1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
/*
sv_wallhack.c -- functions to prevent wallhack cheats
Copyright (C) 2013 Laszlo Menczel
This is free software distributed under the terms of the GNU
General Public License version 2. NO WARRANTY, see 'LICENSE.TXT'.
*/
#ifdef ANTIWALLHACK // added whole file
#include <time.h> // for random seed generation
#include "server.h"
//======================================================================
static vec3_t pred_ppos, pred_opos;
static trajectory_t traject;
static int rand_seed;
static float delta_sign[8][3] =
{
{ 1, 1, 1 },
{ 1, 1, 1 },
{ 1, 1, -1 },
{ 1, 1, -1 },
{ -1, 1, 1 },
{ 1, -1, 1 },
{ -1, 1, -1 },
{ 1, -1, -1 }
};
static vec3_t delta[8];
//======================================================================
// local functions
//======================================================================
#define POS_LIM 1.0
#define NEG_LIM -1.0
static int zero_vector(vec3_t v)
{
if (v[0] > POS_LIM || v[0] < NEG_LIM)
return 0;
if (v[1] > POS_LIM || v[1] < NEG_LIM)
return 0;
if (v[2] > POS_LIM || v[2] < NEG_LIM)
return 0;
return 1;
}
//======================================================================
/*
The following functions for predicting player positions
have been adopted from 'g_unlagged.c' which is part of the
'unlagged' system created by Neil "haste" Toronto.
WEB site: http://www.ra.is/unlagged
*/
#define OVERCLIP 1.001f
static void predict_clip_velocity(vec3_t in, vec3_t normal, vec3_t out)
{
float backoff;
// find the magnitude of the vector "in" along "normal"
backoff = DotProduct(in, normal);
// tilt the plane a bit to avoid floating-point error issues
if (backoff < 0)
backoff *= OVERCLIP;
else
backoff /= OVERCLIP;
// slide along
VectorMA(in, -backoff, normal, out);
}
//======================================================================
#define MAX_CLIP_PLANES 5
#define Z_ADJUST 1
static int predict_slide_move(sharedEntity_t * ent, float frametime, trajectory_t * tr, vec3_t result)
{
int count, numbumps, numplanes, i, j, k;
float d, time_left, into;
vec3_t planes[MAX_CLIP_PLANES],
velocity, origin, clipVelocity, endVelocity, endClipVelocity, dir, end;
trace_t trace;
numbumps = 4;
VectorCopy(tr->trBase, origin);
origin[2] += Z_ADJUST; // move it off the floor
VectorCopy(tr->trDelta, velocity);
VectorCopy(tr->trDelta, endVelocity);
time_left = frametime;
numplanes = 0;
for (count = 0; count < numbumps; count++)
{
// calculate position we are trying to move to
VectorMA(origin, time_left, velocity, end);
// see if we can make it there
SV_Trace(&trace, origin, ent->r.mins, ent->r.maxs, end, ent->s.number,
CONTENTS_SOLID, qfalse);
if (trace.allsolid)
{
// entity is completely trapped in another solid
VectorCopy(origin, result);
return 0;
}
if (trace.fraction > 0.99) // moved the entire distance
{
VectorCopy(trace.endpos, result);
return 1;
}
if (trace.fraction > 0) // covered some distance
VectorCopy(trace.endpos, origin);
time_left -= time_left * trace.fraction;
if (numplanes >= MAX_CLIP_PLANES)
{
// this shouldn't really happen
VectorCopy(origin, result);
return 0;
}
// if this is the same plane we hit before, nudge velocity
// out along it, which fixes some epsilon issues with
// non-axial planes
for (i = 0; i < numplanes; i++)
if (DotProduct(trace.plane.normal, planes[i]) > 0.99)
{
VectorAdd(trace.plane.normal, velocity, velocity);
break;
}
if (i < numplanes)
continue;
VectorCopy(trace.plane.normal, planes[numplanes]);
numplanes++;
// modify velocity so it parallels all of the clip planes
// find a plane that it enters
for (i = 0; i < numplanes; i++)
{
into = DotProduct(velocity, planes[i]);
if (into >= 0.1) // move doesn't interact with the plane
continue;
// slide along the plane
predict_clip_velocity(velocity, planes[i], clipVelocity);
