
	tess.xyz[tess.numVertexes][1] = f->windowY + size;
	tess.texCoords[tess.numVertexes][0][0] = 0;
	tess.texCoords[tess.numVertexes][0][1] = 1;
	tess.vertexColors[tess.numVertexes][0] = iColor[0];
	tess.vertexColors[tess.numVertexes][1] = iColor[1];
	tess.vertexColors[tess.numVertexes][2] = iColor[2];
	tess.vertexColors[tess.numVertexes][3] = f->drawIntensity * 255;      //----(SA)	mod for alpha blend rather than additive
//	tess.vertexColors[tess.numVertexes][3] = 255;		//----(SA)	mod for alpha blend rather than additive
	tess.numVertexes++;

	tess.xyz[tess.numVertexes][0] = f->windowX + size;
	tess.xyz[tess.numVertexes][1] = f->windowY + size;
	tess.texCoords[tess.numVertexes][0][0] = 1;
	tess.texCoords[tess.numVertexes][0][1] = 1;
	tess.vertexColors[tess.numVertexes][0] = iColor[0];
	tess.vertexColors[tess.numVertexes][1] = iColor[1];
	tess.vertexColors[tess.numVertexes][2] = iColor[2];
	tess.vertexColors[tess.numVertexes][3] = f->drawIntensity * 255;      //----(SA)	mod for alpha blend rather than additive
//	tess.vertexColors[tess.numVertexes][3] = 255;		//----(SA)	mod for alpha blend rather than additive
	tess.numVertexes++;

	tess.xyz[tess.numVertexes][0] = f->windowX + size;
	tess.xyz[tess.numVertexes][1] = f->windowY - size;
	tess.texCoords[tess.numVertexes][0][0] = 1;
	tess.texCoords[tess.numVertexes][0][1] = 0;
	tess.vertexColors[tess.numVertexes][0] = iColor[0];
	tess.vertexColors[tess.numVertexes][1] = iColor[1];
	tess.vertexColors[tess.numVertexes][2] = iColor[2];
	tess.vertexColors[tess.numVertexes][3] = f->drawIntensity * 255;      //----(SA)	mod for alpha blend rather than additive
//	tess.vertexColors[tess.numVertexes][3] = 255;		//----(SA)	mod for alpha blend rather than additive
	tess.numVertexes++;

	tess.indexes[tess.numIndexes++] = 0;
	tess.indexes[tess.numIndexes++] = 1;
	tess.indexes[tess.numIndexes++] = 2;
	tess.indexes[tess.numIndexes++] = 0;
	tess.indexes[tess.numIndexes++] = 2;
	tess.indexes[tess.numIndexes++] = 3;

	RB_EndSurface();
}

/*
==================
RB_RenderFlares

Because flares are simulating an occular effect, they should be drawn after
everything (all views) in the entire frame has been drawn.

Because of the way portals use the depth buffer to mark off areas, the
needed information would be lost after each view, so we are forced to draw
flares after each view.

The resulting artifact is that flares in mirrors or portals don't dim properly
when occluded by something in the main view, and portal flares that should
extend past the portal edge will be overwritten.
==================
*/
void RB_RenderFlares( void ) {
	flare_t     *f;
	flare_t     **prev;
	qboolean draw;

	if ( !r_flares->integer ) {
		return;
	}

	if(r_flareCoeff->modified)
	{
		R_SetFlareCoeff();			
		r_flareCoeff->modified = qfalse;
	}

	// Reset currentEntity to world so that any previously referenced entities
	// don't have influence on the rendering of these flares (i.e. RF_ renderer flags).
	backEnd.currentEntity = &tr.worldEntity;
	backEnd.or = backEnd.viewParms.world;

	// (SA) turned light flares back on.  must evaluate problem id had with this
	RB_AddDlightFlares();
	RB_AddCoronaFlares();

	// perform z buffer readback on each flare in this view
	draw = qfalse;
	prev = &r_activeFlares;
	while ( ( f = *prev ) != NULL ) {
		// throw out any flares that weren't added last frame
		if ( f->addedFrame < backEnd.viewParms.frameCount - 1 ) {
			*prev = f->next;
			f->next = r_inactiveFlares;
			r_inactiveFlares = f;
			continue;
		}

		// don't draw any here that aren't from this scene / portal
		f->drawIntensity = 0;
		if ( f->frameSceneNum == backEnd.viewParms.frameSceneNum
			 && f->inPortal == backEnd.viewParms.isPortal ) {
			RB_TestFlare( f );
			if ( f->drawIntensity ) {
				draw = qtrue;
			} else {
				// this flare has completely faded out, so remove it from the chain
				*prev = f->next;
				f->next = r_inactiveFlares;
				r_inactiveFlares = f;
				continue;
			}
		}

		prev = &f->next;
	}

	if ( !draw ) {
		return;     // none visible
	}

	if ( backEnd.viewParms.isPortal ) {
		qglDisable( GL_CLIP_PLANE0 );
	}

	qglPushMatrix();
	qglLoadIdentity();
	qglMatrixMode( GL_PROJECTION );
	qglPushMatrix();
	qglLoadIdentity();
	qglOrtho( backEnd.viewParms.viewportX, backEnd.viewParms.viewportX + backEnd.viewParms.viewportWidth,
			  backEnd.viewParms.viewportY, backEnd.viewParms.viewportY + backEnd.viewParms.viewportHeight,
			  -99999, 99999 );

	for ( f = r_activeFlares ; f ; f = f->next ) {
		if ( f->frameSceneNum == backEnd.viewParms.frameSceneNum
			 && f->inPortal == backEnd.viewParms.isPortal
			 && f->drawIntensity ) {
			RB_RenderFlare( f );
		}
	}

	qglPopMatrix();
	qglMatrixMode( GL_MODELVIEW );
	qglPopMatrix();
}