// slide along the plane
predict_clip_velocity(endVelocity, planes[i], endClipVelocity);
// see if there is a second plane that the new move enters
for (j = 0; j < numplanes; j++)
{
if (j == i)
continue;
if (DotProduct(clipVelocity, planes[j]) >= 0.1) // move doesn't interact with the plane
continue;
// try clipping the move to the plane
predict_clip_velocity(clipVelocity, planes[j], clipVelocity);
predict_clip_velocity(endClipVelocity, planes[j], endClipVelocity);
// see if it goes back into the first clip plane
if (DotProduct(clipVelocity, planes[i]) >= 0)
continue;
// slide the original velocity along the crease
CrossProduct(planes[i], planes[j], dir);
VectorNormalize(dir);
d = DotProduct(dir, velocity);
VectorScale(dir, d, clipVelocity);
CrossProduct(planes[i], planes[j], dir);
VectorNormalize(dir);
d = DotProduct(dir, endVelocity);
VectorScale(dir, d, endClipVelocity);
// see if there is a third plane the new move enters
for (k = 0; k < numplanes; k++)
{
if (k == i || k == j)
continue;
if (DotProduct(clipVelocity, planes[k]) >= 0.1) // move doesn't interact with the plane
continue;
// stop dead at a tripple plane interaction
VectorCopy(origin, result);
return 1;
}
}
// if we have fixed all interactions, try another move
VectorCopy(clipVelocity, velocity);
VectorCopy(endClipVelocity, endVelocity);
break;
}
}
VectorCopy(origin, result);
if (count == 0)
return 1;
return 0;
}
//======================================================================
#define STEPSIZE 18
// 'frametime' is interpreted as seconds
static void predict_move(sharedEntity_t * ent, float frametime, trajectory_t * tr, vec3_t result)
{
float stepSize;
vec3_t start_o, start_v, down, up;
trace_t trace;
VectorCopy(tr->trBase, result); // assume the move fails
if (zero_vector(tr->trDelta)) // not moving
return;
if (predict_slide_move(ent, frametime, tr, result)) // move completed
return;
VectorCopy(tr->trBase, start_o);
VectorCopy(tr->trDelta, start_v);
VectorCopy(start_o, up);
up[2] += STEPSIZE;
// test the player position if they were a stepheight higher
SV_Trace(&trace, start_o, ent->r.mins, ent->r.maxs, up, ent->s.number,
CONTENTS_SOLID, qfalse);
if (trace.allsolid) // can't step up
return;
stepSize = trace.endpos[2] - start_o[2];
// try slidemove from this position
VectorCopy(trace.endpos, tr->trBase);
VectorCopy(start_v, tr->trDelta);
predict_slide_move(ent, frametime, tr, result);
// push down the final amount
VectorCopy(tr->trBase, down);
down[2] -= stepSize;
SV_Trace(&trace, tr->trBase, ent->r.mins, ent->r.maxs, down, ent->s.number,
CONTENTS_SOLID, qfalse);
if (!trace.allsolid)
VectorCopy(trace.endpos, result);
}
//======================================================================
/*
Calculates the view point of a player model at position 'org' using
information in the player state 'ps' of its client, and stores the
viewpoint coordinates in 'vp'.
*/
static void calc_viewpoint(playerState_t * ps, vec3_t org, vec3_t vp)
{
VectorCopy(org, vp);
if ( ps->leanf != 0 )
{
vec3_t right, v3ViewAngles;
VectorCopy( ps->viewangles, v3ViewAngles );
v3ViewAngles[2] += ps->leanf / 2.0f;
AngleVectors( v3ViewAngles, NULL, right, NULL );
VectorMA( org, ps->leanf, right, org );
}
if (ps->pm_flags & PMF_DUCKED)
vp[2] += CROUCH_VIEWHEIGHT;
else
vp[2] += DEFAULT_VIEWHEIGHT;
}
//======================================================================
#define MAX_PITCH 20
static int player_in_fov(vec3_t viewangle, vec3_t ppos, vec3_t opos)
{
float yaw, pitch, cos_angle;
vec3_t dir, los;
/*
FIXME:
For some reason my FOV calculation does not work correctly for large
pitch values. It does not matter, the test's purpose is to eliminate
info that would reveal the position of opponents behind the player
on the same floor.
*/
if (viewangle[PITCH] > MAX_PITCH || viewangle[PITCH] < -1 * MAX_PITCH)
return 1;
// calculate unit vector of the direction the player looks at
yaw = viewangle[YAW] * (M_PI * 2 / 360);
pitch = viewangle[PITCH] * (M_PI * 2 / 360);
dir[0] = cos(yaw) * cos(pitch);
dir[1] = sin(yaw);
dir[2] = cos(yaw) * sin(pitch);
// calculate unit vector corresponding to line of sight to opponent
VectorSubtract(opos, ppos, los);
VectorNormalize(los);
// calculate and test the angle between the two vectors
cos_angle = DotProduct(dir, los);
if (cos_angle > 0) // +/- 90 degrees (fov = 180)
return 1;
return 0;
}
//======================================================================
static void copy_trajectory(trajectory_t * src, trajectory_t * dst)
{
dst->trType = src->trType;
dst->trTime = src->trTime;
dst->trDuration = src->trDuration;
VectorCopy(src->trBase, dst->trBase);
VectorCopy(src->trDelta, dst->trDelta);
}
//======================================================================
int is_visible(vec3_t start, vec3_t end)
{
trace_t trace;
CM_BoxTrace(&trace, start, end, NULL, NULL, 0, CONTENTS_SOLID, 0);
if (trace.contents & CONTENTS_SOLID)
return 0;
return 1;
}
//======================================================================
#define MIN_DIST 200.0
#define MAX_DIST 1000.0
#define MIN_OFS_FACT 0.1
#define MAX_OFS_FACT 0.4
#define OFS_FACT_DIFF (MAX_OFS_FACT - MIN_OFS_FACT)
static void randomize_position(sharedEntity_t *anchor, sharedEntity_t *object)
{
vec3_t los;
float dist, ofs, rand_fact, dist_fact;
VectorSubtract(anchor->s.pos.trBase, object->s.pos.trBase, los);
dist = VectorLength(los);
if (dist > MAX_DIST)
dist_fact = MIN_OFS_FACT;
else if (dist < MIN_DIST)
dist_fact = MAX_OFS_FACT;
else
dist_fact = MAX_OFS_FACT - OFS_FACT_DIFF * (dist - MIN_DIST) / (MAX_DIST - MIN_DIST);
rand_fact = (float) (rand() % 100) / 100.0;
ofs = dist * dist_fact;
ofs += ofs * rand_fact;
if (rand() & 1)
object->s.pos.trBase[0] += ofs;
else
object->s.pos.trBase[0] -= ofs;
rand_fact = (float) (rand() % 100) / 100.0;
ofs = dist * dist_fact;
ofs += ofs * rand_fact;
if (rand() & 1)
object->s.pos.trBase[1] += ofs;
else
object->s.pos.trBase[1] -= ofs;
rand_fact = (float) (rand() % 100) / 100.0;
ofs = dist * dist_fact;
ofs += ofs * rand_fact;
if (rand() & 1)
object->s.pos.trBase[2] += ofs;
else
object->s.pos.trBase[2] -= ofs;
}
//======================================================================
/*
'can_see' checks if 'player' can see 'other' or not. First
a check is made if 'other' is in the maximum allowed fov of
'player'. If not, then zero is returned w/o any further checks.
Next traces are carried out from the present viewpoint of 'player'
to the corners of the bounding box of 'other'. If any of these
traces are successful (i.e. nothing solid is between the start
and end positions) then non-zero is returned.
Otherwise the expected positions of the two players are calculated,
by extrapolating their movements for PREDICT_TIME seconds and the above
tests are carried out again. The result is reported by returning non-zero
(expected to become visible) or zero (not expected to become visible
in the next frame).
*/
#define PREDICT_TIME 0.1
#define VOFS 6
static int can_see(sharedEntity_t *pent, sharedEntity_t*oent, playerState_t *ps)
{
vec3_t viewpoint, tmp;
int i;
/* check if 'other' is in the maximum fov allowed */
if (!player_in_fov(pent->s.apos.trBase, pent->s.pos.trBase, oent->s.pos.trBase))
return 0;
/* check if visible in this frame */
calc_viewpoint(ps, pent->s.pos.trBase, viewpoint);
for (i = 0; i < 8; i++)
{
VectorCopy(oent->s.pos.trBase, tmp);
tmp[0] += delta[i][0];
tmp[1] += delta[i][1];
tmp[2] += delta[i][2] + VOFS;
if (is_visible(viewpoint, tmp))
return 1;
}
/* predict player positions */
copy_trajectory(&pent->s.pos, &traject);
predict_move(pent, PREDICT_TIME, &traject, pred_ppos);
copy_trajectory(&oent->s.pos, &traject);
predict_move(oent, PREDICT_TIME, &traject, pred_opos);
/*
Check again if 'other' is in the maximum fov allowed.
FIXME: We use the original viewangle that may have
changed during the move. This could introduce some
errors.
*/
if (!player_in_fov(pent->s.apos.trBase, pred_ppos, pred_opos))
return 0;
/* check if expected to be visible in the next frame */
calc_viewpoint(ps, pred_ppos, viewpoint);
for (i = 0; i < 8; i++)
{
VectorCopy(pred_opos, tmp);
tmp[0] += delta[i][0];
tmp[1] += delta[i][1];
tmp[2] += delta[i][2] + VOFS;
if (is_visible(viewpoint, tmp))
return 1;
}
return 0;
}
//======================================================================
// public functions
//======================================================================
void AWH_Init(void)
{
int i;
for (i = 0; i < 8; i++)
{
delta[i][0] = ((float) awh_bbox_horz->integer * delta_sign[i][0]) / 2.0;
delta[i][1] = ((float) awh_bbox_horz->integer * delta_sign[i][1]) / 2.0;
delta[i][2] = ((float) awh_bbox_vert->integer * delta_sign[i][2]) / 2.0;
}
rand_seed = (int) time(NULL);
}
//======================================================================
int AWH_CanSee(int player, int other)
{
sharedEntity_t *pent, *oent;
playerState_t *ps;
ps = SV_GameClientNum(player);
pent = SV_GentityNum(player);
oent = SV_GentityNum(other);
return can_see(pent, oent, ps);
}
//======================================================================
// The value below is equal to the default value of the Cvar
// 's_alMaxDistance' (= 1024).
#define SOUND_HEARING_LIMIT 1024
int AWH_CanHear(int player, int other)
{
sharedEntity_t *pent, *oent;
vec3_t dist;
pent = SV_GentityNum(player);
oent = SV_GentityNum(other);
VectorSubtract(pent->s.pos.trBase, oent->s.pos.trBase, dist);
if (VectorLength(dist) > SOUND_HEARING_LIMIT)
return 0;
return 1;
}
//======================================================================
/*
Randomizes the position of 'other'. Amount of displacement depends
on the distance of 'other' from 'player'. Checks if the new position
is still invisible from the position of 'player', returns if yes,
otherwise tries again. After three attempts the function gives up and
restores the original position of 'other'.
*/
void AWH_RandomizePos(int player, int other)
{
int i;
sharedEntity_t *pent, *oent;
playerState_t *ps;
vec3_t pos;
ps = SV_GameClientNum(player);
pent = SV_GentityNum(player);
oent = SV_GentityNum(other);
VectorCopy(oent->s.pos.trBase, pos);
for (i = 0; i < 3; i++)
{
randomize_position(pent, oent);
if (!can_see(pent, oent, ps))
return;
else
VectorCopy(pos, oent->s.pos.trBase);
}
}
#endif
|